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Abstract. Determining the appropriate process to be used is a key ingredient of 
project management. To this end, understanding the influence of activities on 
the project performance can facilitate the project management. However, quan-
tifying such a relationship via traditional Multiple Linear Regression method 
tends to be challenging, for the amount of independent variables (activities in 
software process) is usually larger than the size of dataset. Aiming at such a 
problem, in this paper we propose a novel approach. By combing the Dantzig 
selector and Ordinary Least Squares (OLS) regression method, our approach 
can derive the regression model in such challenging situations, which further set 
the theoretical stage for studying the quantitive influences of software process 
on project performance. 

1 Introduction 

Inherent in every software project there is a process (whether known or unknown, 
whether good or bad, and whether stable or erratic) [1]. Nowadays, it has been widely 
accepted that for a given software project, the employed process can have significant 
influence on project performance (e.g. schedule, budget, quality of deliverables) in 
general [2-3]. Specifically, [4] found evidence, in a sample of 61 organizations, that 
higher CMM process maturity is associated with better project performance. 

Therefore, determining the appropriate process to be used is a key ingredient of 
project management. However, the conclusion that software process can influence 
project performance does not tell us details of this relationship. For instance: 

 Among various activities in a given process, are certain activities more likely to 
influence the final project performance than other activities? The answer to this ques-
tion can facilitate the project manager to cast more focus on the more crucial activities. 

 Which activities can have significant positive impact on the final project perfor-
mance? Which activities can have significant negative impact on the final project 
performance? Answers to these questions can facilitate the project manager to better 
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customize the applied process. That is, tries to include positive-impact activities while 
exclude negative-impact activities. 

Theoretically, answering these questions calls for establishing quantitive relation-ship 
between software process and project performance. In particular, taking each activity 
in a given process as an independent variable, project performance as the dependent 
variable, we need to quantify the influence of independent variables on a dependent 
variable. 

In this light, the most commonly employed approach is Multiple Linear Regres-
sion model, which can be expressed as follow: 

Yi = β0 + β1X1i + β2X2i + … + βpXpi + εi  i=1,2,…,n 

where 
Yi   = the ith observation of the dependent variable Y. In our context, Yi denotes the 
project performance of a given project (labeled i) in the dataset. 
Xji  = the ith observation of the independent variable Xj (j = 1,2,…,p). In our context, 
Xji denotes an activity (labeled j) in the process of a given project (labeled i) in the 
dataset. 
β0  = the intercept of the equation; εi   = the error term. 
β1 , β2, …, βp  =  the slope coefficients for each of the independent variables. In our 
context, βp denotes the correlation between an activity Xp and the final project perfor-
mance Y. Such a correlation is formulated from the dataset. 
n = the number of observations. In our context, n denotes the number of projects we 
collected, namely size of the dataset. 

In general, Multiple Linear Regression estimates β0, …, βp through the Ordinary Least 
Squares (OLS) criteria, which minimizes the sum of squared residuals: 

min ∑ (Y୧ − ߚ − ଵߚ ଵܺ  − ଶܺଶߚ  ୮ܺ )ଶ୬୧ୀଵߚ − … −   

When the number of observations (n) is larger than the number of independent va-
riables (p), namely n > p, the criteria above is equivalent to the p+1 first order condi-
tions. Solving such equations can draw the estimations of β0 to βp, and therefore for-
mulate the Multiple Linear Regression model. 

Unfortunately, this is commonly not the case when conducting such studies in 
practice. On one hand, a software process usually embodies a host of activities. For 
instance, the international standard IEEE Std 12207:2008 [5], which serves as a major 
process framework, contains 123 activities in total. As a result, when taking activities 
in a software process as independent variables, the amount of independent variables 
(p) is usually large. On the other hand, the fact that collecting software process and 
project related data is costly and challenging [6] limits the size of feasible dataset. 
Consequently, the number of observations is usually relatively smaller compared to 
the amount of activities. Under such a condition, the OLS criteria become no longer 
applicable. 

Aiming at such a problem, we propose in this paper a new approach to formulate 
the quantitive relationship. Our approach first performs variable selection based on 
the Dantzig selector. Then, with the n > p criteria satisfied, we iteratively apply the 
OLS regression following the Backward Elimination method. In this way, the quanti-
tive relationship between software process and project performance can be derived 
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from a relatively small dataset. Meanwhile, the underlying rigorous mathematical 
properties of our approach guarantee the accuracy and reliability of the result. 

The rest of this paper is organized as follows. Section 2 presents a brief introduc-
tion to the Dantzig selector. Section 3 proposes our novel approach of combing the 
Dantzig selector with traditional Multiple Linear Regression. Finally, we conclude 
and discuss future work in Section 4. 

2 The Dantzig Selector 

In many statistical applications, the number of independent variables p is larger than 
the number of observations n. Suppose we have the following linear regression model: 

y = Xβ + ε (1)

where β = (β1, β2, ..., βp)
T ∊Rp is the associated regression coefficients, and εi’s are 

i.d.d N(0, σ2). X is a data matrix with possibly fewer rows than columns, i.e. n < p. X 
= (x1, x2, ... , xn), where xi = (xi1, xi2, ... xip)

T, i = 1, 2, ..., n, are predictor variables. 
Besides, y = (y1, y2, ..., yp)

T ∊ Rp is a vector of observation.  
When n < p, OLS criterion cannot provide a unique performance. To deal with this 

challenge, Candes and Tao recently proposed a new approach, namely the Dantzig 
selector [7], which can generate a sparse estimate of β. The sparse nature means many 
coefficients in the result are exactly 0. In this sense, the Dantzig selector provides a 
reliable method for variable selection. 

Specifically, the Dantzig selector is solution to the following l1-regularization 
problem (2). min

β෨∈ୖ౦ || β෨ ||ℓଵ  , s. t. ||X∗ݎ||ℓ∞ ≤ (1 + tିଵ)ඥ2logp ∙ σ (2)

where r is the residual vector y − Xβ෨  and t is a positive scalar. Candes and Tao indi-
cates that if X obeys a uniform uncertainty principle (with unit-normed columns) and 
if the true parameter vector is sufficiently sparse (which here roughly guarantees that 
the model is identifiable), then we can get the following result (3) with very large 
probability. || β෨ − β ||ℓଶ ≤ Cଶ ∙ 2logp ∙ (σଶ +  min൫β୧ଶ, σଶ൯୧ ) (3)

To further estimate β with noisy data ε, for some λp>0, consider solving the following 
convex program, min

β෨∈ୖ౦ || β෨ ||ℓଵ  , s. t. ||X∗࢘||ℓ∞ ≔ sup୧ஸ୧ஸ୮ |(X∗࢘)୧| ≤ λ୮ ∙ σ (4)

where  ݎ = y − Xβ෨. In other words, the estimator β෨ is with minimum complexity (as 
measured by the l1-norm) among all objects that are consistent with the data. The 
estimator (4) is called the Dantzig selector. 

Since (4) is convex, it can easily be recast as a linear program (5), min  u୧୧ , s. t. −u ≤ β෨ ≤ u and − λ୮σ1 ≤ X∗(࢟ − Xβ෨) ≤ λ୮σ1 (5)
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where the optimization variables are u, β෨ ∈ R୮  and σ1 is a p-dimensional vector of 
ones. Accordingly, this estimation procedure is computationally tractable. Candes and 
Tao proved that the Dantzig selector is surprisingly accurate at the same time. 

Ever since its birth, the Dantzig selector algorithm has drawn enormous attentions. 
There have been much useful research work, such as a generalized Dantzig selector 
[8] , DASSO [9] method used to solve the Dantzig selector. Analyzing data sets with 
the sample size n smaller than the number of variables p, such challenges arise in 
many other fields ranging from health sciences to economics. For instance, in disease 
classification using microarray gene expression data [10], the number of arrays is 
usually in order of tens but the total amount of gene expression profiles is often tens 
of thousands. The Dantzig selector has been applied respectively as an effective solu-
tion to various specific problems. 

3 Our Approach 

Our approach consists of two steps. First, we leverage the Dantzig Selector to select 
the most correlative dependent variables from the original massive candidates. After 
the selection, the amount of picked variables will drop below the number of samples.  
Then, we apply the OLS regression iteratively to derive the ultimate regression model, 
as indicated by the Backward Elimination method. 

3.1 Variable Selection via the Dantzig Selector 

As a variable selection method, the Dantzig Selector itself does not designate the 
number of variables to pick out. In regard of accuracy and reliability of the selection 
result, we use a statistical method called cross-validation to discover the best amount 
of variables to pick out. It has been shown in [11] that the cross-validated choice of 
the penalty parameter is consistent for model selection in general conditions. 

Specifically, we use fivefold cross-validation to make the decision. The details of 
the cross-validation procedure are listed as follows. 

(a) Standardize the data; denote the full sample set by T; divide it randomly and 
equally into 5 parts, then get subsets Tv, v=1, 2, 3, 4, 5. 

(b) Define the fivefold cross-validation training set as T - Tv , and test set as Tv. 

(c) For each v, apply the Dantzig selector 1 on training data set T - Tv to select J pa-
rameters which is denoted as a set called S୴; do this repeatedly increasing J from 1 to 
k , a certain positive integer, and get sets S୴, Sଵ୴, ..., S୮୴. 

(d) Let PEv(J) be the prediction error when S୴ is applied to the test data set Tv, and 

form the estimate PE(J) = 
ଵହ ∑ PE୴ହ୴ୀଵ (J). 

(e) Find the Jመ that minimizes PE(J) and our selected model is Sመ. 
                                                           
1

 An implementation of the Dantzig Selector is available at: http://www.acm.caltech.edu/l1magic/ 
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This process is called fivefold cross-validation indicating that we divide the full sam-
ple set into five parts. Note that this fivefold cross-validation is not the same as esti-
mating the prediction error of the fixed models S0, S1, ..., SP and then choosing the 
one with the smallest prediction error. This latter procedure is described in [12], and 
can lead to inconsistent model selection unless the cross-validation test set Tv grows 
at an appropriate asymptotic rate. 

It needs to be emphasized that the fivefold cross-validation is taken once after a 
running loop from steps (a) to (e). To strengthen the stability of result, we can repeat 
this kind of cross-validation plenty of times and choose the stable Sመ. 
3.2 OLS Regression Afterwards 

After variable selection, we are able to pick Jመ significant variables and have Jመ < n. 
Suppose that the smallest significant level we set for the model is s. Now we can 
apply the regression analysis to derive the needed model. 

We first do the OLS using the picked out dependent variables Sመ against y. Then, 
with the first round regression result in hand, we can examine the p-value of each 
dependent variable. For a certain dependent variable Xk, its corresponding p-value 
tells us the smallest significance level at which the H0: βk=0 (null hypothesis) would 
be rejected given the observed value of the t statistic. Therefore, a large p-value indi-
cates that the corresponding parameter is not significant in this model. Such insignifi-
cant parameters should be filtered out of the ultimate model. 

According to the Backward Elimination method, we implement the above analysis 
as the follows. Find the largest p-value from OLS regression result and see if it is 
larger than the smallest significant level s we set. If this p-value meets this condition, 
filter the corresponding parameter out and run OLS regression once again using the 
rest of parameters until there is no p-value larger than s. 

Now we are able to obtain a regression model, where the independent variables 
are activities that have significant impact to the dependent variable, namely project 
performance. The coefficient denotes the impact of corresponding activity to project 
performance, including the direction (+ for positive impact, - for negative impact) and 
relative strength (indicated by the absolute value). 

4 Conclusions and Future Work 

Understanding the influence of certain activities on the project performance can facili-
tate the project management. However, the fact that the amount of independent va-
riables (activities in software process) is usually larger than the size of dataset fabri-
cates a barrier for quantitive analysis. The approach we proposed in this paper pro-
vides a theoretical basis for solving this problem. 

Recently, we are applying this approach to study the influence of acquirer’s partic-
ipation process on project performance. The amount of activities in the investigated 
acquirer participation process is 84. Under collaboration with several companies in 
ShanDong province of China, we are able to collect 25 projects. The preliminary 
result (depicted in Fig. 1 and Fig. 2) shows that our approach works well in such an 
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84 independent variables, 25 samples situation. Further evaluation and improvement 
of our approach is still under discussion. 

 

Fig. 1. The final regression result. Note that the Adj R-squared indicating the explanation of the 
model reaches nearly 96.8%. 

 

Fig. 2. The result of normal distribution of residuals test. As we can see, plots standing for 
residuals are distributed around the 45 degree line, which tells that we can generally consider 
that residuals approximately obey the law of normal distribution. 
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