
Practical Experiments with Code Generation from the
UML Class Diagram

Janis Sejans and Oksana Nikiforova

Riga Technical University, Faculty of Computer Science and Information Technology
Meza ¼, Riga, LV 1048, Latvia

Abstract. The paper turns an attention to the problems of code generators in
advanced CASE tools from the UML class diagram. Authors give a general in-
troduction to code generator types, describes their structure and principles of
operation. Three tools are analyzed within the correspondence to their abilities
to generate program code from the UML class diagram. They are two model-
ling tools, namely, Sparx Enterprise Architect and Visual Paradigm, and the
programming environment Microsoft Visual Studio .NET. Program code is
generated from different fragments of the UML class diagram in all three tools
and the obtained code lines are compared with the expected ones based on the
model semantics and syntax of the programming language C#. Authors summa-
rize the results of the practical experiments with code generation by stressing
different types of errors in the generated code and make conclusion about the
directions of the evolution of code generators in the close future.

1 Introduction

Despite high levels of IT technology and IT fields, as such, the development prob-
lems that have traditionally attributed to the development of software is still not com-
pletely solved. Of course, development time and costs may always want to decrease,
but this must be understood that there is still much time that is devoted to routine
work. For example, if the insurance system is developed, often the system is designed
from the beginning, despite the fact that specificity of the problem domain is not so
much changed and why the initial descriptions and components that were created
previously could not be reused. Therefore, reusability is still an important theme,
because technology is changing much faster than business processes of the problem
domain. The first reason, why this problem is not yet solved, is the technological
diversity, which in turn has an effect, that every system is over and over again over-
written in a case of the change in the technological architecture. Secondly, even if the
problem domain is described using "traditional" CASE tools, it does not solve the
problem, because created models is nothing more than documentation, so they are not
automatable to be transformed in executable program code.

Even more, further requirements are implemented directly in the code bypassing
the system documentation and thus it does not longer meets the actual functionality.
Thus, the fundamental problem of software development is a "semantic gap" between

Sejans J. and Nikiforova O..
Practical Experiments with Code Generation from the UML Class Diagram.
DOI: 10.5220/0003581300570067
In Proceedings of the 3rd International Workshop on Model-Driven Architecture and Modeling-Driven Software Development (MDA & MDSD-2011),
pages 57-67
ISBN: 978-989-8425-59-1
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)

models and programming language, which permits the transformation of the problem
domain description into the executable code.

Unified Modelling Language (UML) [1] was created not only as a system specifi-
cation tool, but is positioned also as a mean, which will allow automatically generate
code from UML models. With such a position Object Management Group proclaimed
its new invention, Model Driven Architecture (MDA) [2], in the end of 2001. Just
that it will be possible to generate a software system from the thoroughly developed
model of the problem domain. Since then, it is now already 10 years, and 15 years
since UML was standardized. At that time, a lot of different CASE tools have been
developed, which are advertised as more or less able to generate the program code
from system model. These are both open source tools, and commercial products.
While still not yet heard about a software system that could be developed based only
on principles of MDA.

Inadequate models and lack of the formalization of modelling process is consid-
ered as one of the MDA implementation disincentives [3]. About 100 different tech-
niques, methodologies, approaches, transformation algorithms has been developed in
the last 10 years, which makes it possible to automate the creation of UML class
diagrams, from which the subsequent code generation is defined as it is already
solved the problem. [4] presents an analysis of different approaches to transformation
of the problem domain description into the UML class diagram during last 10 years,
published in four digital libraries – IEEEXplore, ACM, Science Direct and Springer-
Link. The survey states, that there exist enough different approaches for the genera-
tion of the UML class diagram. So far different solutions are offered for making the
process of the class diagram development more suitable, more formal, or even more
“user-friendly” [3]. Therefore, the authors doubt about the abilities to use class dia-
gram elements for further generation of software components also in [3].

The authors of this paper state to investigate exactly the stage of code generation,
because there are a very few works, which are devoted to deep analysis of code gen-
eration abilities in advanced CASE tools. Eichelberger with colleagues in [5] has
been evaluated current UML modelling tools including the products of all major
players being relevant to industry and academia. The study is meant to provide an
overview of UML modelling tools as well as decision support to potential buyers and
users. One of the evaluated aspects also is the code generation. Several researchers
have been introduced some mechanisms for code generation improvements, like [6]
and [7]. But it is still a fact, that there is no tool, where according to [5] code genera-
tion ability would be evaluated closed to 100%. But authors of [5] themselves admit
that, the main focus of this study is on the availability of the modelling capabilities as
defined in the UML specification. So far the analysis of code generation possibilities
from the UML class diagram using advanced CASE tools is selected as a research
object.

2 General Principles of Code Generators

Code generators and the idea of code generation itself is nothing new during the last
30 years. In fact, currently popular software development environments like Visual

58

Studio and Eclipse are generating part of the source code thru snippets, templates and
other GUI interfaces. Well-known example of code generation are GUI forms and
dialog wizards, which in result allow the developer to not think about control coordi-
nates in window or connection between entities (because this part of the code is gen-
erated).

Herrington in [8] defines the field of code generation as it is about writing pro-
grams that write programs. With today’s complex code-intensive frameworks, such as
Java 2 Enterprise Edition (J2EE), Microsoft’s .NET, and Microsoft Foundation
Classes (MFC), it’s becoming increasingly important that software developers use
their skills to build programs which aid developers themselves in building their appli-
cations. What can be generated with code generators at all? Basically anything that
you can think of as automatable and for which you can describe the structure and
define a template. It is possible to generate code structures, skeletons, accessor meth-
ods, scripts for database, etc. Also, it is possible to generate classical unit tests,
CRUD (create, read, update, delete) operations, so there is no need to hand-code
them, as well it is possible to generate documentation and code analysis based on the
source code. Furthermore generators can be used to convert one form of information
into another representation, for example from text file into HTML form. So as stated
above – anything for which the template can be created.

Code generators are divided into two categories: active and passive. The passive
code generators are often implemented as wizards, where the configuration parame-
ters are set and the result is generated. These generators are not taking any responsi-
bility on further corrections or maintenance of the generated code. In turn the active
code generators are taking the responsibility of the generated code and allow make
corrections and regenerate the result, so it is updated.

It is possible to distinguish five different types of active generators, though they
are not isolated and distinct to each other, but complement [8]. All of them are sche-
matically described in Table 1.

Table 1. The essence of different types of code generators.

Code
munger

Inline-code
expander

Mixed-code generator Partial-class generator Tier or layer generator

1) Code munger (see in Table 1) is the simplest type of the active generators.
„Munging” means transforming something from one form into another form, thus
schematically the generator has an input information, then it is processed and the
output form is created. This kind of generator can be used to generate documentation,
retrieve and collect some specific information or generate some kind of the input

59

analysis result.

2) An Inline-code expander (see in Table 1) reads the source code and, where it finds
the predefined mark-up, it inserts the production code. The difference to code munger
is that the output is the same as input, but with corrections - additions. This kind of
generator is used to embed SQL code, ASM code or some security code.

3) Mixed-code generator (Table 1) is a combination of the previous two types. The
difference is that the generator output can be used as input (modifications are done in
the input file), so the result can be regenerated. Similarly to inline-code expander the
generator reads the source code and finds the predefined mark-up, but instead of
inserting production code, the mixed-code generator replaces area in between the
mark-up. This way the mark-up is left in the result (output) and it can be used as input
again.

4) The partial-class generator input is definition file (input information) and template
files by analysis of the definition file, the template is filled and the output is pro-
duced. The template file would contain special mark-up keywords which would be
replaced according to the input and thus producing the new output (dependant on
input information). The partial-class generator (see in Table 1) is used for generating
base structures or base classes which afterwards are manually updated with final
functionality. In case of n-tier application the partial class generator could generate
part of tier code.

5) Tier or layer generator (see in Table 1) is similar to partial-class generator, except
it takes the responsibility to completely generate one tier of an n-tier application. The
generated code has enough functionality for working tier or layer, not only base
classes. Tier or layer generator can be positioned as a model-driven generator, where
the UML model is an input and one or more tiers of the system is an output. Tools for
code generation examined in the next section are of this type of code generators.

3 Analysis of Code Generation in Several CASE Tools

The number of modelling tools with an ability to generate program code from differ-
ent types of the diagram is increasing. Currently, there are as well as powerful com-
mercial products, as equivalent open source analogues. Often there is a problem to
choose an appropriate tool, even if it is mentioned in the descriptions of tools that
they are model-driven software development tools and are able to generate program
code.

The authors of this paper made a research of system modelling tools with the aim
to identify which programming languages are supported for which code generation.
The results of [9] shows, that the number of declared programming language is large
enough. However, the answer on the question, whether modelling tools are able to
generate high-quality programming code, is the goal of this article.

60

3.1 Experiments with Code Generation from the Fragment of the UML Class
Diagram

Three tools are chosen and used for the experiments. They are Sparx Enterprise Ar-
chitect and Visual Paradigm for UML, which seems to have wider spectrum of abili-
ties to support different programming languages [9], and thus possibly better built-in
code generator. Both of these tools are mainly recognized as UML modelling tools
with a capability to generate program code, compared to Visual Studio, which is a
development environment. In author`s opinion a tool which is a development envi-
ronment could have more support for required modelling structures from the code
perspective, as well as better algorithms for code generation from the models. Given
that the latest Visual Studio 2010 have ability to design UML diagrams and generate
program code, it was chosen as a third tool.

The input for code generator is a fragment of the UML class diagram. The output
or a target programming language is C#. For code generator testing, the black-box
testing strategy is chosen, that means we provide the input and analyse the output.
The input model is created based on the knowledge of the notation of UML elements
and its semantics (from UML specifications) and on the other hand, the knowledge
about C# rules and its syntax. The sum of this allows create a kind of a UML class
diagram test models [10] for examining the code generator by checking the generated
source code correspondence with model notation semantics and appropriate syntax of
programming language. In parallel with the test model [10] the expected source code
file is created. The generated result is compared to the expected result, which allows
to determine whether the generated source code corresponds to the model semantics.
The comparison allows reveal the information loss and noncompliance with syntax
rules.

For demonstration purposes we will describe and illustrate code generation results
from an abstract class and its derived class. Based on the purpose, definition and
programming language C# rules of an abstract class, the rules – requirements defined
in Table 2 should be applied.

Table 2. Rules and test model for definition of an abstract class in UML.

Rules to be applied Test model for an abstract class
1. If class contains at least one abstract method, then it
must be marked as abstract;
2. A non-abstract class that is derived from an abstract
class must include implementations of all inherited abstract
methods, using override keyword.
3. Because an abstract method must be overridden in the
derived class, then it must not be private;
4. Because an abstract method has no method body, then
the method declaration ends with semicolon (must not end
with curly braces), unless it is an accessor method;
5. While overriding an abstract method, the access
modifier must be same as for the overridden base method,
e.g. if it is public, then in the derived class it can not be
protected, because it must be public;
6. It is an error to use the static, virtual, sealed or new
modifiers along with abstract keyword.

61

To test the knowledge of code generator on C# rules, each of the mentioned
statements (rules) is created in model in an inverse form. For example, if class con-
tains at least one abstract method, then it must be marked as abstract, in the model we
define an abstract method publicAbstract, but we don`t mark the class as abstract. As
a result we expect, that the code generator will be smart enough and by knowing this
rule, will automatically mark the class as abstract.

Since the experimental model (see left column of Table 3) contains erroneous
structures, it is fine in case a tool doesn`t allow to create such structure. Because that
means that the tool is checking the correctness of the model, and that may result into
more precise source code. Unless the restriction is related to missing notation (fea-
ture), which means the generated source code will not contain required structure at all
(because there is no way to define it). The expected source code is shown in the right
column of the Table 3. By compiling the generated source code and comparing it with
the expected one, the results are classified into the following categories: Compilation
error, Execution error, Information loss, Missing notation, Different and Correct.

Table 3. Fragment of experimental model defined in the investigated tools.

Definition of the abstract class by the
UML class diagram

Expected source code for an abstract class test model

Visual-Paradigm for UML:

The same fragment is developed also in
SPARX Enterprise Architect and Micro-
soft Visual Studio.

using System;
public abstract class AbstractClass {
 protected string abstractGetSet = "initial
string";
 public abstract string AbstractGetSet {
 get;
 set;
 }
 public abstract void publicAbstract();
 public abstract void PrivateAbstract();
 public abstract void PublicStaticAbstract();
}
public class ImplClass : AbstractClass {
 public override string AbstractGetSet {
 get {
 return abstractGetSet;
 }
 set {
 abstractGetSet = value;
 }
 }
 public override void PublicStaticAbstract() {
 throw new System.NotImplementedException();
 }
 public override void PrivateAbstract() {
 throw new System.NotImplementedException();
 }
 public override void PublicAbstract() {
 throw new System.NotImplementedException();
 }
}

The analysis of the generated source code for an abstract class test model is shown
in Table 4. The analysis of the results defined in terms of numbers of error’s catego-
ries shows that the Enterprise Architect has the worst result, only one of six tests is
correct (five are defined as containing compilation errors). Visual-Paradigm has es-

62

sentially different result, only one of six tests is failed. The third tool – Visual Studio,
didn`t meet our expectations, generated source code contains four compilation errors,
one information loss and one correct result.

Table 4. Code generation result in each of the tools (error keywords are underlined).

Tool Result category and comment Transformation result

Class contains an abstract method, but it isn`t marked as abstract

VP Correct – class marked as abstract public abstract class AbstractClass

EA
Compilation error – missing ab-
stract

public class AbstractClass

VS Correct – class marked as abstract public abstract class AbstractClass

Class contains an abstract method with private access

VP
Correct – automatically converted
into public access, same in derived
class

public abstract void PrivateAbstract();

public override void PrivateAbstract()

EA
Compilation error – private access
is left in abstract class and in de-
rived class

private abstract void privateAb-
stract();

private override void privateAbstract()

VS

Compilation error – private access
if left in abstract class and in de-
rived class; missing override in
derived class method

private abstract void privateAb-
stract();

private void privateAbstract()

Class contains an abstract method with static modifier

VP

Correct/Compilation error – auto-
matically removed static modifier in
abstract class, but not in derived
class

public abstract void
PublicStaticAbstract();

protected static override void
PublicStaticAbstract()

EA
Compilation error – static modifier
is left in abstract class and in de-
rived class

public abstract static void
publicStaticAbstract();

protected static override void
publicStaticAbstract()

VS

Compilation error – static modifier
is left in abstract class and in de-
rived class; missing override in
derived class method

public static abstract void
publicStaticAbstract();

protected static void
publicStaticAbstract()

Class contains protected attribute with abstract accessors (get-set method)

VP

Different – abstract class doesn`t
contain protected attribute, only
abstract accessor method, instead
attribute appears in derived class
with private access

//abstract class
public abstract string AbstractGetSet {
get; set; }
//derived class
private string abstractGetSet = "ini-
tial string";
public override string AbstractGetSet {
 get {
 return abstractGetSet;
 }
 set {
 abstractGetSet = value;
 }
}

63

Table 4. Code generation result in each of the tools (error keywords are underlined). (cont.)

Tool Result category and comment Transformation result

EA

Correct – class contains protected
attribute and abstract accessor
method; derived class overrides the
accessor method

//abstract class
protected string abstractGetSet = "ini-
tial string";
public abstract string AbstractGetSet{
get; set; }
//derived class
public override string AbstractGetSet{
 get{
 return abstractGetSet;
 }
 set{
 abstractGetSet = value;
 }
}

VS

Information loss – missing default
value for an attribute, and accessor
method is marked as virtual not
abstract, thus it didn`t appear in
derived class

//abstract class
protected virtual string abstractGetSet
{
 get;
 set;
}
//derived class doesn`t override the method,
because it is virtual

Class contains an abstract method, but it isn`t defined in derived class

VP
Correct – method is overridden in
derived class

public override void PublicAbstract()
{
 throw new System.Exception("Not im-
plemented");
}

EA
Compilation error – method is
missing in derived class

//method in not overridden in derived class

VS
Compilation error – method is
missing in derived class

//method in not overridden in derived class

Class contains an abstract method with public access, but in derived class access is changed to
protected

VP
Compilation error – method access
is not converted into public

protected static override void
PublicStaticAbstract()

EA
Compilation error – method access
is not converted into public

protected static override void
publicStaticAbstract()

VS

Compilation error – method access
is not converted into public; miss-
ing override in derived class
method

protected static void
publicStaticAbstract()

3.2 Summarization of Results of Experiments with Code Generation in the
Investigated Tools

Overall, the experimental models contain more than 60 tests. The transformation
results (generated construction) were classified into the following categories:

 Compilation error – generated construction doesn`t compile;

 Execution error – construction contain potential error or unexpected behaviour;

64

 Information loss – generated code doesn`t correspond to the model semantics;
 Missing notation – unable to express desired semantic in the model;
 Different – alternative to expected result, it compiles and doesn`t contain error;
 Correct – construction match to the expected code.

The authors have been making experiments for the following programming struc-
tures/UML notation: access modifiers (private, protected, internal); class modifiers
(abstract, sealed, static); method modifiers (static, new, override, abstract); method
parameter modifiers (params, ref, out); accessor methods; multiplicity; default val-
ues; read-only and derived values; constructors; destructors; stereotypes: constant,
event, property; active class; constraints: ordered, unique, redefines; naming conven-
tions and keyword usage; namespace scope; tag-values: precondition, postcondition,
etc.

In many tests the investigated tools show different results. And it is not like one
tool always demonstrates better result than other. There are tests, where it shows
correct result, but other fails and vice versa. The analysis of the transformation result
shows that the quality of the generated source code is very low (in our experiments).
The overall statistics is shown in Fig. 1.

Fig. 1. Transformation result statistics grouped by categories for each tool.

The experimental models contain 69 tests in regard to class element, attributes and
methods – the core element in UML class diagram. The missing notation category
was added (to the list of categories) because of the Visual Studio, originally the ex-
periments were done with SPARX EA [10] and Visual Paradigm [11], and only later
tested with Visual Studio. Because it was not possible to provide tagged values and
constraints, these tests resulted into missing notation. Finally only 14%/18%/18% of
the tests are correct. Taking into account, that these tests didn`t include all possible
elements of the UML class diagram, like, various relationship elements, the obtained
results can be still considered as one of the main reasons why the class diagrams and
code generation from models are not widely applied in the IT industry.

4 Conclusions

Currently, implementation forces of the main MDA statements are turned to increas-
ing of the level of abstraction, namely, the formalization of system modelling process
so as it will allow to build the system model as much as possible correct and consis-
tent with further generating the program code from it. For this research the authors
chose the lower end of the MDA implementation chain, which is an analysis of the

65

code generation, as the main hypothesis of this research is that the failures in code
generation is the main stumbling block.

The reason for such results which showed an analysis of three code generation
tools is the primitivism of the transformations. In most cases, the code generator is
limited to the usage of a simple notation keyword transfer into the program code,
without additional analysis of the construction correctness and making any adjust-
ments. The information loss and incompleteness of the generated source code is evi-
dence about lack of knowledge of UML semantics and programming language rules
in the transformation algorithms. Although it is possible to change the transformation
templates, it doesn`t solve the problem completely, because of limitation to local
scope. For example, it doesn`t solve the problem for transformations where the result
depends on the context, i.e. another structure. Thus, the templates can solve local
problems which can be written in „if-then” form. Still the problematic aspects of the
template-based solution are as follows:

 Template workflow is based on: „if-then” blocks, which execute another template,
and variables, which can store some temporal value. Despite to make some converta-
tions, the built-in functions should be used, thus the functionality is limited;

 Templates are working in a „local scope” mode and because of each part of the
class is processed by a separate template, i.e. class, attribute, operation has its own
template, and thus its own scope (e.g. in SPARX Enterprise Architect), it is difficult
to pass some values between templates or access other structures in the context.

Problems that have to be solved in transformation process from platform-specific
model to programming language source code are: meaning of notation and its seman-
tics, meaning of keywords and their usage in context, information control and ad-
justments as well as support for programming language libraries from different ver-
sions of language. The authors assume that the evolution of modelling tools and
transformation frameworks will turn forward the evolution of the dictionary for MDA
support for each target platform programming language in order to provide additional
structural and functional standards of abstraction and templates. The research results
highlight the current problems of model transformation, so that it can serve as a rec-
ommendation set to upgrade modern code generators. While in the future to solve the
task of complete generation of system functionality we have to think about fundamen-
tally different architecture of code generators and code generation process itself.

Acknowledgements

The research reflected in the paper is supported by Grant of Latvian Council of
Science No. 09.1245 "Methods, models and tools for developing and governance of
agile information systems" and by ERAF project “Evolution of RTU international
collaboration, projects and capacity in science and technologies”.

66

References

1. UML Unified Modelling Language Specification, OMG document http://www.omg.org.
2. MDA Model Driven Architecture, OMG web-site http://www.mda.omg.org.
3. Nikiforova, O., Sejans, J., Cernickins, A.: Role of UML Class Diagram in Object-Oriented

Software Development, The Scientific Journal of Riga Technical University, Series Com-
puter Science – Applied Computer Systems (2011) (in press).

4. Loniewski, G., Insfran, E., Abrahao, S.: A Systematic Review of the Use of Requirements
Techniques in Model-Driven Development, D.C. Petriu, N. Rouguette, O. Haugen (Eds.)
the Proceedings of the 13th Conference, MODELS 2010, Model Driven Engineering Lan-
guages and Systems, Part II, Oslo, Norway (2010) pp. 213-227.

5. Eichelberger, H., Schmid, K., Eldogan, Y.: A comprehensive analysis of UML tools, their
capabilities and their compliance, Technical report, University of Hildesheim (2008).

6. Niaz, I. A.: Automatic Code Generation From UML Class and Statechart Diagrams. PhD
Thesis (2005) University of Tsukuba, Japan, p. 104.

7. Usman, M., Nadeem, A.: Automatic Generation of Java Code from UML diagrams using
UJECTOR (2009) International Journal of Software Engineering and its Applications,
Vol.3, No.2, April, 2009.

8. Herrington, J.: Code Generation in Action. Manning (2003), p. 342.
9. Cernickins A., Nikiforova O., Ozols K., Sejans J. An Outline of Conceptual Framework for

Certification of MDA Tools, Proceedings of the 2nd International Workshop „Model
Driven Architecture and Modelling Theory Driven Development” (MDA&MTDD 2010),
Osis J., Nikiforova O. (Eds.), Greece, Athens, SciTePress, Portugal (2010) pp. 60-69.

10. Sejans, J., Nikiforova, O.: Problems and perspectives of code generation from UML class
diagram, The Scientific Journal of Riga Technical University, Series Computer Science –
Applied Computer Systems (2011) (in press).

11. Sejans, J.: Analysis of Transformation Result from UML Class Diagram, Master thesis,
Riga Technical University (2010).

67

