
A GENERIC API FOR THE INTEGRATION OF RBS IN AN ESB

David Haase, Karl-Heinz Krempels and Christoph Terwelp
Informatik 5, Information Systems and Databases, RWTH Aachen University, Aachen, Germany

Keywords: Rule-based system, Application integration, JSR 94, RuleML, Web services, Enterprise service bus, Service
oriented architecture.

Abstract: The implementation of business processes using Rule-based Systems requires efficient deployment of Rule-
based Applications. This requires a system control interface for a Rule-based System to configure the Rule-
based System and its input and output interfaces for a given application. Todays only proprietary interface
are provided by Rule-based Systems based on their specific knowledge representation and implementation
language.
This paper presents a generic interface for the integration of a Rule-based System in an Enterprise Service Bus.
The new Rule-based System interface extends the interoperability and flexibility of Rule-based Applications
based on a proposed description standard for Rule-based Applications and their service interfaces.

1 INTRODUCTION

Rule-based Systems (RBSs) become more and more
interesting for the inspection of large data streams,
pattern recognition in event streams, or conditional
information processing. The integration of RBSs in
business processes requires suitable input and output
interfaces, and a system control interface. Existing
systems only provide proprietary interfaces based on
specific knowledge representation and control mech-
anisms.

A first standardization initiative defined a generic
interface specification for RBSs developed in Java
(JSR 94 WG Group, 2004). But as the Java Specifica-
tion Request (JSR) 94 is underspecified and limited to
the programming language Java, a more comprehen-
sive approach is needed. So in this paper we design
and discuss a new interface based on well defined and
already widely used standards.

This paper is organized as follows: In Section 2
we introduce RBSs and in Section 3 all the concepts
required to describe a Rule-based Application (RBA).
Section 4 discusses the JSR 94 interface definition.
Section 5 presents a new approach for a generic Ap-
plication Programming Interface (API) for RBS fol-
lowed by the description of a suitable configuration
interface in Section 6. In Section 8 we discuss im-
plementation tools and methods for the new interface.
Section 9 comprises the conclusion.

2 RULE-BASED SYSTEMS

A RBS can be used by an user to automatically rea-
son about an existing knowledge base with the help of
rules in order to deduce new knowledge.

A RBS consists in general of:

Working Memory which stores the facts (ontologi-
cal concepts) that are asserted by the system. Each
fact is a data structure that represents the informa-
tion about one entity or relation in the domain of
consideration.

Rule Base which stores the rules that are used to de-
duce new knowledge. Each rule consists of a con-
dition and an action-list that is processed every
time when the condition becomes true.

Inference Engine which applies all rules from the
rule base to the working memory to deduce new
knowledge. This is called the reasoning process.
Whenever the assignment of a new fact satisfies
the condition of a rule in the rule base, the action-
list of the rule will be executed. The action-list
can change the working memory and the rule base
to produce new knowledge.

The inference engine consists of a pattern matcher
that identifies all the rules with fulfilled conditions
and marks them as activated. Activated rules form
together a conflict set, since the execution of a rule
can deactivate another activated rule. These conflicts
are solved with a conflict solving strategy leading to a

207Haase D., Krempels K. and Terwelp C..
A GENERIC API FOR THE INTEGRATION OF RBS IN AN ESB.
DOI: 10.5220/0003562802070211
In Proceedings of the 6th International Conference on Software and Database Technologies (ICSOFT-2011), pages 207-211
ISBN: 978-989-8425-77-5
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)



inference engine

pattern matcher

working memory

rule base

execution engine

agenda

rule
execution

rule
activation

conflict set

conflict solving
strategy

Figure 1: RBS Architecture.

ordered list of rules that are executed by the execution
engine. Fig. 3 shows the components of a RBS and
the interaction cycle among them .

3 DESCRIPTION OF
RULE-BASED APPLICATIONS

A RBA consists of a large set of rules that are applied
to data sets or data streams in real time. Therefore, a
representation of rules that describe the applications
logic, of data to which the rules have to be applied,
and of an application interface is required. An Ap-
plication Data Definition Language (ADDL) is used
to describe the concepts required to represent the ap-
plications data. An Application Data Definition Doc-
ument (ADDD) describes the applications ontology
and consists of the description of data types using
the ADDL. An Application Data Language (ADL)
is used to describe the applications data. An Appli-
cation Data Document (ADD) contains a reference to
an ADDD and the definition of data (based on the on-
tology defined by the ADDD) using the ADL. Fur-
thermore, the ADDD is used for the succeeding rule
modeling task.

An Application Rule Definition Language
(ARDL) is used to define the rules describing the
business logic of a RBA in an Application Rule
Definition Document (ARDD). An Application
Service Interface (ASI) is required to provide the
functionality of an RBA as a service which can be
used by other applications. An ASI is defined in
an Application Service Interface Definition Docu-
ment (ASIDD) using an Application Service Interface
Definition Language (ASIDL). All methods of the
ASI defined in the ASIDD have to use only the data
types defined in the ADDD. So incoming data from
method invocations can directly be transferred into
the RBS and the result can be queried from the RBS

and returned directly to the invoker.
A Rule-based Application Description Document

(RBADD) defines a RBA using a Rule-based Appli-
cation Defintion Language (RBADL). A RBADD
contains an ADDD, an ARDD, an ASIDD, and an
ADD. The relationship among the introduced defi-
nition languages and documents required for the de-
scription of a RBA is shown in Fig. 2.

Rule-based Application Description Document (RBADD)
[RBADL]

Application Rule
Definition Document (ARDD) 

[ARDL] 

Application Service Interface 
Definition Document (ASIDD)

[ASIDL] 

Application Data 
Definition Document (ADDD)

[ADDL]

Application Data Document (ADD)

Figure 2: Rule-based Application Description Components.

4 EXISTING APPROACH: JSR 94

The JSR 94 (JSR 94 WG Group, 2004) was an early
attempt to establish a common interface for RBS.
While succeeding in creating a simple API for RBS,
it failed in making RBS exchangeable. This is caused
by underspecified data types for several defined meth-
ods. So, several interface methods just act on objects
of the Java class Object. A definition of their con-
tents is missing, making every implementation de-
pending on their specific Java classes. In this re-
gard JSR 94 is similar to Java Database Connectiv-
ity (JDBC) (JSR 221 Working Group, 2011), as both
just define a simple Java API with underspecified
data types. So JDBC requires a developer to provide
Structured Query Language (SQL) (ISO/IEC 9075-
1:2008, 2011) statements in the SQL dialect specific
to the used Relational Database Management Sys-
tem (RDBMS). JDBC uses Java-String as the main
datatype, JSR 94 uses plain Java-Objects, exposing
the users to the implementation details of the used
backend.

5 A GENERIC API
ARCHITECTURE

In this section a new architecture for the integration
of a RBS into a Service Oriented Architectures (SOA)
based on Web Services (WSs) (WSA Working Group,
2011) is presented and the automated configuration

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

208



of a RBA in an Enterprise Service Bus (ESB) is dis-
cussed.

RBS Configurator

ESB Service Unit for RBA

WS

RBS

RBSCI
WS

ASI
WS

Component

Figure 3: Proposal for a generic API Architecture.

A RBADD is used for the configuration of an in-
stance of a RBS in order to create an instance of the
corresponding RBA. Therefore, a RBS Configuration
Interface (RBSCI) to import the RBADD and a RBS
Configurator (RBSC) to process them are required.
At first the RBSC initializes the RBS with the con-
cepts defined in the ADDD, the rules specified in the
ARDD and the initialization data defined in ADD. Fi-
nally, the RBSCI creates the WS specified in ASIDD,
connects it to the RBS, and registers the WS with a
suitable Universal Description, Discovery, and Inte-
gration (UDDI) directory service. Now the RBA is
ready to handle method invocations through the ASI.

6 DESCRIPTION OF THE RBS
CONTROL INTERFACE

In this section we discuss the methods of the RBSCI
and their operation mode. The methods are invoked
with a reference to overwrite a predefined value.

The following methods control the operation
mode of a RBS:

load ontology [ADDD] process the predefined or the
referenced ADDD.

load rules [ARDD] process the predefined or the
referenced ARDD.

load instances [ADD] process the predefined or the
referenced ADD.

clear ontology remove all the ontology definitions
from the RBS. Implicitly all depending rules and
instances are removed.

clear rules remove all the rule definitions from the
RBS.

clear instancesremove all existing instances of any
ontological definition from the RBS.

create [ASIDD] create an ASI from the predefined
or the referenced ASIDD.

destroy asi destroy the existing ASI.

attach asi attach the ASI to the RBS.

detach asi dettach the ASI from the RBS.

register asi [WSDD] register the ASI WS with the
predefined or the referenced UDDI by the Web
Service Description Document (WSDD).

unregister asi [WSDD] unregister the ASI WS from
predefined or the referenced UDDI registry.

init [RBADD] invoke the following methods for the
predefined or the referenced RBADD: reset, load
ontology, load rules, load instances, create asi, at-
tach asi, register asi, fire. In case of a referenced
RBADD the methods are invoked with a reference
to a corresponding (sub)document.

reset invoke the following methods: clear ontology,
clear rules, clear instances, unregister asi, detach
asi, destroy asi.

fire apply the rules from the RBS rule memory to the
data from the RBS working memory one time.

get strategiesreturn a list of rule processing strate-
gies of the RBS.

set strategy [aStrategy]set the rule processing
strategy of the RBS to aStrategy.

get status return a list of system operation parame-
ters of the RBS as (parameter name, parameter
value) pairs.

get settings return a list of system configuration pa-
rameters of the RBS as (parameter name, param-
eter value) pairs..

set settings [aConfiguration] set the system config-
uration parameters of the RBS to the (parameter
name, parameter value) pairs from the referenced
configuration aConfiguration.

The RBSCI is deployed as a WS and must be reg-
istered with an UDDI registry to be used later for the
configuration and deployment of an RBA in an ESB
(WS-BPEL Working Group, 2011).

A GENERIC API FOR THE INTEGRATION OF RBS IN AN ESB

209



RBS

web

service

converter

working

memory
ARDD

interpreter

1

2

3

4.2

5

6

7

8

4.1

ASI

F sid
1

, F sid
2

, . . . , F sid
n , mark sid

p

F sid
r , mark sid

rF sid
r , mark sid

r

rules

p1 , p2 , . . . , p n

request(p1 , p2 , . . . , p n )
response r

r

F sid
1

, F sid
2

, . . . , F sid
n , mark sid

p

Figure 4: Translation of queries to the ASI WS.

The implementation of the RBSCI requires the
definition of a set of rule selection strategies sup-
ported by RBSs. The rule selection strategies im-
plemented by a RBS can be requested with theget
strategies method. A suitable strategy can be con-
figured with theset strategy method. If no strat-
egy is configured the default one should be used.
However, the common strategies supported by the
RBSCI description have to be defined and added to
the specification of RBS API discussed in this paper.
This task has to be done for the common sets of set-
tings and status.

7 QUERY TRANSLATION

The methods declared by the ASIDD of the ASI have
to be defined in the RBADD and executed by the
RBS. To handle ASI method invocations in the RBS
the invocation must be translated into a representa-
tion understandable by the RBS. Both ASI and RBS
are using the same ADDD but rendered in different
ADLs. Therefore, it is required to translate the pa-
rameters for every method invocation from the ASIs
ADL to the RBSs ADL (e.g., using automatically
generated Extensible Stylesheet Language Transfor-
mation (XSLT)) and to synchronize this translation
with RBS operation. Synchronization is realized us-
ing a marker which is created after all parameters rep-
resenting a method invocation have been translated.
Figure 4 shows how an ASI method invocation is pro-
cessed. An incomingrequest (1) of the ASI with
parametersp1, p2, . . . , pn is received by the WS in
the ASI specific ADL. These parameters are trans-
lated by a converter (2, 3) into the RBS specific ADL

F sid
1 ,F sid

2 , . . . ,Fsid
n . Each parameter is marked with an

invocation idsid to identify the corresponding method
invocation. The translated parameter set is extended
by a synchronization markermarksid

p and processed
by the RBS (4) usingrules from the ARDD. The
RBS produces the resultF sid

r and the synchronization
markermarksid

r (5). The marker triggers the converter
to translate the RBSs result from the ADL of the RBS
into a return valuer in the ADL of the ASI (6, 7).
Finally the WS returnsr in a response message (8).

8 IMPLEMENTATION TOOLS
AND METHODS

The implementation of the proposed API for RBA
requires the design or selection of suitable lan-
guages to describe an RBA as it is specified in Sec-
tion 3. Designed ADDLs are eXtensible Markup
Language (XML)-based description languages like
Ressource Description Framework (RDF) (RDF
Working Group, 2011) and Ontoloy Web Language
(OWL) (OWL Working Group, 2011). An ARDL like
Rule Markup Language (RuleML) (RuleML Work-
ing Group, 2011) or Semantic Web Rule Language
(SWRL) can be used for the definition of the RBA
rules based on a defined ontology. However, using
SWRL for the definition of rules requires the speci-
fication of the ontology in Web Ontology Language
(OWL).

Both RuleML and SWRL can represent RBS data
and can be used as ADLs. The ASI is defined as
WS based on the Web Service Description Language
(WSDL) (WSDL Working Group, 2011). XML is
used as ADL for the ASI because of the usage of WS.

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

210



<?xml version="1.0" encoding="UTF-8"?>
<xs:schema

xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns="rbads"
targetNamespace="rbads"
elementFormDefault="qualified">

<xs:element name="Application">
<xs:complexType>
<xs:sequence>
<xs:element name="ADDD"
type="document"/>
<xs:element name="ARDD"
type="document"/>
<xs:element name="ADD"
type="document"/>
<xs:element name="ASIDD"
type="document"/>
</xs:sequence>
<xs:attribute name="name"
type="xs:string"/>
<xs:attribute name="version"
type="xs:string"/>
</xs:complexType>

</xs:element>
<xs:complexType
name="document">
<xs:attribute name="name"
type="xs:string"/>
<xs:attribute name="ref"
type="xs:anyURI"/>

</xs:complexType>
</xs:schema>

Figure 5: RBADD Schema.

Finally, a RBADD is an XML document based on
the XML schema given in Fig. 5. The schema de-
fines anApplication element and a complex type
document. TheApplication element contains two
attributesname andversion, and a set of four ele-
ments of typedocument, describing the documents
of a RBADD. The complex typedocument has two
attributes:name andref. In Fig. 6 a sample RBADD
is shown. Such a document is passed to the RBSC
through the RBSCI in an ESB.

<?xml version="1.0" encoding="UTF-8"?>
<Application xmlns="rbads"
name="Preference Based Scheduling"
version="1.0">
<ADDD name="Scheduler"
ref="http://jamocha.org/RBA/pbs/ADDD.owl" />

<ARDD name="Scheduler-Rules"
ref="http://jamocha.org/RBA/pbs/ARDD.rml" />

<ADD name="Scheduler-Data"
ref="http://jamocha.org/RBA/pbs/ADD.rml" />

<ASIDD name="PBS-Interface"
ref="http://jamocha.org/RBA/pbs/pbs.wsdl" />

</Application>

Figure 6: RBADD Example.

9 CONCLUSIONS AND
OUTLOOK

The presented approach for a generic API for RBA
would increase the interoperability of a RBA based
on its automated deployment and orchestration. The
main benefits are the automated deployment of RBAs
and runtime compatibility of RBA. This allows the
exchange of one compliant RBS by another one. So,
process integration designers became able to use a
higher level of automated RBA deployment in SOA.

The rules centralization pattern discussed in (Erl,
2009)[page 216pp] assumes the use of a business
rules management to access and maintain rules in a
centralized manner. The new RBS API allows the ex-
tension of this pattern to cover the deployment man-
agement for RBA also.

REFERENCES

Erl, T. (2009). SOA design patterns.The Prentice Hall
Service-Oriented Computing Series From Thomas Erl,
page 800.

ISO/IEC 9075-1:2008 (2011). Information technology
– Database languages – SQL – Part 1: Framework
(SQL/Framework). http://www.iso.org/iso/isocatalo
gue/cataloguetc/cataloguedetail.htm?csnumber=454
98.

JSR 221 Working Group (2011). JSR 221: JDBC 4.0 API
Specification. http://jcp.org/en/jsr/detail?id=221.

JSR 94 WG Group (2004). JSR 94: Java Rule Engine API.
http://jcp.org/en/jsr/detail?id=94.

OWL Working Group (2011). OWL Web Ontology Lan-
guage Overview. http://www.w3.org/2007/OWL/
wiki/OWL Working Group.

RDF Working Group (2011). Ressource Description
Framework. http://www.w3.org/RDF/.

RuleML Working Group (2011). The Rule Markup Initia-
tive. http://ruleml.org/.

WS-BPEL Working Group (2011). Web Services
Business Process Execution Language Version
2.0. http://docs.oasis-open.org/wsbpel/2.0/wsbpel-
v2.0.html.

WSA Working Group (2011). Web Service Architecture
Specification. http://www.w3.org/TR/ws-arch/.

WSDL Working Group (2011). Web Services Description
Language. http://www.w3.org/TR/wsdl20/.

A GENERIC API FOR THE INTEGRATION OF RBS IN AN ESB

211


