
APPLYING ASPECT ORIENTED PROGRAMMING
IN USABILITY ENGINEERING PROCESSES

On the Example of Tracking Usage Information for Remote Usability Testing

Andreas Holzinger, Martin Brugger
Research Unit Human–Computer Interaction, Institute for Medical Informatics, Medical University Graz, Graz, Austria

Wolfgang Slany
Institute for Software Technology, Graz University of Technology, Styria, Austria

Keywords: Aspect oriented programming, Usability engineering, Remote usability testing.

Abstract: Usability Engineering can be seen as a crosscutting concern within the software development process.
Aspect Oriented Programming (AOP) on the other hand is a technology to support separation of concerns in
software engineering. Therefore it stands to reason to support usability engineering by applying a
technology designed to handle distinct concerns in one single application. Remote usability testing has been
proven to deliver good results and AOP is the technology that can be used to streamline the process of
testing various software products without mixing concerns by separating the generation of test data from
program execution. In this paper we present a sample application, discuss our practical experiences with this
approach, and provide recommendations for further development.

1 INTRODUCTION

The concept of Aspect Oriented Programming
(AOP) describes a development methodology for
separating crosscutting concerns during software
development (Kiczales et al., 1997), (Furfaro et al.,
2004) and has been applied in business applications
(Di Francescomarino and Tonella, 2009).

In contrast to Object-oriented programming
(OOP), where the common functionality is pushed
up in the hierarchy tree, AOP separately defines
such aspects and uses an AOP environment to
manage the correct composition to a single
executable program. (Elrad et al., 2001) distinguish
aspects from high-level concerns such as security
and quality of service down to low-level concerns
similar to caching and buffering. The separation of
concerns can lead to a cleaner system design and
implementation.

Usage logging for remote asynchronous usability
testing is a typical application for AOP allowing
easy integration into existing software systems
(Tarby et al., 2007).

Due to the transparent invocation of aspects no

additional complexity has to be added during regular
development of a software program. Depending on
the software development language, AOP can even
be applied to black-box systems.

Figure 1 shows a good example of shared
concerns across independent OOP classes on the
example of a medical application (shaded area).

Figure 1: Example from healthcare: Three classes included
in a patient record system along with some of the core
methods for managing patient information: shaded areas
show the methods required to implement the secondary
statistics concern (Sommerville, 2010).

2 RELATED WORK

Originally, (Kiczales et al., 1997) found in their

53
Holzinger A., Brugger M. and Slany W..
APPLYING ASPECT ORIENTED PROGRAMMING IN USABILITY ENGINEERING PROCESSES - On the Example of Tracking Usage Information for
Remote Usability Testing.
DOI: 10.5220/0003523800530056
In Proceedings of the International Conference on e-Business (ICE-B-2011), pages 53-56
ISBN: 978-989-8425-70-6
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)

work many programming problems for which
neither procedural nor object-oriented programming
techniques were sufficient in capturing design
decisions, resulting in “tangled” program code
which is difficult to maintain. Kiczales et al.
presented an analysis of why certain design
decisions are so difficult to capture in actual code
and called these properties “aspects”. They showed
that the reason they have been hard to capture is that
they cross-cut the system's basic functionality.
Consequently, they developed a new programming
technique, called AOP, which makes it possible to
clearly express programs involving such aspects,
including appropriate isolation, composition, and
reuse of the aspect code.

Object-oriented programming (OOP) proved to
be a well-established and modern technology to
model real domain problems. Some problems
demand difficult design decisions as their nature do
not fit well the OOP approach. The programming
technique of AOP supports the problem nature of
cross-cutting concerns as an extension to OOP.

(Tarby et al., 2007) report, concerning the types
of application, that the AOP approach currently can
trace any application written in Java and supporting
AspectJ, where traced applications are today mainly
interactive applications (WIMP – windows, icons,
menu, pointing).

(Kojarski and Lorenz, 2007) present a practical
composition framework, called AWESOME, for
constructing a multi-extension weaver by plugging
together independently developed aspect
mechanisms. Their framework has a component-
based and aspect-oriented architecture that facilitates
the development and integration of aspect weavers.
In a practical implementation they demonstrated the
construction of a weaver for a multi-extension AOP
language that combines COOL and AspectJ;
however, the composition method is not exclusive to
COOL and AspectJ – it can be applied to combine
any comparable reactive aspect mechanisms.

3 REMOTE ASYNCHRONOUS
USABILITY EVALUATION

Good usability is meanwhile accepted as a key
factor for success of every application whether it is a
typical e-Business application (Calisir et al., 2010)
or a safety critical application in e-Health where it is
clearly demonstrated that bad usability can cause
serious problems (Rolleke, 2009), (Nielsen, 2005).

Usability is most often defined as the ease of use
and acceptability of a system for a particular class of

users carrying out specific tasks in a specific
environment; whereas ease of use affects the end
users' performance and satisfaction, acceptability
affects whether the product is used or not. One of the
basic lessons we have learned in human-computer
interaction (HCI) is that usability must be considered
before prototyping takes place. The earlier critical
design flaws are detected, the more likely they can
be corrected. Thus, user interface design should
more properly be called user interface development,
analogous to software development, since design
usually focuses on the synthesis stages, and user
interface components include metaphors, mental
models, navigation, interaction, appearance, and
usability (Holzinger, 2005).

Still the process of usability engineering and its
iterative approach is often costly and time
consuming. Using automation to decrease time and
costs of usability evaluations therefore directly
impacts the economic success of products. The
process of usability evaluation can described by the
activities following activities (Ivory & Hearst,
2001):

• Capture: collecting usability data
• Analysis: interpreting usability data
• Critique: suggesting solutions
Using AOP the “capture” phase is directly

influenced as the effort to collect information can be
drastically reduced while the quality of usability data
can be increased and easily customized. Therefore
also the other activities benefit of AOP indirectly.
Collecting Usage Information
In Usability Engineering the task of automatic
capturing of usability data can be greatly enhanced
by the usage of AOP. Within the scope of this work
the application of AOP does not cover a whole
usability engineering process. The technology can be
applied across several usability evaluation methods
during the “Capture” automation type mentioned in
(Ivory and Hearst, 2001). Also the distinction of
WIMP (windows, icons, pointer, and mouse) and
Web interfaces applies to this contribution as we
focus on current client technologies. The current
progress in web technologies mitigates this
distinction as modern Javascript powered web
applications also allow powerful client-side
applications where AOP could be applied to collect
usage information.

4 SAMPLE IMPLEMENTATION

Using AOP to collect usage information is the

ICE-B 2011 - International Conference on e-Business

54

main focus of this work. Therefore a sample
application has been developed taking advantage of
AOP. Given the current popularity of Objective-C
(OBJC) because of the iOS platform and the lack of
a maintained and publicly available AOP
implementation, the sample application was
implemented using the MacOS/iOS platform and
Objective-C 2.0. The OBJC runtime allows easy
integration of AOP with minimal changes to the
original program, which is very important to allow
an easy integration into existing projects.
Nevertheless this concept can be transferred to other
platforms without difficulties.

4.1 Sample Application

The sample application was developed to evaluate
different input methods in an application for script
breakdown. Pre-selection heuristics (PSH) were
used to enhance the tedious task of text selection.
Another mechanism to speed up script breakdown is
Auto-advancing short-key (AAS) tagging which was
the main focus to be tested. AAS automatically
advances the selection to the next text passage after
classification of a text component identified by the
PSH. Within the test the acceptance of these
technologies should be validated.

As the software is targeted at a very specific
audience a standard laboratory usability test would
not have been able to be performed within a
reasonable time frame. For this specific test a self
contained software package has been developed to
be distributed among the target group. The
invitations to the test were distributed as personal
invitation via email, the results were automatically
transmitted by the test software. Several domain
experts across Europe were invited to participate in
the test. The self contained test setup allowed the
test to be performed in the natural working
environment of the target group. Each test consisted
of a background information form for gathering
statistical data, a tutorial document presenting the
different input methods, the actual test and a SUS
feedback questionnaire.

Aspects have been implemented to track
interface events of keyboard input (AAS), context
menus, and drag and drop actions. A centralized
logging facility was used to persistently store log
output. A custom plain text format was used for
better readability of the log output. For automated
processing an XML format could easily be created
by exchanging the Logger class. Within the logged
data the quality of AAS could be measured by
identifying user corrections to the proposed

selections by the AAS mechanism.

4.2 Definition and Implementation of
Aspects

Adding aspects to the given object hierarchy was
achieved using a technology called “method
swizzling” offered by the OBJC runtime. Aspect
functionality was achieved by implementing
categories to existing classes. Categories allow the
extension of existing classes without inheritance and
knowledge of the original class source-code
providing access to the internal state of an object.
Therefore this technology suits the AOP approach
very well, separating the original functionality from
aspect behavior. For weaving aspects to the existing
OOP model, the OBJC runtime exchanges all calls
to methods defined in a configuration, with aspect
code altering the actual execution of the program.
The configuration is defined in the property list
format using dictionaries and arrays to define
aspects for selected classes.

Figure 2: Sample configuration for adding aspects to
existing classes.

4.3 Application Design

OBJC emerges to support the implementation to
AOP very well. Only one additional class is
necessary for reading the aspect configuration and
managing the aspect weaving. Using the provided
configuration aspect methods are exchanged with
the original methods at runtime. The aspect is also
responsible for calling the original method. This can
easily break the original application behaviour, still
allowing alteration of the program execution.
Implementing an alternate approach only allowing
pre- and post-method invocations should also be
taken into consideration. To the original Application
the addition of AOP is completely transparent. The
second class used as AOP infrastructure is the logger
itself. It is not directly AOP related but an essential
addition to the original application. Three aspects
are necessary to identify all necessary user interface
events. In a blackbox system aspects can be attached

APPLYING ASPECT ORIENTED PROGRAMMING IN USABILITY ENGINEERING PROCESSES - On the Example
of Tracking Usage Information for Remote Usability Testing

55

to known base classes to log information on a low
level. If additional information about the application
design exists, customized aspects can be developed.
OBJC has several tools for analyzing binary
applications at runtime. F-Script is a well-known
tool revealing enough information about almost any
application to allow easy integration of AOP into
existing applications.

5 CONCLUSIONS

As in the definition of AOP, the term cross cutting
concern can be perfectly applied to usability
engineering interests. The concept of AOP therefore
is perfectly suitable for adding data collection
facilities to existing applications for usability testing.
AOP is also easily portable to other programming
languages and the application within this paper just a
sample for how easy it is to reduce the effort for
usability testing. A best case scenario reduces code
to a single implementation of a shared concern
across all relevant classes without increasing code
complexity. Still the evaluation of the gathered data
is a challenging task. Automatic processing of
collected data is essential as large volumes can
easily be gathered. Several usage patterns like
repetitive operations on a single element were
identified hinting at usability issues. Also the
detection of heavily used features can be used to
further increase the user satisfaction by optimizing
these workflows and every change can be evaluated
afterwards for its effectiveness. A downside of the
easy application of AOP is related to privacy
concerns. Collected data should always be
anonymized and the least amount of sensitive
information should be recorded. A user notification
and opt-in mechanism is mandatory, in order to
avoid negative user experiences.

ACKNOWLEDGEMENTS

We thank Karl Heinz Struggl for the technical
support in implementation of the sample application.

REFERENCES

Calisir, F., Bayraktaroglu, A. E., Gumussoy, C. A., Topcu,
Y. I. & Mutlu, T. (2010) The relative importance of
usability and functionality factors for online auction

and shopping web sites. Online Information Review,
34, 3, 420-439.

Di Francescomarino, C. & Tonella, P. (2009) Cooperative
Aspect Oriented Programming for Executable
Business Processes. New York, IEEE.

Elrad, T., Filman, R. E. & Bader, A. (2001) Aspect-
oriented programming - Introduction. Communications
of the ACM, 44, 10, 28-32.

Furfaro, A., Nigro, L. & Pupo, F. (2004) Multimedia
synchronization based on aspect oriented
programming. Microprocessors and Microsystems, 28,
2, 47-56.

Holzinger, A. (2005) Usability engineering methods for
software developers. Communications of the ACM, 48,
1, 71-74.

Ivory, M. Y. & Hearst, M. A. (2001) The state of the art in
automating usability evaluation of user interfaces.
ACM Computing Surveys (CSUR), 33, 4, 470-516.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Lopes, C., Loingtier, J. M. & Irwin, J. (1997) Aspect-
oriented programming. In: Aksit, M. & Matsuoka, S.
(Eds.) Ecoop'97: Object-Oriented Programming.
Berlin 33, Springer-Verlag Berlin, 220-242.

Kojarski, S. & Lorenz, D. H. (2007) AWESOME: An
aspect co-weaving system for composing multiple
aspect-oriented extensions. ACM Sigplan Notices, 42,
10, 515-534.

Nielsen, J. (2005), Medical Usability: How to Kill Patients
Through Bad Design In: Jakob Nielsen's Alertbox,
April 11. Online available: http://www.useit.com/alert
box/20050411.html, last access: 2011-01-13

Rolleke, T. (2009) Incident reports to BfArM support the
importance of usability for patient safety. In: Dossel,
O. & Schlegel, W. C. (Eds.) World Congress on
Medical Physics and Biomedical Engineering, Vol 25,
Pt 12. New York, Springer, 298-300.

Sommerville, I. (2010) Software Engineering 9. New
York, Addison-Wesley.

Tarby, J. C., Ezzedine, H., Rouillard, J., Tran, C. D.,
Laporte, P. & Kolski, C. (2007) Traces using aspect
oriented programming and interactive agent-based
architecture for early usability evaluation: Basic
principles and comparison. In: Jacko, J. A. (Ed.)
Human-Computer Interaction, Part 1, Interaction
Design and Usability. Berlin, Springer-Verlag Berlin,
632-641.

ICE-B 2011 - International Conference on e-Business

56

