
A CONTROLLED NATURAL LANGUAGE INTERFACE
TO CLASS MODELS

Imran Sarwar Bajwa
School of Computer Science, The University of Birmingham, Edgbaston, Birmingham, U.K.

M. Asif Naeem
Department of Computer Science,University of Auckland, Auckland, New Zealand

Ahsan Ali Chaudhri
Director of Academic Programs, Queens Academic Group, Auckland, New Zealand

Shahzad Ali
Department of Computer Science and Engineering, University of Electronic Science & Technology, Chengdu, China

Keywords: Natural Language Interface, Controlled Natural Language, Natural Language Processing, Class Model,
Automated Object Oriented Analysis, SBVR.

Abstract: The available approaches for automatically generating class models from natural language (NL) software
requirements specifications (SRS) exhibit less accuracy due to informal nature of NL such as English. In the
automated class model generation, a higher accuracy can be achieved by overcoming the inherent syntactic
ambiguities and semantic inconsistencies in English. In this paper, we propose a SBVR based approach to
generate an unambiguous representation of NL software requirements. The presented approach works as the
user inputs the English specification of software requirements and the approach processes input English to
extract SBVR vocabulary and generate a SBVR representation in the form of SBVR rules. Then, SBVR
rules are semantically analyzed to extract OO information and finally OO information is mapped to a class
model. The presented approach is also presented in a prototype tool NL2SBVRviaSBVR that is an Eclipse
plugin and a proof of concept. A case study has also been solved to show that the use of SBVR in automated
generation of class models from NL software requirements improves accuracy and consistency.

1 INTRODUCTION

In natural language (NL) based automated software
engineering, the NL (such as English) software
requirements specifications are automatically
transformed to the formal software representations
such as UML (Bryant, 2008) models. The automated
analysis of the NL software requirements is a key
phase in NL based automated software modelling
such as UML (OMG, 2007) modelling. In last two
decades, a few attempts have been made to
automatically analyze the NL requirement
specification and generate the software models such
as UML class models e.g. NL-OOPS (Mich, 196),

D-H (Delisle, 1998), RCR (Börstler, 1999), LIDA
(Overmyer, 2001), GOOAL (Perez-Gonzalez, 2002),
CM-Builder (Harmain, 2003), Re-Builder (Oliveira,
2004), NL-OOML (Anandha, 2006), UML-
Generator (Bajwa, 2009), etc. However, the accurate
object oriented (OO) analysis is still a challenge for
NL community (Denger, 2003), (Ormandjieva,
2007), (Berry, 2008). The main hurdle in addressing
this challenge is ambiguous and inconsistent nature
of NLs such as English. English is ambiguous
because English sentence structure is informal.
(Bajwa, 2007) Similarly, English is inconsistent as
majority of English words have multiple senses and

102 Bajwa I., Naeem M., Chaudhri A. and Ali S..
A CONTROLLED NATURAL LANGUAGE INTERFACE TO CLASS MODELS.
DOI: 10.5220/0003509801020110
In Proceedings of the 13th International Conference on Enterprise Information Systems (ICEIS-2011), pages 102-110
ISBN: 978-989-8425-54-6
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)

a single sense can be reflected by multiple words in
English.

In this paper, the major contribution is three
folds. Firstly, a Semantic Business vocabulary and
Rule (SBVR) (OMG, 2008) based approach is
presented to generate a controlled (unambiguous and
consistent) representation of natural language
software requirements specification. Secondly, we
report the structure of the implemented tool
NL2UMLviaSBVR that is able to automatically
perform object-oriented analysis of SBVR software
requirements specifications. Thirdly, a case study is
solved that was originally solved with CM-Builder
(Harmain, 2003) and the results of the case study are
compared with available tools (used for automated
OOA) to evaluate the NL2UMLviaSBVR tool.

Our approach works as the user inputs a piece of
English specification of software requirements and
the NL to SBVR approach generates SBVR (an
adopted standard of the OMG) (OMG, 2008) based
controlled representation of English software
requirement specification. To generate a SBVR
representation such as SBVR rule, first the input
English text is lexically, syntactically and
semantically parsed and SBVR vocabulary is
extracted. Then, the SBVR vocabulary is further
processed to construct a SBVR rule by applying
SBVR’s Conceptual Formalization (OMG, 2008)
and Semantic Formulation (OMG, 2008). The last
phase is extraction of the OO information (such as
classes, methods, attributes, associations,
generalizations, etc) from the SBVR’s rule based
representation.

The remaining paper is structured into the
following sections: Section 2 explains that how
SBVR provides a controlled representation to
English. Section 3 illustrates the architecture of
NL2UMLviaSBVR. Section 4 presents a case study.
The evaluation of our approach is presented in
section 5. Finally, the paper is concluded to discuss
the future work.

2 SBVR BASED CONTROLLED
NATURAL LANGUAGE

SBVR was originally presented for business people
to provide a clear and unambiguous way of defining
business policies and rules in their native language
(OMG, 2008). The SBVR based controlled
representation is useful in multiple ways such as due
to its natural language syntax, it is easy to
understand for developers and users. Similarly,

SBVR is easy to machine process as SBVR is based
on higher order logic (first order logic). We have
identified a set of characteristics of SBVR those can
be used to generate a controlled natural language
representation of English.

2.1 Conceptual Formalization

SBVR provides rule-based conceptual formalization
that can be used to generate a syntactically formal
representation of English. Our approach can
formalize two types of requirements: The structural
requirements can be represented using SBVR
structural business rules, based on two alethic modal
operators (OMG, 2008): “it is necessary that…” and
“it is possible that…” for example, It is possible that
a customer is a member. Similarly, the behavioural
requirements can be represented using SBVR
operative business rule, based on two deontic modal
operators (OMG, 2008): “it is obligatory that …”
and “it is permitted that …” for example, It is
obligatory that a customer can borrow at most two
books.

2.2 Semantic Formulation

SBVR is typically proposed for business modeling
in NL. However, we are using the formal logic based
nature of SBVR to semantically formulate the
English software requirements statements. A set of
logic structures called semantic formulations are
provided in SBVR to make English statements
controlled such as atomic formulation, instantiate
formulation, logical formulation, quantification, and
modal formulation. For more details, we recommend
user SBVR 1.0 document (OMG, 2008).

2.3 Textual Notations

SBVR provides couple of textual notations.
Structured English is one of the possible SBVR
notations, given in SBVR 1.0 document, Annex C
(OMG, 2008), is applied by prefixing rule keywords
in a SBVR rules. The other possible SBVR notation
is Rulespeak, given in SBVR 1.0 document, Annex
F (OMG, 2008), uses mixfixing keywords in
propositions. Both SBVR formal notations typically
help in expressing the natural language propositions
with equivalent semantics that can be captured and
formally represented as logical formulations.

A CONTROLLED NATURAL LANGUAGE INTERFACE TO CLASS MODELS

103

3 THE NL2UMLviaSBVR

This section explains how English text is mapped to
SBVR representation, object oriented analysis and
finally generation of a class model. The used
approach works in five phases (see figure 1):

• Processing natural language specification
• Extracting Business Vocabulary from NL text
• Generating Business Rules from business

vocabulary
• Performing object oriented analysis
• Generating UML Class models

Figure 1: The NL2SBVR Approach.

3.1 Parsing NL Software Requirements

The first phase of NL2UMLviaSBVR is NL parsing
that involves a number of sub-processing units
(organized in a pipelined architecture) to process
complex English statements. The NL parsing phase
tokenizes English text and lexically, syntactically
and semantically processes the English text.

3.1.1 Lexical Processing

The NL parsing starts with the lexical processing of
a plain text file containing English software
requirements specification. The lexical processing
phase comprises following four sub-phases:
1. The input is processed to identify the margins of

a sentence and each sentence is stored in an
arraylist.

2. After sentence splitting, each sentence goes
through the tokenization. Tokenization works as
a sentence “A member can borrow at most two
books.” is tokenized as [A] [member] [can]
[borrow] [at] [most] [two] [books] [.]

3. The tokenized text is further passed to Stanford
parts-of- speech (POS) (Toutanova, 2000) tagger
v3.0 to identify the basic POS tags e.g. A/DT
member/NN can/MD borrow/VB at/IN most/JJS
two/CD books/NNS ./. The Stanford POS tagger
v3.0 can identify 44 POS tags.

4. The POS tagged text is further processed to
extract various morphemes. In morphological
analysis, the suffixes attached to the nouns and
verbs are segregated e.g. a verb “applies” is
analyzed as “apply+s” and similarly a noun
“students” is analyzed as “student+s”.

3.1.2 Syntactic Processing

We have used an enhanced version of a rule-based
bottom-up parser for the syntactic analyze of the
input text used in (Bajwa, 2009). English grammar
rules are base of used parser. The text is
syntactically analyzed and a parse tree is generated
for further semantic processing, shown in Figure 2.

Figure 2: Parsing English text.

3.1.3 Semantic Interpretation

In this semantic interpretation phase, role labelling
(Bajwa, 2006) is performed. The desired role labels
are actors (nouns used in subject part), co-actor
(additional actors conjuncted with ‘and’), action
(action verb), thematic object (nouns used in object
part), and a beneficiary (nouns used in adverb part)
if exists, (see figure 3). These roles assist in
identifying SBVR vocabulary and exported as an
xml file.
 A member can borrow at most two books .

 Actor Action Quantity Them. Object

Figure 3: Semantic interpretation of English text.

3.2 SBVR Vocabulary Extraction

The similar rules to extract SBVR vocabulary from
English text, we used in (Bajwa, 2011). We have

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

104

extended the rules to use in NL to UML translation
via SBVR. In NL to SBVR translation phase, the
basic SBVR vocabulary e.g. noun concept,
individual concept, object type, verb concepts, fact
type, etc are identified from the English input that is
preprocess in the previous phase. The extraction of
various SBVR elements is described below:
1. Extracting Object Types: All common nouns

(actors, co-actors, thematic objects, or
beneficiaries) are represented as the object types
or general concept (see figure 4) e.g. belt, user,
cup, etc. In conceptual modelling, the object
types are mapped to classes.

2. Extracting Individual Concepts: All proper
nouns (actors, co-actors, thematic objects, or
beneficiaries) are represented as the individual
concepts.

Figure 4: An extract of the SBVR metamodel: concepts.

3. Extracting Fact Types: The auxiliary and action
verbs are represented as verb concepts. To
constructing a fact types, the combination of an
object type/individual concept + verb forms a
unary fact type e.g. “vision system senses”.
Similarly, the combination of an object
type/individual concept + verb + object type
forms a binary fact type e.g. belt conveys part is a
binary fact type.

4. Extracting Characteristics: In English, the
characteristic or attributes are typically
represented using is-property-of fact type e.g.
“name is-property-of customer”. Moreover, the
use of possessed nouns (i.e. pre-fixed by’s or
post-fixed by of) e.g. student’s age or age of
student is also characteristic.

5. Extracting Quantifications: All indefinite articles
(a and an), plural nouns (prefixed with s) and
cardinal numbers (2 or two) represent
quantifications.

6. Extracting Associative Fact Types: The
associative fact types (OMG, 2008) (section
11.1.5.1) (see figure 4) are identified by
associative or pragmatic relations in English text.

In English, the binary fact types are typical
examples of associative fact types e.g. “The belt
conveys the parts”. In this example, there is a
binary association in belt and parts concepts.
This association is one-to-many as ‘parts’
concept is plural. In conceptual modeling of
SBVR, associative fact types are mapped to
associations.

7. Extracting Partitive Fact Type: The partitive fact
types (OMG, 2008) (section 11.1.5.1) (see
figure 4) are identified by extracting structures
such as “is-part-of”, “included-in” or “belong-to”
e.g. “The user puts two-kinds-of parts, dish and
cup”. Here ‘parts’ is generalized form of ‘dish’
and ‘cup’. In conceptual modeling of SBVR,
categorization fact types are mapped to
aggregations.

8. Extracting Categorization Fact Types: The
categorization fact types (OMG, 2008) (section
11.1.5.2) (see figure 4) are identified by
extracting structures such as “is-category-of” or
“is-type-of”, “is-kind-of” e.g. “The user puts two-
kinds-of parts, dish and cup”. Here ‘parts’ is
generalized form of ‘dish’ and ‘cup’. In
conceptual modeling of SBVR, categorization
fact types are mapped to generalizations. All the
extracted information shown in figure 5 is stored
in an arraylist for further analysis.

 A member can borrow at most two book s

Quant. Noun Modal Verb Quant. Object Quant
 Concept Verb Concept Type

Figure 5: Semantic interpretation of English text.

3.3 SBVR Rules Generation

In this phase, a SBVR representation such as SBVR
rule is generated from the SBVR vocabulary in
previous phase. SBVR rule is generated in two
phases as following:

3.3.1 Applying Semantic Formulation

A set of semantic formulations are applied to each
fact type to construct a SBVR rule. There are five
basic semantic formulations proposed in SBVR
version 1.0 (OMG, 2008) but we are using following
three with respect to the context of the scope of
proposed research:
1. Logical Formulation: A SBVR rule can be

composed of multiple fact types using logical
operators e.g. AND, OR, NOT, implies, etc. For
logical formulation (OMG, 2008), the tokens
‘not’ or ‘no’ are mapped to negation (⌐ a).

A CONTROLLED NATURAL LANGUAGE INTERFACE TO CLASS MODELS

105

Similarly, the tokens ‘that’ & ‘and’ are mapped
to conjunction (a ˄ b). The token ‘or’ is
mapped to disjunction (a ˅ b) and the tokens
‘imply’, ‘suggest’, ‘indicate’, ‘infer’ are mapped
to implication (a ⟹ b).

2. Quantification: Quantification (OMG, 2008) is
used to specify the scope of a concept.
Quantifications are applied by mapping tokes
like “more than” or “greater than” to at least n
quantification; token “less than” is mapped to at
most n quantification and token “equal to” or a
positive statement is mapped to exactly n
quantification.

3. Modal Formulation: In SBVR, the modal
formulation (OMG, 2008) specifies seriousness
of a constraint. Modal verbs such as ‘can’ , ‘’ or
‘may’ are mapped to possibility formulation to
represent a structural requirement and the modal
verbs ‘should’, ‘must’ or verb concept “have to”
are mapped to obligation formulation to
represent a behavioural requirement.

3.3.2 Applying Structured English Notation

The last step in generation of a SBVR is application
of the Structured English notation in SBVR 1.0
document, Annex C (OMG, 2008). Following
formatting rules were used: The noun concepts are
underlined e.g. student; the verb concepts are
italicized e.g. should be; the SBVR keywords are
bolded e.g. at most; the individual concepts are
double underlined e.g. Ahmad, England. Attributes
are also italicized but with different colour: e.g.
name. RuleSpeak (OMG, 2008) is the other
available notation in SBVR. The NL2UMLviaSBVR
tool supports both notations.

3.4 Object-oriented Analysis

In this phase, finally the SBVR rule is further
processed to extract the OO information. The
extraction of each OO element from SBVR
representation is described below:
1. Extracting Classes: All SBVR object types are

mapped to classes e.g. library, book, etc.
2. Extracting Instances: The SBVR individual

concepts are mapped to instances.
1. Extracting Class Attributes: All the SBVR

characteristics or unary fact types (without action
verbs) associated to an object type are mapped to
attributes of a class.

2. Extracting Class Methods: All the SBVR verb
concepts (action verbs) associated to a noun

concept are mapped to methods for a particular
class e.g. issue() is method of library class.

3. Extracting Associations: A unary fact type with
action verb is mapped to a unary relationship and
all associative fact types are mapped to binary
relationships. The use of quantifications with the
respective noun concept is employed to identify
multiplicity e.g. library and book(s) will have one
to many association. The associated verb concept
is used as caption of association as shown in
figure 6.

Figure 6: Extracting class associations.

4. Extracting Generalization: The partitive fact
types are specified as generalizations. The
subject-part of the fact type is considered the
main class in generalization and object-part of
the fact types is considered as the sub class.

5. Extracting Aggregations: The categorization fact
types are mapped to aggregations. The subject-
part of the fact type is considered the main class
in aggregation and object-part of the fact types is
considered as the sub class.

3.5 Drawing UML Class Model

This phase draws a UML class model by combining
class diagram symbols with respect to the
information extracted of the previous phase. In this
phase, the java graphics functions (drawline(),
drawrect(), etc) are used to draw the class diagram
symbols.

4 A CASE STUDY

A case study is discussed from the domain of library
information systems that was originally presented by
Callan (1994) and later on solved by Harmain
(2003). The problem statement for the case study is
as follows:

A library issues loan items to customers. Each
customer is known as a member and is issued a
membership card that shows a unique member
number. Along with the membership number
other details on a customer must be kept such as
a name, address, and date of birth. The library is
made up of a number of subject sections. Each
section is denoted by a classification mark. A
loan item is uniquely identified by a bar code.
There are two types of loan items, language
tapes, and books. A language tape has a title

library book
issues *1

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

106

language (e.g. French), and level (e.g. beginner).
A book has a title, and author(s). A customer may
borrow up to a maximum of 8 items. An item can
be borrowed, reserved or renewed to extend a
current loan. When an item is issued the
customer's membership number is scanned via a
bar code reader or entered manually. If the
membership is still valid and the number of items
on loan less than 8, the book bar code is read,
either via the bar code reader or entered
manually. If the item can be issued (e.g. not
reserved) the item is stamped and then issued.
The library must support the facility for an item
to be searched and for a daily update of records.

The problem statement of the case study was
given as input to the NL2UMLviaSBVR tool that is
an Eclipse plugin implemented in java as a proof of
concept. The generated SBVR representation is:

A library issues loan items to each customer.
Each customer is known as a member and is
issued a membership card that shows a unique
member number. It is necessary that the
membership number and other details on a
customer must be kept such as a name, address,
and date-of-birth. The library is made up of a
number of subject sections. Each section is
denoted by a classification-mark. A loan item is
identified by a bar-code. There are exactly two
types of loan items, language tapes, and books. A
language tape has a title-language, and level. A
book has a title, and author(s). It is possibility
that each customer may borrow up to at most 8
items. It is possibility that each item can be
borrowed, reserved or renewed to extend a
current loan. When an item is issued the
customer’s membership-number is scanned via a
bar code reader or entered manually. If the
membership is valid and the number of items on
loan at most 8, the book’s bar-code is read, either
via the bar code reader or entered manually. It is
possibility that if the item can be issued the item
is stamped and then issued. It is necessary that
the library must support the facility for an item to
be searched and for a daily update of records.

After generating the SBVR representation, OOA
was performed to extract following information:
There were some synonyms for the used classes
such as Item and Loan_Item, Section and
Subject_Section. Our system keeps only one of the
similar classes. Here, customer and member are also
synonyms, but our system is not able to handle such
similarities. There is only one wrong class that is
Member_Number as it is an attribute. There are two
incorrect associations: “Library support facility” is
not an association and “Library made up of
Subject_sections” is an aggregation but classified as
an association.

Table 1: Object Oriented Analysis results.

Type Count Details

Classes

10

Library, Loan_Items,
Member_Number,
Customer, Book,
Language_Tape Member,
Bar_Code_Reader,
Subject_Section,
Membership_Card

Attributes

10

name, address, date-of-birth,
bar_code,
classification_mark, title,
author, Level, membership-
number, valid

Methods

11

issue(), show(), denote(),
identify(), extend(), scan(),
enter(), read_barcode(),
stamp(), search(). update()

Associations

07

Library issues Loan_Items;
Member_Card issued to
Member; Library made up
of Subject_sections;
Customer borrow
Loan_items; customer renew
Loan_item; customer
reserve_Loan_item; Library
support facility

Generalizations

02

Loan Items is type-of
Language_tapes, Loan Items
is type-of Books

Aggregations 00 -

Instances 00 -

A screen shot of a class model generated for the

case study shown in figure 7.

5 EVALUATION

We have done performance evaluation to evaluate
the accuracy of NL2UMLviaSBVR tool. An
evaluation methodology, for the performance
evaluation of NLP tools, proposed by Hirschman
and Thompson (1995) is based on three aspects:
• Criterion specifies the interest of evaluation e.g.

precision, error rate, etc.

A CONTROLLED NATURAL LANGUAGE INTERFACE TO CLASS MODELS

107

Figure 7: A class model of case study generated by
NL2UMLviaSBVR.

• Measure specifies the particular property of
system performance someone intends to get at
the selected criterion e.g. percent correct or
incorrect.

• Evaluation method determines the appropriate
value for a given measure and a given system.
As we want to compare the results of

performance evaluation with other tools such as
CM-Builder (Harmain, 2003), we have a used a
similar evaluation methodology used for CM-
Builder. Following is the evaluation methodology
used to evaluate the performance of
NL2UMLviaSBVR.

5.1 Evaluation Methodology

Our evaluation methodology is based on three items,
described in (Harmain, 2003):

a. Criterion

For evaluation of the designed system, a criterion
was defined that how close are the
NL2UMLviaSBVR output to the opinion of the
human expert (named sample results). Different
human experts produce different representations and
can be good or bad analysis. However, we gained a
human expert’s opinion for the target input and used
it as a sample result.

b. Measure

We have used two evaluation metrics: recall and
precision. These metrics are extensively employed to
evaluate NL based knowledge extraction systems.
We can define these metrics as following:
1. Recall: The completeness of the results produced

by system is called recall. Recall can be
calculated by comparing the correct results
produced by the system’s with the human
expert’s opinion (sample results). Recall can be
calculated by using the following formula also
used in (Harmain, 2003):

Where Ncorrect is the number of correct results
generated by the tool and Nsample is the number of
sample results (opinion of human expert).

2. Precision: The second metrics precision
expresses accuracy of the designed system where
system accuracy means the correct number of
results produced by the system. Precision is
measured by comparing designed system’s
number of correct results by all (incorrect and
correct) results produced by the system.
Precision is calculated as:

Where Nincorrect is the number of incorrect results
and Ncorrect is the number of correct results.

c. Method

To evaluate the results of NL2UMLviaSBVR, each
outcome (class names, attributes names, method
names, associations, multiplicity generalizations,
aggregations, and instance names) of the
NL2UMLviaSBVR’s output was matched with the
expert’s opinion (Nsample) (sample solution). The
outcome that accurately classified into respective
category was declared correct (Ncorrect) otherwise
incorrect (Nincorrect). Additionally, the information
that was not extracted (or missed) by the NL2SBVR
tool but it was given in the human expert’s opinion
(Nsample) was categorized as the missing information
(Nmissing).

5.2 Evaluation Results

The results of the case studies were used to calculate
recall and precision values as shown in table 2.

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

108

Table 2: NL2UMLviaSBVR Evaluation results.

Example Nsample Ncorrect Nincorrect Nmissing Rec% Prec%

Results 40 35 3 2 87.50 92.10

Average recall for English requirement

specification is calculated 87.5% while average
precision is calculated 92.1%. These results are very
encouraging for the future enhancements.

We have also compared the results of
NL2UMLviaSBVR with other available tools that
can perform automated analysis of the NL
requirement specifications. Recall value was not
available for some of the tools. We have used the
available recall and precision values of the tools for
comparison as shown in table 3:

Table 3: A comparison of performance evaluation -
NL2UMLviaSBVR vs other tools.

 NL Tools for Class Modelling Recall Precision

CM-Builder (Harmain, 2003) 73.00% 66.00%
GOOAL (Perez-Gonzalez, 2002) - 78.00%
UML-Generator (Bajwa, 2009) 81.29% 87.17%
NL-OOML (Anandha, 2006) - 82.00%
LIDA (Overmyer, 2001) 71.32% 63.17%
NL2UMLviaSBVR 87.50% 92.10%

Here, we can note that the accuracy of other NL

tools used for information extraction and object
oriented analysis is well below than
NL2UMLviaSBVR.

Moreover, the various tools’ functionalities (if
available, is automated or user involved) are also
compared with NL2UMLviaSBVR as shown in
Table 4:

Table 4 shows that besides NL2UMLviaSBVR,
there are very few tools those can extract
information such as multiplicity, aggregations,
generalizations, and instances from NL requirement.
Thus, the results of this initial performance
evaluation are very encouraging and support both
the approach adopted in this paper and the potential
of this technology in general.

6 CONCLUSIONS

The primary objective of the paper was to address
the challenge of addressing ambiguous nature of
natural languages (such as English) and generate a
controlled representation of English so that the
accuracy of machine processing can be improved.

Table 4: Comparison of NL2UMLviaSBVR with other
tools.

Support
CM

Builder
LIDA GOOAL NL

OOML
NL2UML
viaSBVR

Classes Yes User Yes Yes Yes
Attributes Yes User Yes Yes Yes
Methods No User Yes Yes Yes
Associations Yes User Semi-NL No Yes
Multiplicity Yes User No No Yes
Aggregation No No No No Yes
Generalization No No No No Yes
Instances No No No No Yes

To address this challenge we have presented a NL
based automated approach to parse English software
requirements specifications and generated a
controlled representation using SBVR. Automated
object oriented analysis of SBVR specifications of
software requirements using the NL2UMLviaSBVR
provides a higher accuracy as compared to other
available NL-based tools. Besides better accuracy,
SBVR has also enabled to extract OO information
such as association multiplicity, aggregations,
generalizations, and instances as other NL-based
tools can’t process and extract this information.

Some non-functional requirements in the case
study such as “If the membership is still valid and the
number of items on loan less than 8, the book bar code is
read” and “If the item can be issued (e.g. not reserved)
the item is stamped and then issued.” are not part of the
output class model. These are basically constraints
and it is our future work to also generate Object
Constraint language (OCL) for these natural
language constraints.

REFERENCES

Bryant B. R, Lee, B. S., et al. 2008. From Natural
Language Requirements to Executable Models of
Software Components. In Workshop on S. E. for
Embedded Systems:51-58.

OMG. (2007). Unified Modelling Language (UML)
Standard version 2.1.2. Object Management Group,
Available at: http://www.omg.org/mda/

Mich, L. 1996. NL-OOPS: from natural language to object
oriented requirements using the natural language
processing system LOLITA. Natural Language
Engineering. 2(2):167-181

Delisle, S. Barker, K. Biskri, I. 1998. Object-Oriented
Analysis: Getting Help from Robust Computational
Linguistic Tools. 4th International Conference on
Applications of Natural Language to Information
Systems, Klagenfurt, Austria:167-172.

A CONTROLLED NATURAL LANGUAGE INTERFACE TO CLASS MODELS

109

Bajwa, Imran Sarwar, Lee, Mark G., Bordbar, Behzad.
2011. SBVR Business Rules Generation from Natural
Language Specification. AAAI Spring Symposium
2011, San Francisco, USA. pp.2-8

Börstler, J. 1999. User - Centered Requirements
Engineering in RECORD - An Overview. Nordic
Workshop on Programming Environment Research
NWPER'96, Aalborg, Denmark:149-156.

Overmyer, S. V., Rambow, O. 2001. Conceptual Modeling
through Linguistics Analysis Using LIDA. 23rd
International Conference on Software engineering,
July 2001

Perez-Gonzalez, H. G., Kalita, J. K. 2002. GOOAL: A
Graphic Object Oriented Analysis Laboratory. 17th
annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and
applications (OOPSLA '02), NY, USA: 38-39.

Harmain, H. M., Gaizauskas R. 2003. CM-Builder: A
Natural Language-Based CASE Tool for Object-
Oriented Analysis. Automated Software Engineering.
10(2):157-181

Oliveira, A., Seco N. and Gomes P. 2006. A CBR
Approach to Text to Class Diagram Translation.
TCBR Workshop at the 8th European Conference on
Case-Based Reasoning, Turkey, September 2006.

Anandha G. S., Uma G.V. 2006. Automatic Construction
of Object Oriented Design Models [UML Diagrams]
from Natural Language Requirements Specification.
PRICAI 2006: Trends in Artificial Intelligence, LNCS
4099/2006: 1155-1159

 Bajwa I. S., Samad A., Mumtaz S. 2009. Object Oriented
Software modeling Using NLP based Knowledge
Extraction. European Journal of Scientific Research,
35(01):22-33

OMG. 2008. Semantics of Business vocabulary and Rules.
(SBVR) Standard v.1.0. Object Management Group,
Available: http://www.omg.org/spec/SBVR/1.0/

Toutanova. K., Manning, C. D. 2000. Enriching the
Knowledge Sources Used in a Maximum Entropy
Part-of-Speech Tagger. In Joint SIGDAT Conference
on Empirical Methods in Natural Language Processing
and Very Large Corpora: 63-70.

Li, K., Dewar, R. G., Pooley, R. J. 2005. Object-Oriented
Analysis Using Natural Language Processing,
Linguistic Analysis (2005)

Bajwa I. S., Hyder, I. S. 2007. UCD-generator - A LESSA
application for use case design, International
Conference on Information and Emerging
Technologies, 2007. ICIET 2007.

Callan. R. E. 1994. Building Object-Oriented Systems: An
introduction from concepts to implementation in C++.
In Computational Mechanics Publications, 1994.

Hirschman L., and Thompson, H. S. 1995. Chapter 13
evaluation: Overview of evaluation in speech and
natural language processing. In Survey of the State of
the Art in Human Language Technology.

Berry M. D., 2008. Ambiguity in Natural Language
Requirements Documents. In Innovations for
Requirement Analysis. From Stakeholders’ Needs to
Formal Designs, LNCS-5320/2008:1-7

Ormandjieva O., Hussain, I., Kosseim, L. 2007. Toward A
Text Classification System for the Quality Assessment
of Software Requirements written in Natural
Language. in 4th International Workshop on Software
Quality Assurance (SOQUA '07):39-45.

Bajwa, I. S., Choudhary, M. A. (2006) “A Rule Based
System for Speech Language Context Understanding”
Journal of Donghua University, (English Edition) 23
(6), pp. 39-42.

Denger, C., Berry, D. M. Kamsties, E. 2003. Higher
Quality Requirements Specifications through Natural
Language Patterns. In Proceedings of IEEE
International Conference on Software-Science,
Technology \& Engineering (SWSTE '03):80-85

Ilieva, M. G., Ormandjieva, O. 2005. Automatic
Transition of Natural Language Software
Requirements Specification into Formal Presentation.
in proc. of Natural Language Processing and
Information Systems LNCS- 3513/2005:427-434

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

110

