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Abstract: In this paper, we investigate a kind of logic error occurring in evolving programs, known as regression bug. 
This error reflects a practical situation that when a program or software is evolved to meet with new 
requirements, it may accidentally violate the original requirements. Hence, the paper makes three theoretical 
contributions. First, we show that the test-case generated by typical white-box approach are not sufficient to 
cover all probable regression bugs. Next, we propose a new approach based on combined constraint to solve 
this problem. Finally, we introduce an ultimate CTGE (Efficient Constraint-based Test-cases Generation) 
algorithm whose complexity is reduced into linear time, thus becoming practical. The soundness of our 
theoretical contribution is formally proved and supported by some initial experiments conducted in 
education environment. 

1 INTRODUCTION 

Testing is the primary and common way to check the 
correctness of software.  Testing also incurs a 
substantial cost in software development (Heumann, 
2002). Among the various kinds of testing, unit 
testing plays an important role in software quality, 
since it helps detect errors in each individual 
component’s logic.  

Beside testing, the other main way to check 
correctness of software is code inspection. Over last 
few years, some automatic code-inspection tools are 
built based on static analysis. These tools usually 
generate an overly large number of warning and 
even false alarms that do not actually correspond to 
programming errors (false positive). 

Thus, the most popular approach of software 
testing today is still relying on test-case. Basically, a 
test-case is a set of inputs, execution conditions and 
desired outputs which can be tested by the system 
when functioning accordingly using some test 
procedures and test scripts.  

However, the generation of test-case is usually 
costly and thus requiring a systematic method. 
White-box testing technique, based on flow-control 
analysis, is typically applied in this case (Hutcheson, 
2003). Alongside this approach, many attempts have 

been made to automatically explore program paths 
for test-case generation purpose (Cadar, Dunbar and 
Engler, 2008; Godefroid, Klarlund and Sen, 2005). 
Especially, the concolic testing, which is a hybrid 
software verification technique that interleaves 
concrete execution (testing on particular inputs) with 
symbolic execution (Sen, Marinov and Agha, 2005), 
has emerged recently as an efficient technique for 
test-case generation. This technique is then adopted 
and exploited remarkably in various testing tools 
like PathCrawler (Williams, Marre, Mouy and 
Roger, 2005), jCUTE (Sen and Agha, 2006) and 
SAGE (Godefroid, 2007). 

Nevertheless, when employed in real situations of 
industry projects, the cost for exploring all of 
possible paths is extremely expensive, because the 
number of program path will increase exponentially 
with the number of branch statements. 

Dynamic slicing (Wang and Roychoudhury, 2008) 
is the most practical technique to deal with this 
limitation. This technique will slice the program 
statements into a subset of program's execution trace 
that only contains statements affecting a program's 
output. Based on that, we can only generate one test 
case for all of the paths that have the same output 
effects, instead of generating unnecessarily multiple 
test-cases for all of the paths. 

This dynamic slicing technique is also very useful 
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when a program evolved, that is when a new version 
of program is released with some substantial 
changes made. Using slicing, one can recognize the 
modified part in the new program, then generate 
test-case that covers this modified path and analyze 
the affected results to find program bugs (Qi, 
Roychoudhury and Liang, 2010).  

However, when a program is evolved into a new 
version to meet new requirements or just to refine 
the code, chances are that the new evolved program 
may accidentally violate the original requirements. 
This kind of errors, which is typically regarded as 
regression bug, is occurring quite frequently in 
practical situations of software development. 
Unfortunately, the typical white-box testing is not 
able to be fully detected this kind of error, even 
when the flow analysis is performed on both original 
and evolved versions. To make it clearer, in the 
following discussion in Section 2, we will give some 
motivating examples on this issue.  

To overcome this problem, we suggest an 
approach of using constraints combined from path 
conditions of both original and evolved program 
versions. We then formally prove the soundness of 
this approach, under the context of well-conditioned 
programs. To make this approach practical, we also 
propose an algorithm, known as CTGE (Efficient 
Constraint-based Test-case Generation) that reduces 
the cost of test-case generation from exponential 
complexity to linear one. 

The rest of the paper is organized as follows. 
Section 2 presents a motivating example which 
shows that when a program evolves, neither test-
cases generated merely from the old version nor the 
new version are sufficient to detect regression bug. 
Section 3 discusses our proposed approach on 
generating test-case by combining execution paths 
from the previous version and the evolved version of 
a program into constraints. In Section 4, we 
introduce the ultimate CTGE algorithm, an 
improvement of the test-case generation algorithm to 
reduce its complexity significantly. Section 5 gives 
some experiments and Section 6 concludes the 
paper. 

2 MOTIVATING EXAMPLE 

To give a clear motivation of our work, we first 
define well-conditioned program as follows. 
Definition 1 (Well-conditioned Program). 
A program P is said well-conditioned with respect to 
a property π, denoted as ∠(P,π), if P produces same 
outcomes w.r.t. π for all inputs satisfying same , path 

 conditions in P. 
void f(int n){ 
      if(n>0) return n = 2*n; 
      else return n = -2*n; 

}

Listing 1: An example program PX. 

Example 1. In the example program PX given in 
Listing 1, there are two path conditions C1: (n >0) 
and C2 : (n ≤ 0) corresponding to the execution 
paths of if and else clauses. Let us consider two 
properties: (i) π1: the program result is a positive 
number; and (ii) π2: the program result is an even 
number. One can easily observe that all inputs 
satisfying C1 (e.g. n= 4) will make π1 true. Similarly, 
all inputs satisfying C2 (e.g. n = -7) will make π1 
false. Thus, we can say PE is well-conditioned w.r.t. 
π1 or ∠(PE,π1). In contrast, all inputs satisfying C1 

or C2 cannot guarantee the same outcomes w.r.t. π2. 
For instance, the inputs of  n=3 and n=4 both satisfy 
C1 but making π2  false and true respectively. 

In the situation of testing a program P against a 
requirement R, it is easily observable that if  ∠(P,R) 
then a set of test-cases covering all of path 
conditions in P is sufficient to detect any bugs if 
occurring. 
Example 2. (Requirement RP) Write a function f 
taking an integer parameter n that returns the 
absolute value of n. 

For instance, let us consider the requirement RP 
given in Example 2. In Listing 2(a), an 
implementation of f is given in program VP, which 
has two path conditions P1 = (n>0) and P2 = ¬(n>0). 
Since ∠(VP,RP), two test-cases covering those two 
path conditions of VP, e.g. n=5 and n=-7, are 
sufficient to ensure the correctness of VP.1  

int f(int n){ 
if(n>0) return n; 
else return -n; 
} 

(a) The previous version Vp 
int f(int n){ 
      if(n>3)  
           { 
              Global++; 
              return n; 
            } 
      else return -n; 
} 

(b) The evolved version VE with regression bugs 

Listing 2: Evolving programs. 
1 In this paper we only discuss generating test-cases covering 

all execution paths. The test-cases for extreme cases, for 
example n=0 for the program in Listing 1(a), are out of the 
scope of this paper. 
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Example 3. (Requirement RE) Write a function f 
taking an integer parameter n that returns the 
absolute value of n. In addition, if n is greater than 
3, f will increase the value of the global variable 
Global by 1. 

Assume that the requirement is now upgraded in 
order to fulfill a new requirement RE as present in 
Example 3. We say that RE is evolved from RP since 
we can consider RE = RP∪RN, where RN is the 
additional requirement of “if n is greater than 3, f 
will increase the value of the global variable Global 
by 1”. Then, VP is evolved accordingly as a new 
version VE given in Listing 1(b). 

Since ∠(VE,RN), two test-cases covering all two 
path conditions Q1 = n >3 and Q2 = ¬(n>3) of  VE, 
e.g. n = 5 and n = -3, are sufficient to test whether VE  

Table 1: Constraints generated. 

Conjunction Combined 
Constraint 

Simplified 
Constraints 

Test-
case 

P1 ∧ Q1 n>0 && n>3 n >3 n = 5 
P1 ∧ Q2 n>0&& !(n>3) 0 < n < 3 n = 2 
P2 ∧ Q1 !(n>0)&& n>3  no test-

case 
P2 ∧ Q2 !(n>0)&& 

!(n>3) 
n <=0 n = -7 

fulfills the additional requirement RN. But those two 
test-cases cannot show that VE violates the old 
requirement RP. For example, if the input is 2, the 
result will wrongly be -2. Generally, this problem 
arises since we cannot always guarantee that 
∠(VE,RP). 

 Note that even though this is only a toy problem, 
the logic error in Listing 2(b) reflects a practical 
situation occurring in evolving programs. That is, 
while making the evolved program satisfy the 
additional requirements, we may accidentally violate 
the original requirements. We consider this kind of 
error as regression bugs as introduced in Section 1.  

The above-discussed examples also show that 
even though employing test-case covering all path 
conditions in both previous and evolved versions of 
evolving programs, we can still miss the regression 
bugs.  In the next section, we will introduce the 
combined constrain solving approach to deal with 
this problem. 

3 CONSTRAINT SOLVING     
FOR REGRESSION BUGS 
DETECTION 

The   motivating   example   in   Section  2  has  well 

illustrated that when a program evolves from an old 
version to a new evolved version, both path 
conditions of two versions should be taken into 
account when generating test-cases. The philosophy 
here is that a program will be considered evolved 
when new requirement is added, like stated in 
Example 1 and Example 2. Thus, the new program 
should satisfy not only new requirements added but 
also old requirements as well. 

In order to do this, we make usage of an approach 
based on combined constraint as follows. From the 
path conditions of both old and evolved versions, we 
generate combined constraints by make conjunctions 
of the path conditions. Each combined constraint is a 
conjunction of a pair of path conditions, one from 
the old version and the other from the evolved 
version. Then, we generate test-cases that cover all 
of possibly combined constraints. That is, we 
generate some input values that satisfy the combined 
constraints. The constraint solving here is by no 
means an easy taught to be done manually. In 
practice, we use the theorem prover Z3 (Bjørner and 
Moura, 2009) to make the constraints simplified and 
generate test-cases accordingly for each constraint 
generated. 

For instance, Table 1 presents the combined 
constraints generated from programs in Listing 1 and 
the test-cases generated accordingly. Obviously, we 
can detect the regression bug when the test-case of n 
= 2 is executed. 

The algorithm CTG to generate test-case is 
presented in Figure 1. In the algorithm, there is a 
particular operation of solve_constraint included. 
This operation is in charge of generating combined 
constraints by conjunction and makes them 
simplified, then finds an appropriate test-case 
fulfilling the constraint. This operation is supposedly 
handled by means of a theorem prover.  

The CTG algorithm should be sufficient to find 
any regression bugs. In Theorem 1, we show that 
this statement is sound under Assumption 1.  
Algorithm: CTG (Constraint-based Test-

cases Generation) 
Input: VP,VE: Original and evolved 

programs 
Output: T : set of test-cases 
Operations 
 T = Ø 
 Foreach (path condition α  ∈ VP) 
     Foreach (path condition β ∈ VE) 
           t =  solve_constraint (α∩β) 
           If t ≠ Ø then  
              Add t to T 
           Endif  
      End for 
End for 

Figure 1: The CTG (Constraint-based Test-case 
Generation) algorithm. 
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Assumption 1. Given a previous version VP that 
is well-conditioned w.r.t an original requirement RP, 

i.e.  ∠(VP,RP). When VP is evolved into a new 
version VE to fulfil new requirement RN, then 
∠(VE,RN). 

Theorem 1. The set of test-cases generated by 
CTG algorithm is sufficient to detect regression bugs 
on a program VN evolved from original program VP 
when the requirements evolved from RP to RN  
respectively. 

Proof. If there is a regression bug ϑ occuring in 
VN, then exists an input I that results in different 
outcomes of OP and OE w.r.t. RP when executed in 
VP and VN respectively. Assume that I belongs to 
condition paths α∈VP and β∈VN respectively. Since 
∠(VP,RP) and ∠(VE,RN) and RP⊂RN, any input 
generated from the combined constraint α∩β will 
result in the same outcome OP and OE w.r.t. RP when 
executed in VP and VN respectively. Since I∈α and 
I∈β then α ∩ β ≠∅, i.e. there is at least an input 
I’∈α∩β existing and will be generated when the 
CTG algorithm tries to make all posible 
combinations of condition paths between VP and VN, 

thus causing the corresponding regression bug ϑ to 
be detected accordingly. � 

Complexity Analysis. It is easily observable that 
the CTG algorithm produces test-cases by solving of 
possible constraints generated from the old version 
VP and the evolved version VE. Thus, it suffers high 
complexity as it takes Ο(N×M) times to make a 
solver process all constraints where N and M are the 
path conditions on VP and VE respectively. In the 
next section, we introduce the CTGE algorithm, an 
enhanced algorithm that only involves solver to 
process solvable constraints, thus improving 
significantly the performance of test-case generation 
process. 

4 THE CTGE ALGORITHM 

Among the 4 constraints presented in Table 1, there 
are 3 solvable constraints and one unsolvable one 
(i.e. a constraint that we cannot find any test-
case/input satisfying it). However, the CTG 
algorithm requires a solver to process unnecessarily 
all of 4 constraints. To overcome this problem, in the 
new version of CTGE algorithm presented in this 
section, we will take into account only solvable 
constraints.   The     CTGE    algorithm   is   shown in 
Figure 2. 

 

Algorithm: CTGE (Efficient Constraint-
based Test-cases Generation) 
Input: VP,VE: Original and evolved 

programs 
Output: T : set of test-cases 
Operations 
T = Ø   
Cmark = Ø 
Foreach (path condition χ  ∈ VP) 
     t =  solve_constraint (χ∩¬Cmark) 
     combine(t) 
End For 
 
SubProcedure combine (test-case t) 
Begin 
   add t  to T 
    α = symbolic_exec(t,Vp) 
    β = symbolic_exec(t,VE) 
   Cmark = Cmark ∪ (α ∩ β) 
    if (α∩¬β∩¬Cmark) ≠∅ then  
        

combine(solve_constraint(α∩¬β∩¬Cmark)) 
    end if 
     if (¬α∩β∩Cmark) ≠∅ then  
        

combine(solve_constraint(¬α∩β∩Cmark)) 
    end if 
End

Figure 2: Efficient Constraint-based Test-case Generation 
(CTGE) algorithm. 

The major improvement of CTGE
 is that it does 

not try to make all possible combined constraints. 
Instead, CTGE processes each path condition of the 
original version VP. For each path condition, CTGE 
first produces an appropriate test-case. Then, it calls 
a subprocedure named combine to further process. 

For every test-case t processed in combine, a 
specific function named symbolic_exec will be 
called to find the corresponding path conditions of t 
when executed in VP and VE respectively. The 
operation of symbolic_exec will perform symbolic 
execution, a classical technique to trace the 
execution path of given input by tracking symbolic 
rather than actual values (King, 1976). Based on the 
retrieved path conditions, combine keeps generating 
relevant constraints and calls itself recursively to 
generate more suitable test-cases. During the whole 
process of CTGE, we also make use of a special 
constraint named Cmark which marks the explored 
parts in the space of test-case domain. Therefore, 
CTGE

 can avoid duplication when generating 
constraints and test-cases. 

Theorem 2. The set of test-cases generated by 
CTGE algorithm is sufficient to detect regression 
bugs on a program VN evolved from old program VP 
when the requirements evolve from RP to RN 
respectively. 
Proof. We consider an undirected graph G = <V,E> 
constructed as follows. Each vertex v in V 
corresponds to a solvable combined constraint 
generated by the CTE algorithm. We add an edge  
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Figure 3: A graph representation of combined constraints. 

eij= (vi,vj) to E if  vi and vj are subcondition of a path 
condition in either VP or VN. 

For example, in Figure 3 is the graph constructed 
when we consider the program versions presented in 
Figure 1 and the combined constraints in Table 1. In 
the graph, there are three vertices corresponding to 
three solvable constraints in Table 1. There is an 
edge connecting v1 and v2 since their constraints are 
both subconditions of P1. Similarly, v2 and v3 are 
connected since their constraints are both 
subconditions of Q2 

Next, we relate the test-case generation process in 
the CTGE as graph traversal carried out in G. A 
vertex v is considered visited if CTGE produces a 
test-case satisfying the corresponding combined 
constraint of v. According to Theorem 1, if all 
vertices in G are visited after CTGE finishes, then 
CTGE generates sufficient test-cases to detect any 
regression bugs. 

When CTGE begins, it starts by a certain test-case 
I generated to satisfy a path condition α of VP. Using 
symbolic execution, one can determine the path 
condition β of VN which I belongs to. It means that a 
vertex q = α∩β just has been initially visited. 

Consider the formula α∩¬β referring to a vertex 
q’, which should be connected to q since α∩β and 
α∩¬β are both subcondition of α. Let Cmark be the 
formula representing all of vertices already visited 
(i.e. the combined constraints whose corresponding 
test-cases have been generated already). Similarly 
reasoning, we finally obtain that the two formulas 
α∩¬β∩¬Cmark and ¬α∩β∩¬Cmark should represent 
all vertices connecting to q which have not been 
visited. By recursively solving those formulas and 
updating Cmark in the subprocedure combine, CTGE 
will iteratively visit all of vertices in the connected 
component which q belongs to. 

Lastly, one can note that by checking all of path 
conditions of VP, CTGE will travel to all possible 
connected components of G. Thus, all vertices of G 
will be logically visited when CTGE performed and 
there are no vertices doubly visited. � 

For instance, consider using CTGE for generating 
test-case for evolving programs in Listing 1. Firstly, 
the two path conditions P1 and P2 are collected. 
Then,  CTGE

  generates  randomly  a  test-case  for  a 

path condition. Let it be n = 4 for P1. Performing 
symbolic execution on the test-case, one can realize 
that the test-case falls into the combined constraint 
P1∧Q1 = n>0 && n>3 = n >3. Then, CTGE

 tries to 
solve the formula P1∧¬Q1∧¬Cmark with Cmark being 
updated as Cmark =P1∧Q1. We have  P1∧¬Q1∧¬Cmark 

= n>0 && ¬(n>3) && ¬(n>3) = n>0 && n≤3. 
Then, a test-case is generated accordingly, e.g. n = 2. 

Next, combine (2) is invoked, which is 
corresponding to the constraint P1∧Q2 with Cmark 
being updated as n > 3 ∪ n>0 && n ≤3 = n> 0. We 
then have P1∧¬Q2∧¬Cmark = n>0 && n>3 && 
!(n>0) = ∅, then then this formula is not considered. 

 Meanwhile, we have ¬P1∧Q2∧¬Cmark = !(n>0) 
&& !(n>3) && !(n>0) =  n≤0. Solving this 
constraint, we, for instance, get a new test-case of n 
= -7. Then, combine(-7) is invoked accordingly. At 
the moment, Cmark is updated as  n > 0 ∪ !(n>0) && 
!(n>3) = n > 0 ∪ n ≤ 0, making P2∧¬Q2∧¬Cmark = 
¬P2∧Q2∧¬Cmark =¬P1∧Q1∧¬Cmark = ∅. Thus, the 
algorithm stops with no more test-cases generated. 

Complexity Analysis. Performing elementary 
analysis on CTGE, one can realize that CTGE will 
involve the embedded solver 2K times, with K is the 
number of test-cases generated and K ≤ N+M where 
N and M are the path conditions on VP and VE 
respectively. If we take into account the actions of 
generating N path conditions on VP, the total 
complexity of CTGE will be Ο(2K +M) ~ Ο(3N +M) 
which should be improved significantly compared to 
that of the original CTG. 

To illustrate this, consider the two versions of 
evolving programs given in Listing 3. The program 
intends to grade students’ works. After the 
preliminary version is finished as presented in 
Listing 3(a), a new version is released afterward as 
presented in Listing 3(b). 

int grade(int n){ 
 if(n > 100) return Invalid; 
 else if(n>=90) return Excellent; 
 else if(n>=80) return Very good; 
 else if(n>=70) return Good; 
 else if(n>=60) return Fairly good; 
 else if(n>=50) return Average; 
 else if(n>=0) return Fail; 
 else return Invalid; 
}  

(a) Student grading program – preliminary version

int grade(int n){ 
 if(n > 100) return Invalid; 
 else if(n>90) return Excellent; 
 else if(n>80) return Very good; 
 else if(n>70) return Good; 
 else if(n>60) return Fairly good; 
 else if(n>50) return Average; 
 else if(n>0) return Fail; 
 else return Invalid; 
} 

(b) Student grading program – final version 

Listing 3: Evolving programs. 
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There are 8 path conditions in each version, 
therefore the CTG algorithm will make use of the 
solver 64 times to generate test-cases. Meanwhile, 
when CTGE is performed, it will basically generate 8 
initial test-cases covering 8 path conditions of the 
preliminary program as presented in Table 2 (the 
test-cases presented here are just of example basis). 

Table 2: Initial example test-cases for preliminary version 
in Listing 2. 

Condition Test case 
n>100 103 

n>=90 && n<=100 91 
n>=80 && n<90 85 
n>=70 && n<80 73 
n>=60 && n<70 66 
n>=50 && n<60 54 
n>=0 && n<50 32 

n<0 -7 

Table 3: Total test-cases generated for evolving versions 
in Listing 2. 

Test 
case α β α∩¬β ¬α∩β 

103 n>100 n>100 ∅ ∅ 

91 
n>=90 

&& 
n<=100 

n>90 
&& 

n<=100 
new test-
case: 90 ∅ 

90 
n>=90 

&& 
n<=100 

n>80 
&& n 
<=90 

∅ ∅ 

85 n>=80 
&& n<90 

n>80 
&& 

n<=90 
new test-
case: 80 ∅ 

80 n>=80 
&& n<90 

n>70 
&& 

n<=80 
∅ ∅ 

73 n>=70 
&& n<80 

n>70 
&& 

n<80 
new test-
case: 70 ∅ 

70 n>=70 
&& n<80 

n>60 
&& 

n<=70 
∅  ∅ 

66 n>=60 
&& n<70 

n>60 
&& 

n<=70 
new test-
case: 60 ∅ 

60 n>=60 
&& n<70 

n>50 
&& 

n<=60 
∅ ∅ 

54 n>=50 
&& n<60 

n>50 
&& 

n<=60 
new test-
case: 50 ∅ 

50 n>=50 
&& n<60 

n>0 && 
n<=50 ∅ ∅ 

32 n>=0 && 
n<50 

n>0 && 
n<=50 

new test-
case: 0 ∅ 

0 n>=0 && 
n<50 n<=0 ∅ ∅ 

-7 n<0 n<=
0 ∅ ∅ 

Then, when the algorithm advances, there will be 6 
additional test-cases generated corresponding to 
non-empty domain marked in Table 3. Totally, the 
solver only needs to be involved 14 times for 
generating test-cases and 8 times for initial path 
conditions. 

Table 4: Programming problems used as experimental data. 

No Problem Constraint 
Solver 
calls 

(CTG) 

Solver 
calls 

(CTGE) 

1 Leap year 
checking 14 42 40 

2 Triangle 
classification 22 89 31 

3 Date validation 
checking 62 736 90 

4 
Time 

validation 
checking 

28 96 37 

5 Factorial 
computing 28 96 58 

6 Calculating xy 28 96 56 

7 Prime number 
checking 56 384 92 

8 Sum of 1..n 25 84 54 

Table 5: Bugs detected by white-box and combined 
constraints approach. 

Problem 
No Real Bugs Detected by 

white-box 
Detected by 

CTG(E) 
1 12 11 12 
2 10 6 10 
3 
4 
5 
6 
7 
8 

12 
13 
14 
11 
12 
12 

10 
10 
14 
11 
12 
12 

10 
13 
13 
11 
12 
11 

Total 96 86(89%) 94(98%) 

5 EXPERIMENTAL RESULTS 

In order to evaluate the performance of the CTGE 
algorithm, we have conducted an experiment in the 
education domain. The requirements to be fulfilled 
in this experiment are non-trivial programming 
problems given to students. The list of problems is 
given in Table 4, which also gives the information of 
the combined constraints make from path conditions. 
For loop-based programs, the path conditions are 
computed using the coverage analysis technique 
(Spillner, Linz and Schaefer, 2006), in which the 
loops are enforced to repeat respectively 0,1,2 and 
more than 2 times. Thus, our algorithm may have 
some limitations on programs with complicated 
loops. 

The dataset used in this experiment is collected 
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from the work of 50 students. In fact, there are 
actual marked programming works. Basically, for 
each programming problem, the teacher will produce 
a sample solution. In order to mark student works 
automatically, some test-cases are generated for 
testing. However, as discussed in Section 2, if we 
apply the typical white-box approach for generating 
test-cases, the test-cases are not sufficient to detect 
all of bugs in student works, even though both 
sample solutions and actual students’ works are 
concerned when test-cases are generated.  

When manually inspecting, we observe that there 
are only 89% students’ bugs detected using white-
box approach. Exact information on improvement of 
bug detection is given in Table 5. When the 
constraint-based approach is applied with teachers’ 
sample solutions playing the roles of original 
versions and student works evolved versions, the 
performance of bug detection is significantly 
improve with 98% bugs detected. Few bugs are still 
missed because the Z3 solver fails to resolve some 
complex non-linear expression in path conditions. 

We have also compared the performance of the 
CTG and CTGE algorithms in terms of execution 
time. In Table 4, we can observe that the number of 
solver call is significantly reduced in CTGE. As a 
result, the execution time is improved remarkably, as 
seen in Figure 4.  
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Figure 4: Improvement of time execution achieved by 
CTGE. 

Moreover, Figure 5 also shows that when the more 
number of constraints increases, the higher 
improvement on execution time achieved. 
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Figure 5: Comparison on execution time difference 
between CTG and CTGE w.r.t. numbers of combined 
constraints. 

6 CONCLUSIONS 

White-box testing is an effective technique for bug 
detection. However, in case of evolving program, 
this technique is not sufficient to deal with 
regression bugs, occurring when an evolved version 
violates original requirement already fulfilled by the 
previous versions. 

In this paper, we first explain by a means of 
motivation example why white-box testing may fail 
to discover regression bugs. Then, we introduce a 
combined constraint-based approach to theoretically 
solve the problem, with formal definitions and proof 
provided. To avoid the explosion path problem, we 
refine the approach as ultimate algorithm known as 
CTGE whose complexity is reduced significantly to 
linear time. 

We have also preliminary tested our approach in 
education environment, with dataset being 
programming works collected from students. The 
experimental results showed that the CTGE 
algorithm achieved better performance in terms of 
bug detection coverage and execution time, 
compared to the white-box testing. It also shows 
potential to apply CTGE  to industry environment. 
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