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Abstract: Service-oriented environments increasingly become the central backbone of a company’s business processes.
Thereby, services and business process flows are loosely coupled components that are distributed over many
server nodes and communicate via messages. Unfortunately, communication between SOA components using
the XML format is still the most resource- and time-consuming activity within a traditional business process
flow. This paper describes an approach that considers these transfer-costs and advises a process and service
placement for a given set of server nodes to partially eliminate remote message transfers. Furthermore, exper-
iments have been conducted to show its feasibility.

1 INTRODUCTION

Nowadays, service-oriented architectures have been
adopted as architecture paradigm in company-wide
networks. Following this paradigm, reusable pieces
of code are exposed as services over a variety of
server nodes. They communicate via XML messages
and by the use of workflow languages like WSBPEL
(OASIS, 2007), these services can be orchestrated to
more comprehensive processes.

A typical network topology setting for current
SOA implementations is shown in Figure 1. It com-
prises the following two characteristics: First, server
nodes (n1 : : :n4) host services (s1 : : :s4) and processes
(p1 : : : p3). These server nodes are interconnected
with and registered at an enterprise service bus (ESB).
With that registration the physical location of such
components and its assignment to respective server
nodes becomes transparent to clients. Second, the ex-
ecution of processes is realized by process engines
that usually reside on dedicated server nodes. Al-
though prototypes for decentralized process execu-
tion exist (e.g., (Chafle et al., 2004)), as of today, the
majority of process engines execute their process in-
stances centrally (see processes p1, p2 on node n3)
(Martin et al., 2008). Each process typically interacts
with a set of services to access or modify the data they
provide. For our example in Figure 1, the set of par-
ticular services si for a process pi is: p1= fs1;s2;s3g,
p2 = fs2;s4g and p3 = fs2;s5g which is also de-
picted by the colored dotted lines.

One challenging bottleneck is the resource-inten-

sive XML message exchange due to XML conversion
oerhead and the increased data volume XML text in-
fers (Habich et al., 2007). Although approaches exist
that deal with both problems (e.g. (Suzumura et al.,
2005) and (Ng, 2006)) they only reduce transfer costs
by reducing the ”‘thickness”’ of the dotted lines in
Figure 1.

A better solution would be to eliminate complete
service calls by nearby placement of processes and
services. Therefore, this paper describes the idea of a
business process deployment advisor that advises op-
timized process placements to server nodes regarding
their corresponding services and their different com-
munication costs.

ESB
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s3s1
s3s2

s3s3
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Figure 1: SOA with centralized process execution.

2 DEPLOYMENT ADVISOR
OVERVIEW

In this section, we will give a brief overview of our
process deployment advisor approach. The core as-

211Preissler S., Habich D. and Lehner W..
COST-BASED BUSINESS PROCESS DEPLOYMENT ADVISOR.
DOI: 10.5220/0003490602110216
In Proceedings of the 13th International Conference on Enterprise Information Systems (ICEIS-2011), pages 211-216
ISBN: 978-989-8425-53-9
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)



sumption thereby is that today’s server nodes hosting
services are not fully utilized in terms of CPU cores
and main memory. The concurrent execution of ser-
vices and processes on one server seems reasonable
and will reduce remaining network transfer. Addi-
tionally, these servers may run the same execution en-
vironments for both services and processes (e.g. ap-
plication server like JBoss (JBoss, 2010)). Thus the
communication between process and service can be
based on shared objects in main memory rather that
XML text messages. This will eliminate XML con-
version and significantly reduce resource utilization.

Therefore, the main goal of our advisor is to place
processes near to dependent services based on there
communication costs. This 1) reduces network trans-
fer times and latency for relocated processes, 2) elimi-
nates resource-intensive XML conversion and latency
significantly if process and service are executed in
the same software environment and 3) frees network
bandwidth on the ESB for other tasks.

2.1 Advisor Meta Model

Our advisor meta model describes the entities and
their interaction that are the base for our advisor algo-
rithm in Section 3: a set of processes P, a set of ser-
vices S, a set of service bundles B and a set of server
nodes N.

The set of processes P represents the business pro-
cesses we want to reassign to server nodes. Thereby a
single process plan p is defined as p = (A;Sp), where
A is the set of activities with A = (a1; : : : ;ai; : : : ;ak)
that are connected as control flow in an acyclic, di-
rected graph and Sp with Sp = (s1; : : : ;si; : : : ;sl) is the
set of services that P interacts with. Note that Sp is
actually a subset of S. For A, we distinguish two
classes of activities in pi for cost purposes based on
(Böhm et al., 2009): interaction-oriented and non-
interaction-oriented activities. Interaction-oriented
activities comprise receive, invoke and reply,
whereas non-interaction-oriented activities comprise
e.g., assign, switch or fork. Processes interact
with services using their interaction-oriented activity
invoke. In Figure 2, process plan p1 interacts with
services fs1;s2;s3g and p2 with fs2;s4g.

A services s in S is defined as si = (din;dout ; f ).
Thereby, din describes the input data and dout is the
output data with dout = f (din). Note, that din an dout
have direct effect on communication costs in pro-
cesses and are therefore used to calculate communi-
cation costs. Furthermore, services are considered as
black box only exposing data structures and coarse-
grained execution statistics.

Since most services and their locations have
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Figure 2: Process Deployment Advisor Meta Model.

evolved historically, there may be dependencies be-
tween services. As an abstraction layer between ser-
vices and their actual execution node we introduce
service bundles, where services in one bundle are log-
ically grouped and may, if relocated, be relocated as
one atomic block. Thereby a service bundle b can
comprise all services on one node or just a subset of
it with b = (s1; : : : ;sk). Furthermore, it is assigned to
a specific server node and can be marked as moveable
or not.

Finally, servers in N are the physical execution
environment for processes and services. They are
considered heterogenous in terms of CPU and main
menory but equal in their type of network intercon-
nect.

2.2 Statistics and Cost Model

To be able to evaluate every meta model entity in
terms of resource consumption and communication
costs, we have to gather statistics and define a cost
model. For the statistics, on every server node, the
node itself and its components (services S and pro-
cesses P) are monitored and all statistics are sent to
the advisor component and stored for further use. If
no statistics for a specific node-component pair have
been recorded, the statistics for central execution is
used.

Execution Statistics. For services, we monitor ba-
sic statistics for every service si like workload M(si)
and average execution time Texec(si). For processes,
a more fine-grained monitoring is required. Beside
the actual workload M(pi) we monitor the average
execution time Texec(ai) for all k activities in pro-
cess plan pi. Furthermore, we subtract the waiting
time Twait(ai) from Texec(ai) for interaction-oriented
activities to get their plain processing time. Addi-
tionally, for interaction-oriented activities in pi, av-
erage input and output cardinalities jdinj and jdout j are
monitored. This includes the number and position of
XML elements to cover workload-dependent repeti-
tion groups in arrays. Although cardinalities might be
useful for all activities and for general process plan
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optimization, we only consider it for our interaction-
oriented activities, since it directly affects communi-
cation costs.

Communication Costs. Using the data from cardi-
nality monitoring and the specified message schemata
in an interaction-oriented activity ai, its communica-
tion cost Ccom(ai) can be analyzed with different met-
rics. For example, data size-related metrics like num-
ber of bytes or number of nodes in a document can be
used solely. Such metrics are reasonable if compar-
ing pure network transfer between activities or pro-
cesses. Nevertheless, the core idea behind our XML
cost model is to compare the message transfers of
processes in terms of CPU utilization and a potential
benefit in a local, object-based service calls. Thus,
a more sophisticated cost computation is needed in-
stead of using pure data size-related metrics. Experi-
ments have shown that the processing time of an XML
conversion depends on its structural characteristics.
Hence, our cost model considers the number ne of ele-
ment nodes e , the number of attributes na, the number
of hierarchy levels l with l � 1 and the distribution of
ne element nodes over hierarchy levels l. Communi-
cation costs are computed as follows:

Ccom(ai) = jdinj+ jdout j with
jdinj= lejSer �ne �na

jdout j= lejDeser � (ne� (l�1))+(l�1)ll +la �na

Thereby lnjSer and lnjDeser denotes hardware-
specific constants for processing an element node for
serialization and for deserialization respectively. Fur-
thermore, ll and la are hardware-specific constants
for deserializing these nodes accordingly. For a start-
ing point, the constants are derived from our server
node for central process execution. Note that the pre-
sented equations only consider process side costs for
the invoke activity. Thus, the input dataset din to the
service is serialized with linear costs whereas the out-
put dataset dout from the service has to be deserialized
on process side considering structural aspects.

2.3 Problem Definition

Having described the prerequisites of our deployment
advisor, we now formally defined the process place-
ment problem that we want to solve:
Definition 1 . Process Placement Problem. Assume
a set of process plans P with P = (p1; : : : ; pk), a set
of server nodes N with N = (n1; : : : ;nl) and a set of
services S with S = (s1; : : : ;sm) where every service
si is associated with a server node n j. Furthermore,
let M(ci) describe the workload of a component (pro-
cess or service) ci as the number of input messages

within a predefined time period Dt that all execute in-
stances of ci. Finally, let RN(ni), RP(pi) and RS(si)
denote the maximum resource capacity of node ni and
the average resource consumption of process plan pi
and services si in the same time period Dt respec-
tively. Then, the process placement problem describes
the search for a process deployment mapping of pro-
cesses to server nodes that reduces or eliminates the
maximum possible network communication in com-
parison to central (full remote) execution, while not
exceeding the servers resource capacities for a given
workload.

Although stated in this problem description, this
paper does not cover details about workload and
resource-aware process placement. Instead, it focuses
on the basic models and the algorithm to minimize
network transfer.

3 BASIC PROCESS PLACEMENT

In this section we will introduce the basic process
placement algorithm. It computes the server node
for a given process with the largest communication
overhead (and thus the largest network transfer sav-
ing with local XML transfer or largest CPU-resource
saving with local shared objects).

Based on the communication cost model Ccom de-
fined in the previous section, we now define our first
optimization goal: Minimize overall transfer costs be-
tween processes and services. Thereby, we focus on
the nearby placement of processes to services to elim-
inate these costs. In a first step we assume, that we are
not able to relocate services and that they are fixed to
their current server nodes. Thus, to reduce network
transfer costs, we move processes from their central
execution node to one of the respective service nodes
that are included in some of a process’s invocation.
That is, we bundle this process and its execution with
the set of services on that node. For a given process
plan p, Algorithm 1 retrieves the list of server nodes
in the order of decreasing communication cost and re-
turns the topmost server in the list. In other words,
the returned node produces the most communication
costs and the process execution on that node is most
reasonable.

In more detail, Algorithm 1 takes a process plan
as input and retrieves all invoke activities and corre-
sponding nodes (lines 3-8). In the second part, every
involved node is analyzed (line 10). In line 12 - 16,
all invoke activities a j from p that call a service of the
current node are considered and their costs Ccom(a j)
are added to the overall costs of node ni (lines 15
and 17). If the execution environment of process and
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Figure 3: Static Process Placement Algorithm Example.

service are equal (line 14), shared object calls can
be used. Thus, this communication (and this node)
is rated more important with adding factor lex with
lex > 1 to the costs (line 15). Thus, it is more likely
that p is placed at ni. An ordered list with descend-
ing process communication costs is created (line 18)
and the node involving the most communication cost
is returned as the node where the process should be
placed (line 19).

Algorithm 1: RetrieveBestNodeForProcess.
Require: process plan p
1: AI  �,N �
2: // part 1: extract invoke activities
3: for i = 1 to jp:Aj do // 8 activities in p
4: if ai:type ==0 invoke0 then
5: AI  AI [ai
6: N N[node(ai)
7: end if
8: end for
9: // part 2: compute cost for every node

10: for i = 1 to jNj do // 8 nodes ni
11: ni:cost := 0
12: for j = 1 to jAI j do // 8 invoke activities
13: if ni:nid == node(a j):nid then
14: if p:envid == service(ai):envid then
15: ni:cost := ni:cost +Ccom(a j) �lex
16: else
17: ni:cost := ni:cost +Ccom(a j)
18: end if
19: end if
20: end for
21: end for
22: nlist order(N;N:comcost;DESC)
23: return nlist[0]

An example is shown in Figure 3. Thereby, pro-
cess p1 communicates with three services. It concur-
rently fetches data (activities a3 and a5, joins them
(a6) and stores them remotely (a7). The denoted
communication costs Ccom have been computed for
all three invoke activities: a3 = 500 for retrieving
the orders, a5 = 800 for retrieving the invoices and
a7 = 1200 for storing the joined data in service s3.
These activities are analyzed and the corresponding
remote service nodes retrieved. Three possible ser-
vice distributions of the services s1 to s3 are depicted

in row (1), (2) and (3) in the center table. For example,
in the first distribution, services s1 and s2 are located
on node n1 whereas service s3 is located on node
n2. For every single service distribution, the sum of
communication costs associated with the server node
differs. In the end, the algorithm chooses the node
with the maximum communication cost for the spe-
cific process. This is done for every existing process
plan.

The execution of this basic algorithm computes
the best node for a specific process. Although this
eliminates the maximum possible network transfer,
frees network capacity and improves latency for re-
maining tasks on the ESB, this setting does not con-
sider process workload and resource constraints that
may increase process latency. A workload-aware ex-
tension of this base algorithm is subject to future re-
search.

4 EVALUATION

In this section, we present selected results of our ex-
perimental evaluation. We implemented our advi-
sor algorithm and the processes using Java 1:6 and
the Web service framework Axis21. The overall set-
ting follows Figure 1 with all services running on
nodes n1 and n2 respectively with n1 = fs1;s2;s5g
and n2 = fs3;s4g. Processes p1 and p2 run centrally
on node n3 as starting point. All experiments were ex-
ecuted on synthetically XML data and were repeated
50 times for statistical correctness.

4.1 Performance Measurements

We present three experiments that show the effect of
our communication-aware process placement. For
general cost savings in terms of reduced network
transfer, Figure 4(a) depicts the result for one single
process execution of p1 and a varying input data size
d. Thereby, one customer information (3kb) is aug-
mented with orders and invoices at service s1 and s2

1http://ws.apache.org/axis2/
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Figure 4: Performance Measurements.

(approximately 17kb for each response, that is in aver-
age 10 invoices and 10 orders per customer response)
and the joined result is sent to service s3 (40kb).
As illustrated, the central execution on node n3 (see
p p1 n3) naturally exhibits the most communication
costs with increasing data size to communicate. For
example, if one process instance queries 40 customer
ids, approximately 4MB are transferred over the net-
work. For nearby placement of p1 to services s1 and
s2 on node n1 (see p p1 n1) and to service s3 on
node n2 (see p p1 n2) as suggested by our base algo-
rithm, significant network transfer reductions can be
achieved. Remember, the depicted network volume is
for one single process instance execution.

Before we consider different workloads for both
process types, we evaluate the single performance of
p1 and p2. We execute them on every node n1 to n3
separately and use local XML transfer. Figure 4(b)
depicts their throughput per second with different in-
put data sizes. What can be observed is that execut-
ing p1 on node n1 (p p1 n1) performs generally better
than remote execution (on n3, p p1 n3), e.g. 53 pro-
cesses per second against 48 with d = 40 customer.
This is due to eliminating network transfer to the re-
spective services for the most costly communication
activities in p1. Since XML serialization and deserial-
ization is the most resource consuming task and since
it still takes place for local service calls, the benefit
in throughput enhancement on node n1 is not signifi-
cant. In contrast, throughput of process p2 decreases
on node n2 p p2 n2) (where all respective services of
p2 reside) since n2 has lower resource capacities to
execute process p2 and its services s3 and s4 in con-
junction. If the processes can use shared objects for
local service calls, throughput increases significantly
(see p p1 n1 obj and p p2 n2 obj). Nevertheless,
Algorithm 1 advises the placement of p1 to n1 and
p2 to n2 since it uses the communication cost model
solely to determine placement.

To show the negative effect of concurrent process

type executions we place p1 and p2 on node n3, fix
data size d for both types to 20 customer and execute
process p2 with a constant workload of 20. For p1,
we increase the workload from 5 to up to 60 in fixed
time intervals. Figure 4(c) shows the performance of
both process types. What can be observed is that at a
workload of 15, the execution of p1 affects the execu-
tion of p2 and both runtimes increase. Furthermore,
the variance for these executions also increases due to
heavy scheduling between these process types.

5 RELATED WORK

To best of our knowledge, we are not aware of
any work concerning communication-aware place-
ment strategies for services or processes in hetero-
geneous SOA environments. Of course, there ex-
ists a lot of work touching aspects of our approach.
As for distributed workflow management, traditional
document-based workflow systems like (Alonso et al.,
1997) or (Bauer et al., 2003) already considered the
nearby execution of tasks and data. While (Alonso
et al., 1997) explicitly separated control and docu-
ment flow to provide remote tasks with required doc-
ument data, (Bauer et al., 2003) divided its execu-
tion network into domains and used hash-based func-
tions to balance process fragments within the do-
mains. Nevertheless, within domains, the fragments
were placed randomly on server nodes and commu-
nication costs between nodes were not considered at
all. In SOA environments, approaches based on pro-
cess fragmentation have also been proposed. (Chafle
et al., 2004) and (Khalaf and Leymann, 2006) dis-
tribute centralized process orchestrations using au-
tomatic generation of distributed process fragments.
This is similar to query plan partitioning in DBMSs.
Nevertheless, they also do not consider a cost model
or placement strategies for their fragments. In the area
of service communication many approaches reduce
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XML conversion using differential encoding (Suzu-
mura et al., 2005; Werner et al., 2004). Other ap-
proaches optimize the network transfer by the use of
compression techniques, e.g.(Maneth et al., 2008) or
more compact message formats (Ng, 2006). Although
these approaches increase XML performance signifi-
cantly, they only reduce, not eliminate, the overhead
of this communication.

6 CONCLUSIONS

In this paper, we presented the first step for a business
process deployment advisor that eliminates network
communication and, if possible, XML conversion be-
tween processes and its services by shared objects. It
advises the placement of given processes to depen-
dent services and server nodes with the focus on com-
munication reduction. In a first step (and as the fo-
cus of this paper), we proposed a process placement
strategy to assign processes to fixed services aim-
ing to completely eliminate expensive network com-
munication. Future work will address workload and
resource-aware process placement to avoid resource
bottlenecks and a possible increase in execution time
due to concurrent execution on one server node. Fur-
thermore, we will consider dynamic service place-
ment to advise an optimal process to service mapping
for available server nodes.
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