
LAMB
A Lexical Analyzer with Ambiguity Support

Luis Quesada, Fernando Berzal and Francisco J. Cortijo
Department of Computer Science and Artificial Intelligence, CITIC, University of Granada, 18071 Granada, Spain

Keywords: Language processor, Lexical analyzer, Scanner, Lexer, Lexical ambiguity, Lexical analysis graph.

Abstract: Lexical ambiguities may naturally arise in language specifications. We present Lamb, a lexical analyzer that
captures overlapping tokens caused by lexical ambiguities. This novel technique scans through the input string
and produces a lexical analysis graph that describes all the possible sequences of tokens that can be found
within the string. The lexical graph can then be fed as input to a parser, which will discard any sequence of
tokens that does not produce a valid syntactic sentence. In summary, our approach allows a context-sensitive
lexical analysis that supports lexically-ambiguous language specifications.

1 INTRODUCTION

A lexical analyzer, also called lexer or scanner, is a
piece of software that processes an input string con-
forming to a language specification and produces a
sequence of the tokens or terminal symbols found in
it. The obtained sequence of tokens is then usually
fed to a parser, also called syntactic analyzer, as the
next step of a data translation, compilation or inter-
pretation procedure.

Lexical ambiguities may show up in a language
specification. They ocurr when an input string simul-
taneously corresponds to several token sequences. In
order to solve them, traditional lexers allow asigning
priorities to tokens (Levine et al., 1992).

However, the language developer may want simi-
lar substrings to be recognized as different sequences
of tokens depending on their context. This cannot be
achieved with the priority approximation.

Statistical lexers (Markov, 1971; Ephraim and
Merhav, 2002; McCallum et al., 2000) may perform
well in context-sensitive scenarios, but they require
intensive training and, as token types are guessed,
they do not guarantee that the obtained token se-
quence will be what the developer intended.

When it comes to programming languages, data
specification languages, or limited natural languages
scenarios, the syntactic rules are clear as to what
should be accepted. The usage of statistical models
introduces an unpredictable possibility of error dur-
ing token recognition that would render scanning and

parsing theoretically and pragmatically unfeasible.
Our proposal, Lamb (standing forLexical AMBi-

guity), performs a lexical analysis that efficiently cap-
tures all the possible sequences of tokens and gener-
ates a lexical analysis graph that describes them all.
The subsequent parsing process would discard any se-
quence of tokens that did not provide a valid syntactic
sentence conforming to the language grammar. This
solves the lexical ambiguity problem with formal cor-
rectness.

As research in lexers sets the basis for the appli-
cation of parsers, it inherits their application fields:
the processing of programming languages (Aho et al.,
2006), the integration of data in data mining applica-
tions (Han et al., 2005), and natural language process-
ing (Jurafsky and Martin, 2009).

2 BACKGROUND

Lexandyacc(Levine et al., 1992) are traditional lexer
generator and parser generator, respectively.

When using alex-generated lexer, tokens get as-
signed a priority based on the length of the performed
matches and, if there is a tie, on the specification or-
der.

The order of efficiency of alex-generated lexer is
O(n), beingn the input string length.

Statistical models as Hidden Markov Models
(Markov, 1971; Ephraim and Merhav, 2002) or Max-
imum Entropy Markov Models (McCallum et al.,

297Quesada L., Berzal F. and J. Cortijo F..
LAMB - A Lexical Analyzer with Ambiguity Support.
DOI: 10.5220/0003476802970300
In Proceedings of the 6th International Conference on Software and Database Technologies (ICSOFT-2011), pages 297-300
ISBN: 978-989-8425-76-8
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)

2000) consider the existence of implicit relationships
between words, symbols, or characters that are close
together in strings. These models need intensive
corpus-based training and they produce results with
associated implicit probabilities. Even though they
can perform well in natural language processing, their
training requirement is impractical for programming
or data representation languages, especially when the
syntactic rules provide all the needed context infor-
mation to unequivocally identify tokens. Further-
more, the results are prone to interpretation errors that
would render the analysis unusable.

The semi-syntactic lexer proposed in (Shyu, 1986)
considers context information found in syntactic
rules, but is not able to capture syntactic ambiguities
for their further consideration.

3 LAMB

In contrast to the aforementioned techniques, Lamb is
able to recognize and capture lexical ambiguities.

Our proposed algorithm takes as input the string to
be scanned and a list of tokens associated to their cor-
responding regular expressions. It produces a lexical
analysis graph in which each token is connected to its
following and preceding tokens in the input sequence.

Our algorithm consists of two steps: the scanning
step, which recognizes all the possible tokens in the
input string; and the graph generation step, which
computes the sets of preceding and following tokens
for each token and builds the lexical analysis graph.

3.1 The Scanning Step

The algorithm in Figure 1 takes as input a string and
a list of matchers, and produces a list of found tokens
sorted by starting position. These tokens may overlap
in the input string.

Each matcher consists of a regular expression and
its correspondingmatchmethod, apriority value, and
a nextvalue.

Thematchmethod performs a match given the in-
put string and a starting position in it, and returns the
matched string.

The priority value specifies the matcher priority.
The value−1 is reserved for ignored patterns, which
represent irrelevant text. The value 0 is reserved for
tokens that are not affected by priority restrictions.
Priority values 1 or higher represent token priorities,
being the lower the value, the higher the priority.
Whenever a token is found, no lower priority tokens
will be looked for within the matched text.

for i in 0..input.length()-1:
prio = -2
if search[i] == SEARCH:
anymatch = false
for each matcher m in matcherlist:

if (prio == -2 || prio >= m.prio ||
m.prio == 0) && (prio != -1 &&
next[j] < i):

match = m.match(input,i)
if match != null:
anymatch = true
prio = m.prio
end = i+match.length()-1
if search[end+1] == SKIP:
search[end+1] = SEARCH

if m.prio == -1: //ignored pattern
for k in t.start..t.end:

search[k] = NEVER
else: //not ignored pattern
t = new token(id=id,text=match,

type=m.type,start=i,end=end)
tokenlist.add(t)
id++

if !anymatch:
if search[i+1] == SKIP
search[i+1] = SEARCH

Figure 1: Pseudocode of the scanning step in our lexical
analysis algorithm.

Thenextvalue specifies the position before the next
string index a match will be tried to be performed at.
It defaults to−1.

Thesearcharray determines if an input string in-
dex has to be scanned, skipped, or never scanned (i.e.
if an ignore pattern that contains it was found). It de-
faults toSCANfor the position 0 andSKIPfor the rest
of them.

The prio variable represents the last priority that
has been matched in the current input position. Its
value is−2 if no match was performed,−1 if an
ignored element match was performed, and a higher
value if any token of that priority has been found.

This step has a theoretical order of efficiency of
O(n2 · l), beingn the input string length andl the num-
ber of matchers in the lexer.

3.2 The Graph Generation Step

The algorithm in Figure 2 goes through the identified
token list in reverse order and efficiently computes the
sets of preceding and following tokens for every to-
ken.

The sets of preceding and following tokens of the
tokenx are defined in Equation 1, beinga,b,c tokens
andxstart andxend the starting and ending positions of
the tokenx in the input string.

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

298

for i in tokenlist.size()-1..0:
t = tokenlist[i]
state = 0
minend = input.length()+1
for j in i+1..tokenlist.size()-1:

tc = tokenlist[j]
if state == 0 && tc.start>t.end:
state = 1

if state == 1 && tc.start>t.end:
if tc.start>minend:

break
else:

minend = min(minend,tc.end)
t.addfollowing(tc)
tc.addpreceding(t)

Figure 2: Pseudocode of the graph generation step in our
lexical analysis algorithm.

b∈FOLLOWING(a),a∈ PRECEDING(b) iif

aend< bstart & ∄c,cstart > aend,cend< bstart
(1)

After these sets have been computed for every to-
ken, any token whose preceding set is empty is added
to the start token set of the lexical analysis graph.

This step theoretical order of efficiency ofO(tk),
being t the number of tokens found andk the max-
imum number of tokens that follow a token in the
graph. Ast ≤ n · l , the theoretical order of efficiency
of this step isO(nlk).

Both scanning and graph generation steps together
have an order of efficiency ofO(nl(k+n)).

4 COMPARISON

We have implemented a simple proof of concept
parser that allows a lexical analysis guided by a syn-
tactic rule set. Its pseudocode is shown in Figure 3.

The parsemethod returns all the possible reduc-
tions using a rule given a starting symbol.

In the lexically-ambiguous language specification
that describes the tokens listed in Figure 4, any se-
quence of digits separated with points could be con-
sidered eitherRealtokens orInteger Point Integerto-
ken sequences.

The syntactic rules shown in Figure 5 illustrate a
scenario of lexical ambiguity sensitivity, as the con-
sideration of the aforementioned tokens depends on
the context. The expected parse of the input string
“&5.2& /25.20/” is shown in Figure 6.

When using a traditional lexer, the developer can
assign theInteger token a greater priority than the
Real token or the opposite way. The respective in-
terpretations are shown in Figures 7 and 8.

symbollist = tokenlist
do:

flag = false
for each rule r in rules:
for each symbol s in symbollist:

matches = r.parse(s)
for each match m in matches:

if !symbollist.contains(m):
symbollist.add(m)
if m is start symbol:

validparses.add(m)
flag = true

while flag = true

Figure 3: Pseudocode of the proof of concept parser sup-
porting ambiguities.

(-|\+)?[0-9]+ Integer
(-|\+)?[0-9]+\.[0-9]+ Real
\. Point
\/ Slash
\& Ampersand

Figure 4: Regular expressions and token names in the spec-
ification of our ambiguous language.

On the other hand, Lamb is able to capture all the
possible token sequences in the form of a lexical ana-
lysis graph, as shown in Figure 9. The parsing of this
graph would produce the only possible valid sentence,
which, in turn, is based on the only valid lexical ana-
lysis possible. Both of them are shown in Figure 10.

5 CONCLUSIONS AND FUTURE
WORK

We have presented Lamb, a lexer that supports lexical
ambiguities. It performs a lexical analysis that effi-
ciently captures all the possible sequences of tokens
for lexically-ambiguous languages and it generates a
lexical analysis graph that describes them all. Lamb
supports assigning priorities to tokens as traditional
techniques do but, in contrast to them, it does not en-
force these priorities to be set and it allows for prior-
ity values to be shared. Tokens with shared priorities
are considered valid alternatives instead of mutually-
exclusive options.

E ::= A B
A ::= Ampersand Real Ampersand
B ::= Slash Integer Point Integer Slash

Figure 5: Context-sensitive syntactic rules that solve lexical
ambiguities.

LAMB - A Lexical Analyzer with Ambiguity Support

299

Point
.

Integer
20

Slash
/

Real
5.2

Ampersand
&

Slash
/

Ampersand
&

Integer
25

Figure 6: Intended lexical analysis.

Point
.

Integer
20

Slash
/

Ampersand
&

Integer
5

Point
.

Integer
25

Integer
2

Ampersand
&

Slash
/

Figure 7: Lexical analysis, as produced by a traditional lexer, when theIntegertoken has a greater priority than theRealtoken.

Real
5.2

Ampersand
&

Slash
/

Ampersand
&

Real
25.20

Slash
/

Figure 8: Lexical analysis, as produced by a traditional lexer, when theRealtoken has a greater priority than theIntegertoken.

Point
.

Integer
20

Slash
/

Real
5.2

Ampersand
&

Slash
/

Ampersand
&

Integer
5

Point
.

Real
25.20

Integer
25

Integer
2

Figure 9: Lexical analysis, as produced by Lamb, whenRealandIntegertokens share priority value.

Point

.

Integer

20

Slash

/

Real

5.2

Ampersand

&

Slash

/

Ampersand

&

Integer

25

A B

E

Figure 10: Correct syntactic analysis produced by applyingan ambiguity-supporting parsing technique to the lexical analysis
graph produced by Lamb and shown in Figure 9.

The lexical graph can be further processed in order
to perform a context-sensitive lexical analysis guided
by syntactic rules.

We plan to extend existing parsing techniques for
them to accept lexical analysis graphs. We will also
apply Lamb to modular languages, where token defi-
nitions may conflict and cause ambiguities.

ACKNOWLEDGEMENTS

Work partially supported by research project
TIN2009-08296.

REFERENCES

Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D. (2006).
Compilers: Principles, Techniques, and Tools. Addi-
son Wesley, 2nd edition.

Ephraim, Y. and Merhav, N. (2002). Hidden markov pro-
cesses. IEEE Transactions on Information Theory,
48:1518–1569.

Han, J., Kamber, M., and Pei, J. (2005).Data Mining:
Concepts and Techniques. The Morgan Kaufmann
Series in Data Management Systems. Morgan Kauf-
mann, 2nd edition.

Jurafsky, D. and Martin, J. H. (2009).Speech and Language
Processing. Prentice Hall, 2nd edition.

Levine, J. R., Mason, T., and Brown, D. (1992).lex&yacc.
O’Reilly, 2nd edition.

Markov, A. A. (1971). Extension of the limit theorems of
probability theory to a sum of variables connected in
a chain. R. Howard, Dynamic Probabilistic Systems
volume 1, Appendix B. John Wiley and Sons.

McCallum, A., Freitag, D., and Pereira, F. (2000). Maxi-
mum entropy markov models for information extrac-
tion and segmentation. InProc. of the 17th Interna-
tional Conference on Machine Learning, pages 591–
598.

Shyu, Y.-H. (1986). From semi-syntactic lexical analyzer
to a new compiler model.ACM SIGPLAN Notices,
21:149–157.

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

300

