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This article describes a model-driven approach for test case generation in software product lines. It defines a

set of metamodels and models, a 5-step process and a tool called Pralintool that automates the process
execution and supports product line engineers in using the approach.

1 INTRODUCTION

Over the last few years, the construction of software
based on the principles of product lines has emerged
as a new development paradigm. According to
Clements and Northrop (Clements and Northrop,
2002), a software product line (SPL) is “a set of
software-intensive systems sharing a common,
managed set of features which satisfy the specific
needs of a particular market segment or mission and
which are developed from a common set of core
assets in a prescribed way”. In SPL development,
organizations work on two levels: (1) Domain
Engineering, where both the common characteristics
of all the products, as well as their variation points,
are described and (2) Product Engineering, where
specific products are built, transferring the common
characteristics (described on the top level) to them
and appropriately applying variability. Thus,
variability management plays a central role in SPL
and constitutes a new challenge when compared to
classic software engineering.

Due to the nature of SPL (the complexity
inherent to variability management, need for the
future reuse of design artefacts, etc.), most works
dealing with SPL require an intensive use of models
(Czarnecki et al., 2005), which must be
appropriately annotated with variability labels. At
some time, some kind of transformation must be
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applied, both to deal with artefacts on the domain
engineering level (translating, for example, a design
model into test models), as well as to obtain product
engineering artefacts from the domain engineering
ones.

This article describes an approach for SPL
design and test case generation. It is made up of:

- A set of models and metamodels that were
built almost from scratch;

- A 5-step process that guides the Product Line
Engineer in SPL modelling and test case
generation;

- A tool, PralinTool, that automises the process
execution.

The goal is to automate the derivation of test
cases in SPL contexts. This approach offers agility
due to the complete control of metamodels and
algorithms, which can be quickly adapted or
modified to incorporate the implementation of new
ideas. One important obstacle in testing research is
oracle automation. In order to solve the oracle
problem, the approach supports the use of states and
special notations, which would allow the partially
automatic generation of oracles. Since SPL requires
some effort to guarantee reuse, traceability, the
adoption of tools and the application of other good
practices, the context is excellent to investigate the
possibilities of model-driven techniques to achieve
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its automation, since these techniques implicity
assure characteristics such as traceability, reuse,
automation and other good chracteristics for the
engineering process.

The following section analyses the most
significant works relating to testing in SPL and the
oracle problem. Section 3 presents an example,
which will be used to illustrate the proposal. After
that, the approach is presented in Section 4. Finally,
we draw our conclusions and present future lines of
work.

2 RELATED WORK

Testing in the context of SPL includes the derivation
of test cases for the line and for each specific
product, exploiting the possibilities of variability to
reduce the cost of creating both the test model and
the line test cases. This includes their instantiation to
test each product. In general, testing artefacts are
derived at domain engineering level, and they are
transformed for specific products afterwards. Almost
all the proposals to generate tests for SPLs define
their own models to represent the testing artefacts
and variability in the test model.

The next paragraph summarises the most important
works.

Nebut et al. (Nebut et al., 2003) propose a
pragmatic strategy in which test cases for each of the
different products of an SPL are generated from the
same SPL functional requirements. Source artefacts
are parameterised use cases annotated with contracts
(written in 1st-order logic) that represent pre- and
post-conditions. Bertolino et al. (Bertolino et al.,
2004) propose a methodology based on the category-
partition method named PLUTO (Product Line Use
Case Test Optimisation), which uses PLUCs
(Product Line Use Cases). A PLUC is a traditional
use case with additional elements to describe
variability. For each PLUC, a set of categories (input
parameters and environment description) and test
data is generated. Kang et al. (Kang et al., 2007) use
an extended sequence diagram notation to represent
use case scenarios and variability. The sequence
diagram is used as the basis for the formal derivation
of the test scenario given a test architecture. Reuys
et al. (Reuys et al, 2005) present ScenTED
(Scenario-based Test case Derivation), where
activity diagrams are used as test models from which
test case scenarios are derived. Olimpiew and
Gomma (Olimpiew and Gomaa, 2006) describe a
parametric method, PLUS (Product Line UML-
based Software engineering). Here, customisable

test models are created during software product line
engineering in phases.

Whether in the context of software products lines
or in the traditional context, one of the most
important tasks in software testing is the definition
of the oracle, which is the mechanism provided for a
test case to determine whether it has found a fault.
According to Baresi and Young (Baresi and Young,
2001), all the methods for generating tests depend on
the availability of oracles, since they are always
required to determine the success or failure of the
test. For Bertolino (Bertolino, 2007), an “ideal
oracle” realistically is an engine/heuristic that can
emit a pass/fail verdict over the observed test
outputs. Thus, the automation of the oracle is one the
most important difficulties in testing research (Offutt
et al., 2003), since there is no a known method for
its generic description and, in practice, it must
always be manually described. The work by Baresi
and Young (Baresi and Young, 2001) (published in
2001) is a complete analysis of the state—of-the-art
about the oracle problem. Most of the proposals they
analyse refer to the insertion of assert-like
instructions in the source code. Later, other works
have made proposals to solve this problem using
other techniques such as artificial neural networks
(Jin et al., 2008) or metamorphism (Mayer and
Guderlei, 2006). The automation of the oracle has
special significance in SPL, since meaningful
portions of the system are analysed and developed at
the domain engineering level, which includes the
definition of their tests. Therefore, it is quite
interesting to apply reusing and traceability not only
to develop artefacts, but also to test them, including
oracle descriptions.

In summary, software engineering communities
have everything ready to work intensively with
model driven approaches in SPL, but none of
existing proposals for testing in SPL automate their
transformations. Also, the problem of oracle
automation still remains and it is important to
propose ideas for its resolution. The SPL context
offers an excellent opportunity to improve classic
software  engineering practices, development
methods and techniques for testing. The joint use of
SPL and model-based testing is very propitious for
improving test and oracle automation. In the
approach presented in this document, a set of
metamodels and a process of seven steps have been
developed with three goals: 1) generate test artefacts
automatically at domain level with variability, 2)
remove variability and generate automatically
executable tests for specific products, and 3) support
the generation of oracles through states and special
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Figure 1: Metamodel for designing software product lines.

notations in the models. The main advantage of this
technique is that a complete framework is presented
(from the design of the line to the execution of tests)
and this framework supports the automatic
generation of oracles, thanks to special notations.

3 PROPOSED APPROACH

The proposed approach is made up of:

- A metamodel that was built almost from
scratch;

- A S-step process that guides the Product Line
Engineer in PL modelling and test case
generation;

- A tool, called PralinTool, that automates the
process execution.

It uses class and sequence diagrams as the main
element for representing SPL and, later, for
generating test cases. In order to enable the
automation (and the future extension) of both the
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process and the supporting tool, these elements were
represented by means of metamodels.

3.1 SPL Metamodels

Figure 1 shows the defined metamodels. Here,
Variability is provided by the Variation Points
Metamodel  package, with the element
VariableElement and its specialisations. A
VariableElement has a collection of VariationPoint,
which defines the type of variability and the range of
possibilities through its Variant.

This metamodel makes it possible to represent all
the elements required to design a product line
according to our principles, removing the
complexity inherent to the UML 2.0 standard
metamodel (OMG, 2007), although also losing part
of its expressiveness. Currently, the metamodel only
supports one type of event in sequence diagrams,
instead of the wide variety of messages allowed by
UML 2.0 (call, creation, signals, etc.). In fact, our
metamodel was built from scratch and, thus, it is not
completely based on the UML specification. This
can be a thread in a real context, but due to the
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flexibility of our metamodels, they can be adapted to
new modelling requirements.

3.2 The Process

The process guides the Product Line Engineer in PL
modelling and test case generation. Its general
structure is shown in Figure 2 and it is implemented
in PralinTool (Section 3.3).

It is made up of 5 different steps:

1) Step 1: Product Line modelling;

2) Step 2: Sequence diagram enrichment;

3) Step 3: domain-level test scenario generation;

4) Step 4: domain level test case generation;

5) Step 5: product level test case generation and
automation.
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Figure 2: General description of the process.

3.2.1 Step 1: Product Line Modelling

At the domain engineering level, the software
engineer models the software product line, which
includes class structure and sequence diagrams.
These models also contain variability specification.

In order to illustrate this and the following steps, a
product line consisting of a distributed, client-server
system for playing board games has been developed.
These kind of games share a broad set of
characteristics, such as the existence of a board, one
or more players, possibly the use of dice, the
possibility of taking pieces, the presence or absence
of cards, policies related to the assignment of turns
to the next player, etc. Currently, this SPL works
with four types of board games: Chess, Checkers,
Ludo and Trivial. Since it is impossible to show the
whole system in this paper, it instead shows some of
the variation points and variants identified for this
SPL, which are described according to the
Orthogonal Variability Model (OVM) graphical

notation (Pohl et al., 2005). This notation identifies
each variation point with a triangle and each variant
with a rectangle. Arrows are used to include
restrictions.

Figure 3 shows four variation points: Game,
corresponding to one of the possible games
supported (Chess, Checkers, Ludo or Trivial);
Opponent indicating whether the player is playing
against the computer or another online human
player; Players where the minimum number of
players is 2, but some games have the option of
being played by more players; and Type, which
depends on whether the games use dice or quiz the
player.

MFlayer On
Line

requires

Figure 3: Variation points and variants.

In this system, one of the clearly variable use
cases is “Piece movement”, which is executed on the
server when a client sends a message corresponding
to the movement of a piece. Figure 4 shows the
sequence diagram that describes the functionality of
“Piece movement”. This sequence diagram has
special notations, which are explained in the
following section, which describes the treatment
given to the modelling, development and generation
of test cases given to this SPL with our approach,
which is illustrated using the functionality ‘“Piece
Movement”.

3.2.2 Step 2: Sequence Diagram Enrichment

In this proposal, a test scenario is a sequence of
method calls, which must be executed to perform a
test. Test scenarios are generic, in the sense that they
belong to the domain engineering level of the SPL
design. Since an interesting aspect is the generic
description of oracles (for later inclusion in specific
products, in the form of specific oracles), test
scenarios must include the state of the different
objects involved in the scenario before and after
each method call. For this, both the messages and
the objects are annotated with information about the
states.
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Figure 4: Normal event flow of Piece movement for the
line, draw with PralinTool.

Figure 4 shows the sequence diagram
corresponding to the normal flow of events of the
Piece movement use case. It includes information
about the expected states of each object (within
square brackets) as well as variability labels (as
stereotypes). For example, before entering this
scenario, the d:Board instance must be
ReadyToMove (see the annotation between the
square brackets in the instance). These annotations
are supported by the States Metamodel package.

States are described by means of Boolean
expressions, written as a function of the fields and
methods in the corresponding class. Since some of
these expressions will affect some products but not
others, states can be variable too, which will require
different types of processing when specific test cases
must be produced (this transformation is presented
in Section 4.4). Table 1 shows an example of a state
for the Game class: when the game is in Playing, the
instance must have a board, the number of clients
must be greater than zero, a player must have the
turn, there is no still winner and, depending on the
product, dice may exist.

Table 1: Description of a state in the Game class.

this. clients.size() > 0

this.pWithTurmn != null
this.clients.contains(this.pWithTurn) == true
this.winner == null

this.dice =null <<Optional>>

Playing

3.2.3 Step 3: Domain-level Test Scenario
Generation

The elements to model test scenarios are provided
by the Scenarios package. The main element is
TestScenario, which has an ordered set of /ines that
represents a sequence of messages that will be
executed and a set of instances that represents the
elements that will execute each message. All these
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elements include states for the future generation of
oracles.

For generating scenarios, three transformations
have been developed (due to a lack of space, the
pseudocode of the transformations is not shown):

1. Unit test scenarios consider the messages
producing a single object in the sequence
diagram. The scenarios only keep a method,
together with the states which annotate the
instance (pre-state) and the message (post-state).
With the goal of having all the objects in the
correct state, the test scenario also knows the
pre-state of all the objects involved in the
method execution.

2. Integration test scenarios test the interactions
between any two connected objects (i.e., one
instance sends a message to the other). The
scenario saves: (1) the method of the first
instance whose execution  produces its
interaction with the second one; (2) the post-
states of both instances. As with the unit test
algorithm, the pre-states of all instances
involved in the scenario must be taken into
account to ensure that the scenario is, in fact,
reproducible.

3. Functional test scenarios test the system from an
actor’s point of view. Thus, the scenario
executes the messages arriving from an actor to
the system, which is considered as a black box.
In addition to these messages, the scenario must
also hold the corresponding state annotations,
both in the instances and in the events.

Table 2 groups the elements of the functional test
scenario generated with the third transformation
corresponding to the sequence diagram of figure 4; it
holds all the instances involved in the execution of
the functionality. Note that, in this example, since it
is a functional scenario, only the messages arriving
from an actor client appear in the message sequence
(in the sequence diagram, only throwDice and move
come from an actor). As can be seen, pre- and post-
states are also saved. Note that this kind of
description is supported by the metamodel.
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Table 2: Functional test scenario of Piece movement.

LifeLines (instances) Pre-state
g:Game Playing
d:Dice «Optional» ReadyToThrow
b:Board ReadyToMove
Messages Post-state

l:throwDice «Optional» | g:Game Playing

d:Dice WithScore

6:move g:Game Playing

b:Board ReadyToMove «Variable»

Up to now, the process has produced test
scenarios  (representations of interesting test
situations at the domain-engineering level). Now,
these scenarios must be translated into specific test
cases for the line and for the specific products of the
line. This requires two steps: (1) still on the domain
level, a test architecture must be generated, which
takes into account variability, and the behaviour of
each test case must be obtained; and (2) on the
product-engineering level, variability must be
resolved for each product, and the test architecture
and behaviour must be translated into specific
product test cases.

3.2.4 Step 4: Domain Level Test Case
Generation

In this step, specific test cases are obtained from the
previously obtained test scenarios. The main
difference between test scenarios and test cases is
that the latter describe specific execution situations
and, therefore, have specific test data and oracles.
Moreover, the test suite is part of the test
architecture of the system. Since the package
Scenarios of the metamodel supports the three types
of scenarios described, only a single transformation
is required to obtain specific test cases from the
three types of scenarios.

The architecture of the tests (supported by the
package Testing) has a TestSuite as its basic
element, which contains all the required elements to
compose the tests: it has a set of Fixture elements
(representing types under test or required types), a
set of TestCase elements and a set of configuration
methods (StateConfiguration, which is used to put
the objects in the required state).

An instance of the test architecture stores the
information required to generate specific test cases.
A transformation for generating the test architecture
has been developed. The transformation takes the set
of test scenarios and the class diagram as inputs and
produces a TestSuite. It adds the required fixtures to
represent the lifelines, as well as the
StateConfiguration elements required to put each

Fixture into the specific required state. Finally, it
obtains the specific test cases corresponding to each
test scenario passed as a parameter, also combining
the test data, and generates methods to check if the
post-states of the fixtures are correct after the test
executions. This transformation makes use of the
combination algorithms implemented in festooj (All
combinations, Each choice and several kinds of Pair
wise (Polo et al., 2007)). Figure 5 shows the
architecture generated from the sequence diagram in
the figure 4.

<<Optional>> <<Optional>>

System JL Test
Dice 1 FixtureDice 1
.

I-score +putStateWithScore()

'; +throw()

Game

Foveovamert ke [ Tostsuts |
move(Movement :

i +
\l/*<<oplional>> +throwDice() KH-—|tputStatePlaying() t?_SlCaSe'IOTm 0

+checksStatesTC1_2()
Board +testCase2()

+checkLegality(Movement : m) FixtureBoard +checkStatesTC2_1()
-+movePiece(Movement : m)  KH--|+putStateReadyToMove() | [*checkStatesTC2_20
+takePiece(int : idPiece) 1

Figure 5: Test classes generated from the test scenario.

+putStateReadyToThrow()

hoard

Once the test architecture has been instantiated, a
further step obtains the functionality of each test
case. As other authors have shown (i.e., (Baxter et
al., 1998, Khatchadourian et al., 2007)), our
metamodel contains a package for object-oriented
source code (package AbstractSyntax), which
actually represents the abstract syntax tree of the test
cases. Thus, a new transformation has been
developed to translate the ordered sequence of
method of each test scenario into an abstract syntax
tree for each test case.

This transformation analyses the generated
scenario and, for each test case, includes in the
abstract syntax tree a message to put each fixture in
the correct pre-state. Then, the transformation adds
the sequence of messages of the scenario with a
concrete combination of test values, and after each
message of the sequence, a message to check the
post-states is added (these messages are considered
the oracles of the test). Figure 6 shows the generated
functionality of a test case (Note that the argument
of message 6 is a concrete value. The metamodel
supports this but it cannot be represented graphically

yet).
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3.2.5 Step 5: Product Level Test Case
Generation and Automation

In this step, executable test cases are obtained from
their respective models (actually, instances of the
metamodel), and executed in two substeps (Figure
7): (1) generation of cases for a specific product,
which involves the removal of variability; (2)
generation of executable code for the desired
technology.

Product Line
Test cases
Product
Specifications

Figure 7: Schematic view of executable test case
generation.

Java Parser Java code

-Net code

Product Test
Case generation

In the first substep, variability is removed from
domain specifications, proceeding in the same way
as the variability is removed for generating a product
(not a test case) from the line design. These
specifications are made up of the different selected
variants for each variation point in the line. As an
example, table 3 shows all the variation points for
the board games product line (left column), together
with the selected variants for the specific product of
Chess.

Table 3: Selected variants for the Chess product.

Class diagram

Variation point Selected variant
Game chess

Players 2

Opponent Player

Type (excluded)

Figure 8 shows the functionality of the generated
test case in figure 6 after removing the variability. It
can be seen that the features related to Dice have
been removed because there are no dice in chess.
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|fb:Fi:-LlureEIDard| |fg:Fi:f.tureGame|

1 public putState ReadyILT hrow()
¥

Lﬁ 2 public putStateReadyToMove()
L|'| 3 public move(Movement:m)

. -
s

4 public checkStatesTC1_2() IT|

Figure 8: Test case without variability.

pubTic cTass TestSuite{

private FixtureGame f%;

private FixtureBoard fb;

public void testCase2(){
Object vl = new Movement(14,18);
fg.putstateTcl();
fb.putstateTCcl();
fg.move(vl);
this.chackstatesTCl_2Q);

}
public void checkstatesTCcl _2(){
assertTrue(fg.clients.size(D>0 &&
fg.pwithTurn!=null &&

fg.clients.contains(fg.pwithTurn)==true &%
fg.winner==null);
assertTrue(fd.pieces.size() >0);

public void testCase2(){..}
public void checkstatesTc2_2(0){..}

Figure 9: Source code of a Java executable test case.

Finally, the executable code of the test cases is
obtained from the transformation of the abstract
syntax tree instances (package abstractSyntax of the
metamodel), but now taking into account the
specific characteristics of the selected technology,
which can be either Java (Figure 9) or .NET.

3.3 A Short Overview of PralinTool

Figure 10 shows an aspect of PralinTool, the tool we
developed to support test case generation in SPL.
With the tool, it is possible to include capabilities for
describing use cases with a structured template,
which makes the almost automatic transformation of
scenarios to sequence diagrams easy. States can be
also defined for each class in the system, which are
also specified in a hierarchical tree. The sequence
diagram editor enables the annotation of the event
flows with variability labels. The generation of test
scenarios and test cases is supported by the
implementation of the previously described
algorithms.
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Figure 10: A view of PralinTool.

4 CONCLUSIONS AND FUTURE
WORK

This paper has presented an approach for automating
the generation of test cases in SPL. A set of
metamodels to design class and sequence diagrams
has been developed. These metamodels allow
variability and can include special notations to
generate oracles for the tests. The approach is a
complete framework that makes it possible to design
an SPL and to generate test models and executable
tests. The entire process takes the oracle problem
into account. To solve this, the developers can
define states and relate them to sequence diagram
messages . These relations (represented as special
notations in brackets) are used to generate oracles
for the tests.

However, the approach has some disadvantages,
because only sequence and class diagrams (similar
to UML) can be defined, which results in a loss of
expressiveness. But, due to the flexibility of the
metamodels and transformation algorithms, they can
easily be modified and extended, so they can be
adapted to new expressive necessities with no
difficulties.

The strict practices in SPL software development
make it possible to obtain new and additional
knowledge for software engineering. In particular,
the intensive use of models and tools can enrich
knowledge about MDA. In the case of testing, it is
relatively easy to experiment with algorithms and
ideas with self-metamodels, before passing them on
to a standardised approach, whose elements and
tools will likely be adopted by the industry soon. In
our opinion, the solution to this problem, which has
been the subject of research for many years, is now
closer to being resolved, especially today, when
significant effort is being devoted to the model-
driven discipline. In general, our future work will
continue to incorporate new techniques for model
transformation and test automation in SPL, since it is

easy to extrapolate the results obtained here to other
contexts.
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