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Abstract: Transactions in a service-oriented environment are very different to traditional transactions. The typical ACID
properties are not always appropriate when processing transactions where multiple service providers wish to
maintain autonomy and process all requests in a timely manner. Thus, reductions to the ACID properties, such
as semantic atomicity and tentative holds, are often used to provide transactions for Web Services. This paper
describes a simulator for modelling various Web Services transaction strategies. The simulator is deterministic,
allowing the specification of network conditions, provider resources, and client workflows to be kept constant
while altering the level of transaction support each provider offers. By modelling transaction flow rather than
service flow, this allows true comparison of transaction techniques in various scenarios. The simulator is
demonstrated using a validation experiment, and future use outlines how the simulator is being used to test a
system where providers offer a dynamic level of transaction support to clients.

1 INTRODUCTION

Service-Oriented Architectures (SOAs) are based on
service providers offering services to clients without
clients needing to understand the intricate details of
how a particular service is performed. Typically, the
client simply sends a request asking for a service to be
performed, and the provider either replies with a mes-
sage that the request was unsuccessful, or performs
the service and informs the client that the request has
completed successfully. Thus, the client only sees
whether the service has been performed, with no fur-
ther idea of how the provider completed the required
tasks. This is a powerful model that overcomes the
tight-coupling inherent in other distributed computing
paradigms (Henning, 2006).

One of the most common implementations of an
SOA is that of Web Services (Tiezzi, 2009). Us-
ing open standards (Christensen et al., 2001; Clement
et al., 2004; Gudgin et al., 2007), Web Services al-
low practically any party on the Internet to access and
utilise service-oriented interactions with Web Ser-
vices providers, regardless of any hardware, software,
or other environmental differences between the com-
municating hosts. Further, these standards can be
used as the basis of new standards to add support
for features not included in the original standards.
For example, Web Services Security (WS-Security)
(Lawrence and Kaler, 2006) provides message inte-

grity and confidentiality to Web Services.
While SOAs allow easy abstraction when a client

only wishes to perform one service, it is often the
case that a client will require a workflow that utilises
multiple services from different providers to achieve
the results that the client desires (Barker et al., 2009).
The various providers used by such a client may have
no other connection than their services being needed
for that client’s workflow. Thus, the client requires a
method to combine these disparate services in such a
way as to ensure correct processing of the workflow.
In particular, some assurances of the outcome of the
workflow when some providers are unable or unwill-
ing to provide the services required of the client are
needed. Transactions provide a possible way to offer
such assurances (Papazoglou, 2003).

In traditional systems, transactions comply with
the ACID properties (Atomicity, Consistency, Isola-
tion, and Durability) (Gray and Reuter, 1993). How-
ever, complete support for these properties is not al-
ways possible or desirable in the Web Services envi-
ronment (Little, 2003). Instead, slightly weaker trans-
actional properties are typically preferred in Web Ser-
vices transactions to ensure both provider autonomy
and a reasonable quality of service (Buckpesch and
Maur, 2006).

While various alternatives for Web Services trans-
actions have been defined (Lyon et al., 1998; Younas
et al., 2000; Ben Lakhal et al., 2001; Roberts and
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Srinivasan, 2001; Ceponkus et al., 2002; Milanovic
et al., 2003; Bunting et al., 2003; Lin and Liu, 2005;
Wang et al., 2007), there has been very little testing
to compare the possible types of transactions to see
how they perform and to determine strategies to op-
timise transaction use in the Web Services environ-
ment. This paper describes a simulator to allow var-
ious different levels of transaction support to be di-
rectly compared. The simulator models the flow of
transactions rather than the flow of services. A vali-
dation experiment is also presented to show how the
simulator performs.

The remainder of the paper is organised as fol-
lows. Section 2 describes in more detail the differ-
ences between traditional transactions and those in the
Web Services environment. Section 3 then describes
the Web Services transactions simulator. The valida-
tion experiment is then described in Section 4, and
results are given in Section 5. Finally, Section 6 con-
cludes the paper and indicates some future research
directions.

2 TRANSACTIONS IN THE WEB
SERVICES ENVIRONMENT

The traditional ACID transaction properties usually
require either pessimistic or optimistic concurrency
control to ensure that concurrent transactions do not
interfere with each other. When a pessimistic scheme
is used, resources can be locked for long periods of
time. When optimistic schemes are used, many trans-
actions may be required to redo work that they have
already completed if another transaction interferes
with them. Neither of these are greatly appropriate
in the Web Services environment (Little and Freund,
2003), where transactions can take days to complete.
Further, traditional systems usually have a centralised
controller that is in charge of all entities involved with
the transaction. Such a central controller does not ex-
ist in service-oriented environments, where each ser-
vice provider need not even know that other providers
exist, let alone have any control over them.

Very few providers would be willing to give up the
autonomy necessary to support traditional transaction
schemes. Each service provider is an individual entity
with complete control over its actions. While clever
techniques do allow full support for the ACID prop-
erties in the Web Services environment (Choi et al.,
2005; Alrifai et al., 2006), these still require service
providers to lock resources for, potentially, long peri-
ods of time. Further, the length of time required for
any such lock is highly variable because it depends
on the workflow of the client requesting the resource.

Thus, the ACID properties are often inappropriate for
Web Services transactions.

2.1 Reductions to ACID Properties

Various reductions to the strength of some of the
ACID properties have been suggested. These include
semantic atomicity (Garcia-Molina, 1983), tentative
holds (Roberts and Srinivasan, 2001), and resilience
(Younas et al., 2006). A brief explanation of these
reduced properties is given below.

2.1.1 Semantic Atomicity

Semantic atomicity replaces the traditional atomicity
property. Rather than requiring transactions to always
appear as either completed or not started, semantic
atomicity only requires that a transaction eventually
resolves into one of those two states. Semantic atom-
icity is based on the concept of compensating ac-
tions (Levy et al., 1991), which logically undo pre-
viously completed actions. Thus, when a provider is
requested to perform an action, the action is processed
immediately. If either the action fails, or the action
succeeds and is never cancelled, then the behaviour
is identical to the behaviour had atomicity been en-
forced. However, if the action succeeds and the trans-
action is later cancelled, then the compensating action
for the performed action is carried out. This compen-
sating action performs any steps required to make it
appear as if the original request had never occurred.
In between the time when the original action is per-
formed and the compensating action completes, other
transactions may see the action as having been per-
formed when logically they should not. Thus, seman-
tic atomicity necessarily removes isolation.

2.1.2 Tentative Holds

Another commonly used reduction for the traditional
ACID properties is the support for tentative holds
(Fauvet et al., 2005). Tentative holds can be thought
of as advice that the requested resources are currently
available, without any guarantee that the resources
will be available in the future. A common example
are items in an online shopping cart. Multiple users
can have the same item in their cart, but when one
checks out and purchases the item then all other holds
on the item are cancelled, and the users are informed
of this fact. When a client has tentative holds on all
the resources required for its workflow it is certain
that, at one point in time, the workflow could have
succeeded. In such a case, it is possible that some
of the resources will become unavailable before the
client is able to convert the tentative holds to confirm-
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ed holds, but the client has increased confidence that
the transaction can succeed.

2.1.3 Resilience

Resilience allows the transaction to try alternatives
rather than failing as soon as a service call is unsuc-
cessful. Resilience may repeatably request an oper-
ation until it succeeds, or may search for alternative
ways to achieve a goal. For example, when booking
a holiday, if no acceptable flight is available with a
particular airline, a resilient system may book a flight
with another airline instead.

2.2 Describing Reductions

It has been suggested that the ACID properties should
be replaced with the SACReD properties (Younas
et al., 2006) in the Web Services environment. Rather
than being an individual reduction in the strength of
ACID properties, the SACReD properties take advan-
tage of some of the unique features of SOAs to offer
an alternative. The C and D stand for consistency and
durability, as in the traditional ACID properties. SA
stands for semantic atomicity, and Re adds the con-
cept of resilience. However, the SACReD properties
cannot describe all of the possible reductions in trans-
actional strength. For example, the SACReD proper-
ties do not include tentative holds.

The reductions described in Section 2.1 are the
most commonly used reductions to the ACID prop-
erties used for Web Services transactions, but there
are others. Examining the possible reductions, most
can be described by using a combination of five basic
operations that can be requested by a client:

Enquire. Allows the client to query whether a re-
quest would currently be successful, without any
guarantee that a later request will succeed.

Prepare. Allows the client to query whether a re-
quest would currently be successful and, if so,
guarantees that any such request sent by the client
within a timeout period will succeed. On receipt
of a successful reply, the client has the option to
cancel the request, which relieves the provider of
its responsibility to guarantee the resources to the
client.

Commit. Performs the client’s request. This is the
only required operation for a service.

Compensate. Performs actions to undo a previously
committed request, provided that the call to com-
pensate is received within a timeout period.

Callback. Allows a provider to notify a client that
has previously received a response from the

provider in the case that the provider’s situation
has changed, changing the provider’s response.

Using these five operations, a traditional ACID
transaction can be described as a Prepare/Commit pat-
tern with an infinite timeout for the Prepare stage.
Similarly, semantic atomicity is provided by having
the provider offer a Commit/Compensate pattern, and
support for tentative holds is achieved through an En-
quire/Callback/Commit pattern.

The concept of resilience cannot be described us-
ing these operations. However, replacing concrete
services with abstract services (Schäfer et al., 2007)
can allow resilience in a way that is transparent to
both clients and service providers. Clients use the
abstract services rather than the services offered by
the concrete providers, and the abstract service acts
as a broker between all the providers offering alter-
native services. These abstract services can thus be
used in transactions described by the operations de-
fined above.

2.3 Combining Different Levels of
Transactional Support

While the different transaction reductions do greatly
help make transactions more useful in the Web Ser-
vices environment, the use of a single reduction for
every action in a transaction is not always adequate
(Greenfield et al., 2003). Combining different re-
ductions together is possible (Mikalsen et al., 2002;
Paul et al., 2010), and results in systems in which
both clients and providers are better able to have their
needs met. However, strategies on how best to sup-
port and combine different transactional properties
have not been thoroughly investigated. The simula-
tor described in this paper enables such strategies to
be tested much more easily than other current tech-
niques.

3 SIMULATING WEB SERVICES
TRANSACTIONS

Web Services transactions are complex (Paul et al.,
2008). There are many different interacting en-
tities, all working autonomously but cooperatively,
and therefore verification and testing of transaction
schemes is also very complex. This makes it diffi-
cult for theoretical analysis alone to yield practical
results. Simulation allows the practical characteris-
tics of the various transaction schemes to be compared
with much more control and at a much lower cost than
is possible with real-world testing.
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Analytical results for Web Services transactions are
important; in particular, it is vital to verify that the
various reductions to the ACID properties work cor-
rectly. Theoretical models have been developed to al-
low such verification (Fantechi et al., 2009; Mayer
et al., 2008; Lapadula et al., 2008), but these models
do not easily allow direct comparison between differ-
ent transaction techniques. The models can indicate
whether techniques are valid, but cannot always in-
dicate the application for which (and environment in
which) a technique is most beneficial. We believe an
alternate method is required to allow evaluation of the
real-world performance characteristics of transaction
schemes.

To test the performance of Web Services trans-
action techniques, one option is to set up real sys-
tems and conduct experiments utilising the different
schemes. A major problem with this approach is that
it requires large networks to be set up to perform
the tests. Setting up such an environment is costly,
and any results may be dependant on uncontrollable
variables that are not related to those being tested.
While it may be possible to set up a system in a lo-
cal environment, Web Services are often used to cross
boundaries between organisations, and across large
geographical areas. The results obtained through a
local experiment are only applicable to the environ-
ment in place at the time of the experiment. Similarly,
if a multi-organisational network were deployed for
transactional testing, any results would be dependant
on conditions of the network. For example, consider
a comparison of two different transaction techniques
where the first is tested at a time when there is a sig-
nificantly higher amount of unrelated network traffic
than when the second is tested. Any comparison may
unfairly discriminate against the first technique be-
cause of the higher network load.

Instead, simulation can be used as a low-cost ad-
dition to analysis, and will yield results that allow in-
tricate comparison of particular transaction strategies.
In a simulation, some or all of a system is abstracted
so that only the features important to the current in-
vestigation are tested (Kelton et al., 2004). To sim-
ulate Web Services transactions, details such as net-
work topology, the timing of various events, and even
the actual services being performed can be abstracted
to isolate the parameters of interest and allow more
efficient study.

Most available Web Services simulation environ-
ments replace a Web Service with a simple, usually
local, program that answers responses in a way appro-
priate to the service being simulated (Winston, 1999;
Kilgore, 2003). This allows the flow of services to
be tested. However, when examining Web Services

transactions, further abstraction can occur. Only the
transaction interaction patterns need be simulated; the
messages need not be exactly formatted as for a par-
ticular service. Section 3.1 describes a simulator that
models transaction flow rather than service flow.

3.1 The Web Services Transaction
Simulator

The Web Services simulator is composed of two dis-
tinct parts: the generator and the simulator. The gen-
erator allows the creation of descriptions of scenarios
that are used as input to the simulator. The simulator
uses the input description and other parameters (de-
scribed in Section 3.1.2) to determine the outcome
of the scenario. Thus, by keeping the scenario de-
scription constant and varying the simulator’s other
parameters, the effect of the changed parameters can
be studied.

This paper concentrates on the simulator only.
Section 3.1.1 describes the details of the scenario de-
scriptions that the simulator takes as input. Section
3.1.2 then describes the other parameters to the sim-
ulator. Details of the operation of the simulator are
given in Section 3.1.3, and Section 3.1.4 describes the
simulator’s output.

3.1.1 Describing Scenarios

A scenario description contains information about the
concrete participants in the scenario. The service
providers are specified; each provider allows clients
to book resources for a price. The number of re-
sources offered by a particular provider can be limited
or infinite, and booking a resource can either be free
of charge, or at a cost. The likelihood that a provider
will agree to perform the service when sufficient re-
sources are available is also part of the description.

To allow resilience, abstract providers can then be
specified in a service description. Abstract providers
contain a list of concrete providers. When an abstract
provider receives a service request from a client, it
forwards that request to one of the listed concrete
providers. If the request fails then, rather than noti-
fying the client of the failure, the abstract provider
requests the service from another of the concrete
providers in its list. The client only receives a noti-
fication of failure if all of the concrete providers that
the abstract provider contacts refuse to perform the
service.

After provider information, a scenario description
contains details of a set of clients and the workflows
they wish to complete. Each workflow consists of a
sequence of activities to be performed, and specifies
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whether successful completion of each activity is re-
quired, or if the workflow is successful when at least
one of the included activities succeeds. When all ac-
tivities are required, the workflow fails whenever one
or more included activity fails. Otherwise, the work-
flow only fails when all included activities complete
unsuccessfully. An activity can either be a workflow
or a service call. A service call consists of the name
of a provider, the name of the service to be requested
from that provider, and the number of resources to re-
quest from the service.

Finally, a scenario description contains timing in-
formation. When sending messages between clients
and providers, timing is very important. Messages
are not received immediately after they are sent, and
the length of time required for a message to travel
between two parties is dependant on many factors,
such as network bandwidth and congestion, and the
load of the systems involved in the communication.
Similarly, once a message is received, it takes time
for the message to be processed. The scenario de-
scription includes a set of time modellers that specify
how long messages take from when they are first sent
to when they begin being processed, as well as how
long the processing of the message takes. There is
a time modeller for each pair of communicating par-
ticipants, allowing simulation of the large range and
rapid changes possible in both network conditions and
the local conditions of the participants involved.

3.1.2 Simulator Parameters

As well as the scenario description, the simulator also
has parameters to control the level of transaction sup-
port offered by the service providers and the risk-
taking behaviour of the clients. Different transac-
tion strategies and techniques can thus be tested on
an identical scenario by varying the simulator’s other
parameters. The simulator is deterministic, so any
change in results can be attributed to the change in
parameter values.

The transaction support offered by concrete
providers is specified based on the five operations
defined in Section 3.1.1. Combined with the ab-
stract services in the scenario description, this allows
providers to utilise all of the reductions to the standard
ACID properties. The level of transaction support of-
fered by an abstract service depends on the levels of
support offered by the concrete providers that it con-
tacts. While the simulator does allow abstract services
to offer varying levels of transaction support based on
the client’s requirements and the levels of support of-
fered by the concrete providers, details of this are be-
yond the scope of this paper.

Another important set of parameters for the sim-

ulator is the risk-taking behaviour of the clients. A
client’s risk-taking behaviour determines how likely
it is that the client will perform an action that has the
possibility of leaving a client in a worse state than
when it started. For example, a client with high risk-
taking behaviour would simply ask all parallel opera-
tions to commit simultaneously, without regard to the
fact that some requests may succeed and others may
fail. Alternatively, when minimising risk, a client may
first only call services that offer a Prepare or Com-
pensate stage so that, if any action fails, the semantic
atomicity of the transaction can be maintained.

3.1.3 Simulator Operation

Web Services are based on a messaging model by
which a message is sent from one party to another
and is then processed by the receiver. On receipt of
the message, processing may alter the receiver’s state,
and may also send messages either in reply to the orig-
inal sender or on to a third party. The Web Services
transaction simulator follows this messaging model.
When a client or provider wishes to send a message,
it notifies the simulator. The simulator uses the time
modeller associated with the sender and receiver of
the message to determine when the message should be
delivered. All messages are added to a priority queue
and the simulator ensures that each message arrives at
its destination at the correct time.

When a provider has only finite resources to of-
fer, the simulator tracks the state of the provider’s
interaction with each client that sends it a request.
This allows correct transactional behaviour. For ex-
ample, when an ACID Prepare/Commit pattern is of-
fered, the provider must not offer any resources that
it has guaranteed to be available to one client to any
other client until the first client (that requested the re-
sources) has finished its transaction. If a tentative hold
Enquire/Callback/Commit pattern is used instead, the
provider can have multiple clients with tentative holds
on some of its resources, but if one of those clients
request to commit then the provider must send a noti-
fication to the other clients that their hold is no longer
valid.

Similarly, under the simulator, clients monitor
their interactions with providers. Each client tracks
the progress of the various activities in its workflow.
The risk-taking behaviour of the client is continually
examined to determine how the client should proceed.
This allows three possibilities, depending on whether
the risk of continuing is judged to be acceptable, un-
acceptable, or uncertain. If the risk is acceptable, the
client sends messages to begin its next action. If the
risk is unacceptable then the client cancels as much of
the processed workflow as is possible and the transac-
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tion fails. If the client is uncertain of the risk of con-
tinuing then it waits until its situation changes before
taking any further action.

3.1.4 Simulator Output

Simulation continues until all clients and providers
have finished processing. As the simulation is ex-
ecuting, a log of all messages is created. This in-
cludes the name of the sender and receiver of the mes-
sage, the time the message was sent, the time it is re-
ceived, and the content of the message. Combined
with the simulator parameters, the message log al-
lows various details to be extracted. This includes in-
formation such as the length of a client’s transaction,
whether the client’s workflow completed successfully,
and the cost to the client. From the provider’s point of
view, the number of resources utilised and the amount
clients paid to the provider can be measured. These
results provide the necessary details to allow compar-
ison of the various transaction strategies.

4 VALIDATION EXPERIMENT

This section describes a validation experiment to
demonstrate the simulator’s use. The experiment is
designed to show the shortcomings of the ACID prop-
erties in SOAs (such as thoat provided by Web Ser-
vices).

4.1 Simulation Parameters

This scenario tests a single provider offering 1000 re-
sources with four possible levels of transaction sup-
port. The four levels of transaction support tested
are a traditional ACID Prepare/Commit scheme, a tra-
ditional ACID Prepare/Commit scheme with a time-
out of 500 (so that any call to begin automatically
cancels if not told to commit within 500 time units
of when the first call was received), a tentative
hold Enquire/Callback/Commit scheme, and a seman-
tic atomicity Commit/Compensate scheme. Clients
in this scenario wish to book resources from the
provider, and complete some other actions. For the
purpose of this scenario, there are 1000 clients who
each wish to book between 1 and 10 (randomly cho-
sen) resources from the provider. The other actions
are modelled as another service call that takes be-
tween 1 and 50 time units to complete, and has a 20%
likelihood of failure.

4.2 Assumptions

The different transaction types can only be properly
tested when there is resource contention. When re-
sources are plentiful, each client can access the re-
sources they require without affecting other concur-
rent transactions. When resources are limited, but
timing of transactions is spread so that none are exe-
cuting concurrently, the first transactions will success-
fully utilise all of the available resources, and later
transactions will fail simply because the resources
they require are unavailable. Since the 1000 clients
are requesting well over the 1000 resources available
from the provider, it is sufficient to ensure that the
transactions are executing concurrently to create true
resource contention. To this end, each client’s trans-
action is set to start between time 0 and time 100; as
each transaction can take over 50 time units, this en-
sures that resource contention occurs.

As mentioned in Section 3, events do not occur
immediately when a message is sent; each message
takes measurable time to travel from the sender to the
recipient. For the purposes of this experiment, it is
assumed that each message takes between 1 and 5
time units from when it is sent to when its process-
ing commences. The processing of a message is also
not instantaneous; the provider in this scenario takes
between 1 and 10 time units to process a request.

5 RESULTS

The results are presented in Table 1. The first column
indicates the level of transaction support being tested.
The “provider utility” column gives the percentage of
resources originally offered by the provider that were
booked once all transactions had completed. The
“client successful” column indicates how many trans-
actions completed all operations successfully. This is
in contrast to “client unsuccessful without penalty”,
which shows how many transactions failed without
completing any of the required operations, and “client
unsuccessful with penalty”, which shows the num-
ber of transactions that end partially completed, with
either the resource booking completing successfully
but the rest of the transaction failing, or the resource
booking failing and rest of the transaction completing
successfully. The final column indicates the average
duration of the client transactions for each of the dif-
ferent levels of transaction support.

In each case, except where semantic atomicity is
offered, all of the provider’s resources are utilised.
As the number of client transactions is so large and
the number of resources offered by the provider so
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Table 1: Results for Validation Experiment.

Transaction
support

Provider
utility (%)

Client
successful

(%)

Client unsuccessful
without penalty (%)

Client unsuccessful
with penalty (%)

Average
duration of a
transaction

ACID 100 23.0 77.0 0.0 1316
ACID with time

out 100 24.5 72.8 2.7 1245

Tentative hold 100 15.6 57.5 26.9 228
Semantic
atomicity 86.2 16.7 83.3 0.0 134

small, this is hardly surprising; many more resources
would be required to satisfy all clients’ requests, so
there are many clients all wishing to access the same
resources. When the ACID schemes are used, the
resources quickly become locked by the first clients
requesting them, and all other clients must wait un-
til a final decision (or time out) occurs before dis-
covering whether they have access to the resources
they require. Thus, if ever a client decides against us-
ing the resources it had locked, there are numerous
other clients waiting to place a lock on the resources
freed by that client. Similarly, when the tentative
hold scheme is used, numerous clients have simulta-
neous holds on the resources. Since those holds are
only invalidated when resources are actually booked,
transactions only fail if the other actions in the trans-
action fail, or the requested resources are truly not
available. In contrast, when semantic atomicity is of-
fered, it is possible for a transaction to fail because
another client’s transaction has already booked those
resources. If the other transaction later compensates
that booking, however, then the first transaction may
have been able to succeed, but, since the resources
were not available when that transaction needed them,
the transaction has already failed.

Looking at the results of the clients’ transactions,
more transactions succeed when an ACID scheme is
used. This is because clients wait until they are guar-
anteed their request for resources will be successful
before attempting the remainder of the transaction.
This essentially reduces the number of concurrently
executing transactions to only those that have access
to the resources they require; all other executing trans-
actions wait to be given access to the resources before
they continue with the rest of their transaction. When
a timeout is included, it is possible that a client may
have the required resources locked and then attempt
to complete the rest of the transaction, but have the
timeout occur before they can complete their book-
ing. This results in a failure with penalty, as the other
actions may have completed and not be cancellable,
though the longer the timeout period the less likely

this would be. On the other hand, when tentative hold
is used, many clients are granted holds on the same re-
sources and then attempt to complete the rest of their
transaction. Thus it is much more likely that transac-
tions fail with a penalty, as they complete the rest of
their transaction, but their tentative hold expires be-
fore they can finalise their booking of the resources.
When semantic atomicity is used, as stated in the pre-
vious paragraph, many transactions fail at an earlier
time when they could have succeeded later, which re-
duces the number that complete successfully. How-
ever, as when an ACID scheme with no timeout is
used, transactions only ever fail without penalty.

Thus, traditional ACID techniques are much bet-
ter at ensuring successful transaction completion util-
ising as many resources as possible. However, con-
sidering the average duration of a transaction, it can
be seen why they are not preferred for transactions
in a service-oriented environment. Forcing clients to
wait until a guarantee that the requested resources will
be available means that clients spend a lot of their
transaction time waiting. When a traditional scheme
is used, the average duration of a transaction is over
1200 time units, compared to only 228 when tentative
hold is used, or 134 when semantic atomicity is of-
fered. In many cases, clients would not be willing to
wait that long, and would thus not use the provider
offering the traditional scheme. These results con-
firm the accepted knowledge that strict adherence to
the ACID properties is typically not suitable for SOA
transactions (Dalal et al., 2003).

6 CONCLUSIONS

The environment offered by SOAs is very different
to that typically utilised by traditional transactions.
The high autonomy of all service providers and the
potential for transactions to run for long periods of
time mean that the typical ACID properties are not al-
ways appropriate. Instead, different techniques, such
as tentative holds and semantic atomicity, which redu-
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ce the strength of some of the ACID properties, are
used to avoid some of the negative effects introduced
by strong transactional support. Thus, there is a bal-
ancing act between the level of transaction support
offered and the autonomy of the service providers in-
volved in a transaction.

The various reductions used for Web Services
transactions have different strengths and weaknesses.
However, it is difficult to compare the performance of
the various possible reductions, as real-world testing
requires large infrastructure and makes truly repeat-
able tests impossible. While analytical approaches
are important to show the viability and correctness of
the various transaction schemes, it is difficult to com-
pare all schemes using these methods, as they often
lack real-world performance measures. Simulation
can build on the theory to give an indication of prac-
tical results without the difficulties associated with
real-world testing. Various scenarios can repeatably
be processed by the simulator to compare changes to
the transaction scheme being used, and the practical
viability of the different schemes can be evaluated.

This paper describes a simulator that models the
flow of transactions to allow testing of different Web
Services transaction techniques. By abstracting over
details such as network setup, timing of messages,
and the actual operations being performed, the sim-
ulator is able to utilise different transaction standards
for various scenarios to determine how the transaction
techniques perform in the given circumstances. The
simulator is deterministic, allowing true comparison
of the transaction techniques when performing iden-
tical operations. This allows much easier evaluation
of the various transaction options, which can lead to
a more informed choice of transactional support for
real-world services.

To demonstrate the simulator’s functionality, a
simple scenario was modelled to show how ACID
transactions compare to transactions with either se-
mantic atomicity or tentative hold support. This
showed that ACID transactions can allow more suc-
cessful completions of transactions, but do this at the
cost of time. The average duration of ACID transac-
tions in this simulation was over five times longer than
the average time when the weaker transaction guaran-
tees were used. This shows that, in environments such
as that of Web Services, where long transaction times
should be avoided, ACID transactions are often not
the best choice.

In the future, the simulator will be used to
compare different transaction strategies for service
providers. This includes more extensive research
into the use of dynamic transaction support, where
the level of transaction support offered by a service

provider varies based on the provider’s current cir-
cumstances (Paul et al., 2010). This study will al-
low both clients and service providers to negotiate the
level of transaction support being offered to ensure
that all parties involved are satisfied with the results.
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