
A MIDDLEWARE BASED, POLICY DRIVEN ADAPTATION
FRAMEWORK TO SIMPLIFY SOFTWARE EVOLUTION

N. H. Awang, W. M. N. Wan Kadir
Faculty of Computer Science and Information System, Universiti Teknologi Malaysia, Johor Baharu, Malaysia

S. Shahibuddin
Faculty of Computer Science and Information System, Universiti Teknologi Malaysia, Johor Baharu, Malaysia

Keywords: Software evolution, Software adaptation, Middleware, Web service, Close-loop feedback system.

Abstract: Evolution is said to be one of the main causes of problems for software. Unplanned evolution exposes an
organization to high software maintenance cost. Due to these facts, we embark on this research to create a
framework for simplifying software evolution. This paper presents a framework, called Middleware-based
Policy-driven Adaptation Framework (MiPAF). MiPAF has the aim to control the negative effects of
software evolution using the concept of software adaptation, supporting both parameterized and
compositional adaptation.MiPAF is implemented using well established foundations, i.e. middleware and
web service. These two concepts are well accepted by software developer’s community; therefore the
chances of MiPAF to be accepted and used by this community are increased. The adaptation mechanism of
MiPAF is driven by XML based policy. To evaluate MiPAF, we implement the framework using C
language and run it on Windows platform. An existing unit trust system (UTS) is used for evaluation.

1 INTRODUCTION

Change is something that is inevitable in the
software lifecycle due to business requirements and
technology advancement (Godfrey and German,
2008, Roland, 2001). The term evolution in the
context of software refers to changes that happen to
software during its lifetime (Reiss, 2005). The
system must continue to evolve to correct defects,
add or remove functional behaviours, and adapt to
the operating environment.

As software evolves, its quality will degrade
(Lehman, 1996). Evolution is said to be one of the
main cause of problems related to software systems
such as high coupling and low cohesion (Reiss,
2005). Subramanyam indicated that high cost and
high risk are associated with unplanned software
evolution (Subramanyam, 2008). Evolution that
occurs to any software at a later lifecycle is costly
(Stephens and Rosenberg, 2003). With these facts
and challenges surrounding software evolution, it is
very important that a method or approach is
introduced to simplify software evolution with the

aim to control the negative effects of software
evolution.

Controlling negative effects of software
evolution requires a proper support for managing
changes in software development (Mens et al.,
2005b, Mens et al., 2005a). One of the promising
ways to control software evolution is via software
adaptation. Software adaptation refers to the ability
of software to readjust itself whenever changes
happen in order to meet its development purpose
(Mens et al., 2005b). The work in software
adaptation ranges from the development of generic
architectural framework to specific middleware for
specialized domains. In this paper, we propose a
framework to enable enterprise software to become
adaptable due to changes in non-functional
requirements. The framework, which is called
Middleware-based Policy-driven Adaptation
Framework (MiPAF), is developed using
middleware-based approach, policy driven and make
use of web services to enable the adaptability of
enterprise software.

The organization of this paper is as follows: in
Section 2, we describe some background and related

245Awang N., Wan Kadir W. and Shahibuddin S..
A MIDDLEWARE BASED, POLICY DRIVEN ADAPTATION FRAMEWORK TO SIMPLIFY SOFTWARE EVOLUTION.
DOI: 10.5220/0003467502450253
In Proceedings of the 6th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2011), pages 245-253
ISBN: 978-989-8425-57-7
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)

work of this research. In Section 3, MiPAF is
described in detail. Some experimentation result is
described in Section 4. We end this paper with
conclusions and intended future works.

2 RELATED WORK

Software evolution occurs due to changes subjected
to the software during its entire lifetime. A
mechanism to adapt to these changes must exist in
order to avoid the software from being defective or
unnecessarily complex (Mens et al., 2005b).
Software adaptation is one of the mechanisms in
simplifying software evolution. There are many
researchers that focus on software adaptation as a
mean to control software evolution such as in
(Garlan et al., 2004, Holger et al., 2007,
Lundesgaard et al., 2007, Oreizy, 1999, Zhang et al.,
2008).

In general, two main approaches have been
identified by researchers for the implementation of
adaptive or adaptable software, namely
compositional adaptation and parameterized
adaptation (McKinley et al., 2004). Compositional
adaptation refers to the ability of the software to
dynamically reconfigure itself at run-time to suit the
changing operating environment. Parameterized
adaptation or static adaptation involves modification
of program variables that directly affect the system
behaviour.

Researchers have proposed various ways in
enabling software adaptation. In researches such as
(Frei et al., 2003, Maciel da Costa et al., 2007)
Aspect Oriented Programming (AOP) is used in
providing dynamic adaptation capability. Reflection
technique is used to enable adaptation in (Ghoneim,
2007, Keeney, 2003). One of the weaknesses of
these two approaches is that they are supported by
limited programming languages such as AspectJ and
Meta Java. Furthermore, specific knowledge which
is not common among application developers is
required in order to use this approach. Therefore, we
argue that there is a need to implement adaptation
capability using mechanisms that are well accepted
by application developers to increase the chances of
the approach to be easily used.

Architecture-based approach to software
adaptation is used in (John and Richard, 2008,
Oreizy, 1999, Michel et al., 2001). Software
architecture is typically used at the design time and
it does not specify how the system is to be
constructed (Garlan et al., 2004). However, to enable
adaptation, the resulting architecture model will be

used during run-time. There is a gap between the
architecture modelling and the actual construction of
the adaptive software. This gap can cause loss of
knowledge on the software architecture since some
of the information about system properties and
constrain are not made explicit (Zhang et al., 2008).

Agent-oriented approach is used by a number
of researchers to achieve software adaptation.
Related works can be found in (Qureshi and Perini,
2008, Seungwok et al., 2007). To achieve useful
works or goals, a group of agents must cooperate
and communicate efficiently. Communication
between agents depends on asynchronous
messaging; therefore, there are higher possibility of
communication latency in agent-based system that
will affect performance and latency of the system
(Tarkoma and Laukkanen, 2003). Novice developer
will not get many benefits from agent-oriented
approach since it requires change of paradigm in
developing software (Paek and Kim, 1999).

MiPAF is developed to address the existing
limitations in the current approaches mentioned
above. The following sub-sections describe the
related approaches that influence and motivate our
current research.

2.1 Middleware-based Approach

We have identified four main approaches to software
adaptation namely Architecture-based, Component-
based, Agent-based and Middleware-based. A
comparative evaluation studies on these four
approaches has been carried out based on a set of
criteria (Awang et al., 2009) The result of the
comparative evaluation studies shows that
Middleware-based approach obtained the highest
score. Therefore, Middleware-based approach has
been chosen to implement MiPAF.

Several mechanisms that support adaptations are
used in the development of adaptive middleware.
Among the popular ones include computational
reflection, Aspect-Oriented Programming, and the
most recent mechanism is by using web service.
MiPAF makes use of web service to provide
supports for adaptation.

2.2 Web Service Approach

Web service is described by Dietel as a “mechanism
that facilitates computer application to communicate
over the Internet using a set of accepted standard”
(Deitel et al., 2003). Other definitions of web service
such as in (Meyer-Wegener, 2005) and (San-Yih et

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

246

al., 2007) also emphasize that the communication of
web services is using the Internet.

However, for the implementation of MiPAF, the
web service can also be used in a non-Internet
environment. Web Service is selected in
implementing MiPAF due to the following reasons:-

 Web service provides means to implement
compositional adaptation since it can be
invoked by a running application. The
dynamic adaptability of web services is
achieved through their loosely-coupled
components and run-time method or service
invocations. (Foggon et al., 2004).

 Web service is governed by well accepted
standards and widely used nowadays therefore
the probability of software developer to accept
MiPAF is higher.

 Web service offers a scalable implementation
since services can be hosted in different
machines.

2.3 Policy-based Approach

Policy based approach is selected to be used as a
method to drive adaptation. The policy comprises
some logics in the form of CONDITION and
ACTION; IF a CONDITION occurs, what
ACTIONS need to be executed. CONDITION is
closely related to the source of change, whether it is
known prior to run time or it is detected by the
Context Monitor when the application system is
running.

The content of the policies are the adaptation
decisions. The adaptation decision is captured from
the designer’s or developer’s knowledge of the
business rules. Application developers will specify
the adaptation logic in the policy; therefore, it
becomes apparent that the way the policy can be
written must be simple and easy to learn. Difficult
way of writing the adaptation policy will hinder the
usage of MiPAF. This fact becomes one of the
important requirements in the development of policy
language for MiPAF.

MiPAF only requires a simple but extendable
policy language to ensure its expansion in the future.
Existing generic policy based framework such as
PONDER is too complex to be used as policy
management for MiPAF. Therefore, MiPAF policy
language makes use of XML to specify
CONDITION and ACTION. XML is chosen due to
its popularity, open standard and there are many
existing tools available to parse the XML. MiPAF is
using Expat XML Parser to parse its policy
document.

3 THE PROPOSED APPROACH

Our research focuses on simplifying or controlling
the negative effect of software evolution using
software adaptation. We develop a framework called
MiPAF using foundations described in Section 2.

The following figure shows the composition
diagram of MiPAF.

Figure 1: MiPAF Composition Diagram.

Figure 1 shows that MiPAF composes of six main
components. The description of each component is
as follows:-

3.1 Context Monitor

Context Monitor refers to a program that monitors a
set of environment elements (such as devices’ state).
The Context Monitor will only monitor environment
elements that are meaningful to the software, i.e.
changes of states of these elements will require some
adaptation to be carried out to ensure the software
meet its development purposes. The requirements of
the Context Monitor are as follows:-

 The implementation must be independent
from the elements or components it monitors.
Failures occurred at the monitored
components should not affect the behaviour of
the Context Monitor

 The Context Monitor must be generic so that
only one Context Monitor is implemented to
monitor various context components

 The Context Monitor must inspect the state of
monitored components at a specific interval.
Software developer should be able to change
this inspection interval without the need to
stop the Context Monitor

 The Context Monitor must have a way to
communicate the monitoring status to the
Adaptation Manager in real time manner.
Furthermore, a trigger mechanism must be in

A MIDDLEWARE BASED, POLICY DRIVEN ADAPTATION FRAMEWORK TO SIMPLIFY SOFTWARE
EVOLUTION

247

place to ensure that any context change can be
quickly analysed and adapted.

These requirements form a basis for the
evaluation of existing Context Monitor or for
developing a new Context Monitor. For the
implementation of MiPAF in this research, an
existing Context Monitor called Health Checker will
be modified to suit the above requirements. Health
Checker is an application software developed by
HeiTech Padu to monitor the “health” of the devices
used by application system.

3.2 Service Infrastructure

MiPAF uses web services to implement dynamic
behaviour of the application that need to be adapted.
We are aware that one important source of change is
the change in user requirements that affect the
business functionalities of the application system.
However, changes in business functionalities are not
within the scope of this research. In this research
scope, dynamic behaviour that is implemented using
web services are related to the non-functional
requirements such as the use of specific devices.

The requirements for the Service Infrastructure
are as follows:-

 There must be a way to store services hosted
by the Service Infrastructure. This web service
storage will be referred to as Service
Repository.

 The Service Infrastructure must support
SOAP, therefore, as a prerequisite; the
infrastructure must be able to handle HTTP.

 The Service Infrastructure must contain an
XML Parser to parse SOAP messages

In a typical implementation of web services, the
role of Service Infrastructure is played by a web
server. However, for the implementation of MiPAF,
the use of web server will unnecessarily complicate
the implementation. With the above requirements,
the Service Infrastructure can be thought as a “mini”
web server with limited capabilities. Having said
that, it is stressed here that, the limited capabilities is
enough to serve our purpose.

3.3 Device Controller

Device Controller encapsulates the complexity of
device integration into an application system. The
problem with device integration is always the “non-
standard” way of accessing device. MiPAF provides
a method for an application system to systematically
accessing devices using web service. However,

some legacy devices such as IBM 4722 printer does
not provide a ready support for web service. To
overcome this problem, MiPAF provides Device
Controller as a “bridge” to access legacy devices.

The Device Controller can not be accessible
directly by application developer. The requirements
for a Device Controller are as follows:-

 Device Controller must be written for each
device since it is highly dependent on specific
device command. Therefore, the number of
Device Controller is equal to the number of
devices used by the application.

 There must be a way of communication
between Device Controller and Context
Monitor. The Context Monitor will get the
device states from each Device Controller.

 There must be a way of communication
between the Service Manager and the Device
Controller. This is due to the reason that
request for accessing devices will come via
the Service Manager.

3.4 Adaptation Manager

Adaptation Manager is the main intelligence of
MiPAF. The Adaptation Manager provides runtime
mechanism to enable the right adaptation to be
executed when changes occur. In order to adapt to
the changes, in general, the Adaptation Manager
must:-
1. Realize that changes have occurred.
2. When the changes occur, decide what to do, i.e.

what kind of adaptation need to be executed.
Change to the application system can be

classified into two main sources i.e. changes that are
introduced by users and changes due to the
environment factors (changes in environment
context). All changes that the application is
interested in must be able to be further categorized
to ensure the best adaptation to be carried out. It is
very important to define the changes extensively to
ensure all interested changes are catered by the
Adaptation Manager. Among the changes that are
catered by MiPAF are as follows:-

 NOT EXIST - where device is not exist at the
expected location or the device maybe
malfunction

 CHANGE LOCATION – where device is
changed from one workstation to another

 NEW DEVICE – where new brand of device
or new device is added to the system.

As stated earlier, two sources of changes are

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

248

considered i.e. changes introduced by the users and
changes in the environment context of the software.

Changes in the Environment Context
Changes in the environment context of the software
is detected by the Context Monitor and
communicated to the Adaptation Manager. The
processes that occur in order for the Adaptation
Manager know about the changes are as follows:-

 Context Monitor monitors the environment of
an application system continuously. This is
shown in the diagram by the arrows from
“Any Change” decision that point back to the
“Monitor Environment” process regardless of
the result of “Any Change” decision

 If relevant changes are detected, the Context
Monitor will update device status in a shared
location. This shared location can be
implemented using shared memory concept
and an event will be fired indicating that there
is a change that occurs

 The event will trigger Adaptation Manager
and the Adaptation Manager will execute
necessary adaptation.

Changes Introduced by Users
Changes introduced by users can be implemented
prior to the running of application. Referring to our
example, the example of such changes may include
implementing a new device to the application
system. In this case, Adaptation Manager will not be
invoked. However, MiPAF allows this type of
change to occur in a controlled manner. The
software developer needs to reflect the current
change by editing the policy.

3.5 Service Manager

Service Manager is the first point of contact between
the application system and MiPAF. Communication
between the Service Manager and the application
system is done either via socket based
communication or via SOAP. This implies the
requirements of the Service Manager that it must
support two communication interface; socket and
Simple Access Object Protocol (SOAP). The reason
for the two interfaces is that, for a local application
(where application and MiPAF runtime located on
the same workstation), socket based communication
is preferred due to its simplicity and better
performance. If MiPAF runtime is located on
different workstation, SOAP is more preferable.

Service Manager implements a listener that
continuously listens for service request. This

statement implies another requirement of the Service
Manager that it must be implemented using multi-
threaded technology. Upon receiving the request to
use a device, the Service Manager will locate a
specific web service that will fulfil the request. The
location of the service is kept in the service profile.
Service profile will make use of the Service
Infrastructure to invoke the actual web service that
handle the device. The web service will access the
device via a Device Controller.

3.6 Policy Repository

Policy Repository consists of all policy documents
that dictate how access to the device is to be done.
Each software or application that uses MiPAF will
have a default policy that describes the non-
functional requirements such as the type of devices
used. The policy also describes the adaptation logic
of an application system. The language used to
specify policies is XML.

3.7 Service Repository

Service Repository consists of all available web
services that can be used by the software. The
repository acts as a host for the web services.

3.8 MiPAF Policy Language

MiPAF uses the concept of policy in driving the
adaptation. Logic related to what action to be taken
when certain conditions occurs is described in the
policy of the application. MiPAF Policy Language is
developed based on XML. Users need to create the
policy file for application system that needs to be
adapted. This policy file will be amended whenever
required to ensure adaptability of the application. A
tool will be developed to assist software developer
in creating and editing policy files.

As mentioned in previous section, MiPAF will
not make use of full blown policy based language
since the requirements for MiPAF policy is not
complex.

4 EVALUATION OF THE
PROPOSED APPROACH

In order to evaluate the proposed approach, we apply
MiPAF to an existing system, UTS. UTS is a
counter-based application that manages unit trust
investment. This system is currently in used by a

A MIDDLEWARE BASED, POLICY DRIVEN ADAPTATION FRAMEWORK TO SIMPLIFY SOFTWARE
EVOLUTION

249

public fund manager in Malaysia. It is installed in all
branches of the said fund manager all across
Malaysia.

Using MiPAF requires segregation between non-
functional requirements that requires adaptation and
functional requirements of the system. For UTS, the
non-functional requirements that require adaptive
capability is related to the use of devices. UTS is a
client/server based system that uses three type of
devices as described below:-

 IBM 4722 Printer
This is a legacy printer that is used to print
passbook. This printer can not be shared using
default sharing mechanism provided by the
operating system. In the existing
implementation of UTS, this printer is shared
between two workstations to save cost.

 MyKad Reader
MyKad Reader is used to read Malaysian
Citizen Identity Card or better known as
MyKad. The device is also sharable between
two adjacent workstations.

 Thumbprint Scanner
This device is used to scan the thumbprint
images of customers. This device is not
sharable between workstations.

4.1 Scenario for Evaluation

For the evaluation, we create the following scenario
of adaptation requirements:-

A. Introduction of a new device. Initially, the
only device required by UTS is IBM 4722
passbook printer. Then we add another
device, Sekure 2 MyKad Reader.

B. Device failure or device not exist
C. Location of the sharable device is changed –

for example, initially, MyKad Reader is
attached to Workstation A but it then changed
to Workstation B.

From the above requirements, we segregate the
changes into two types; changes that are known
before the software is loaded and changes that
happen while the software is running. A is classified
as change of the first type while B and C are of the
second type.

4.2 MiPAF Adaptation Mechanism

Adaptation for changes in MiPAF is parameterized
into the system in the forms of policy. For the first
type of change, MiPAF will read the default policy
and choose appropriate services. For the second type

of change, Context Monitor will detect the changes
and choose the right policy from Policy Repository.

Part default policy for UTS is as follows:-
<app_name = “UTS” ver = “1.0 >
<print>
<dev-printer = “ibm4722” svc_name =
“svc_ibm4722” buffer-in = “1470”
buffer_out = “1471”host = “Y” port=
“1”>
<prt_fail = “Y” error = “error.log”
retry = “3” host = “172.19.37.102”>
</dev-printer>
</print>
</app_name>

In this implementation, when no adaptation

required, UTS issues “print” command to indicate
the need to invoke printing functions. To
communicate with MiPAF, two options are
supported; i.e. via socket or SOAP. UTS used
socket-based communication since it resides on the
same PC with MiPAF. Upon receiving the request,
the Service Manager will load the right policy from
Policy Repository. The Service Manager will parse
the policy file and get the service name and related
information under the tag <dev_printer>. The
Service Manager will search the service repository
to know the location of the service and invoke the
service using the Service Infrastructure. The services
will use the Device Controller to actually send data
to the passbook printer. Data is passed among
different components in MiPAF using shared
memory.

For Scenario A, when MyKad Reader is added to
the system, the policy file needs to be edited. New
entry will be added to the policy file:-

<MyKad>
<dev-mykad= “sekure” svc_name =
“read” buffer-in =”1472” buffer_out
= “1474” host = “Y” port = “usb”>
<mykad_fail = “Y” error =
“error.log” retry = “3” host =
“172.19.37.102”> port=”usb”</dev-
mykad>
</Mykad>

Scenario B is tested by removing MyKad reader
from the workstation. Device Controller of each
device will update the health of each device in the
shared memory periodically. Context Mo nitor on
the other hand, will scan the devices’ statuses in the
shared memory and alert the Adaptation Manager if
any errors occur. The Adaptation Manager will scan
through the policy and decides on what to dobased
on this statement:-

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

250

<mykad_fail = “Y” error =
“error.log” retry = “3” host =
“172.19.37.102”> port=”usb”
comm.=”socket”</dev-mykad>

The policy stated that if the defice fail, error is

logged in error.log file, Device Controller have to
retry communicating to the device for three times. If
the failure persists, Adaptation Manager will call
Device Controller located at 172.19.37.102 using
socket-based communication and port used is USB.
This flow also applies to scenario C.

4.3 Results of Evaluation

We have listed six evaluation criteria to compare
approaches to adaptation in our previous paper
(Awang et al., 2009). The same criteria are used to
evaluate MiPAF. The results of the evaluation are as
follows:-

 Scalability: MiPAF is scalable since it is
designed to work in a distributed environment.
In this implementation, MiPAF is installed on
two workstations, managing separate devices.
The Service Manager supports multi-threaded
technology, therefore, as applications grow, or
as more applications are using MiPAF on
single PC, the number of threads will increase
thus making MiPAF scalable as needed.

 Context Awareness: Context awareness refers
to the ability of MiPAF to detect changes in the
operating environment. MiPAF achieve context
awareness through the implementation of
Context Monitor. Context Monitor periodically
scan for the statuses of devices attached to the
workstation. Not all changes to the context are
relevant to applications, therefore, in MiPAF,
we have defined the type of changes that are of
interest to the application.

 Performance: We have not performed any
quantitative observation on the performance of
MiPAF. However in MiPAF, the concerns for
performance are address earlier, during the
design time. As a result to that, MiPAF
supports two ways of communication; socket-
based and SOAP-based communication. The
intention of using socket-based communication
is to increase performance.

 Usability: This attribute refers to how easy the
approach 0can be used by developers. We
designed MiPAF with this requirement in mind
to ensure MiPAF is well accepted by
developer’s community. Therefore, we used

well accepted approach such as XML based
policy language and web services.

 Heterogeneity: MiPAF can be developed using
any programming languages and executed in
any platforms. Our implementation is using C
and the platform used is Windows. Any
developers can use MiPAF specification and
develop it using other language such as Java.
Another aspect of heterogeneity is the ability of
MiPAF to entertain requests from different
type of applications since the supported
communications are based on open standard.

 Dynamic Evolveability: MiPAF enables a
controlled, dynamic evolveability of an
application by segregating codes that perform
business function and codes that enable the
execution of non-functional requirements. As
changes to non-functional requirements occur,
business functions are not affected.

From our initial evaluation results, MiPAF has
shown promising opportunities in simplifying
software evolution.

5 CONCLUSIONS AND FUTURE
WORK

This research mainly consists of the development of
MiPAF, its policy language that drive the adaptation
and the process of using the framework to simplify
software evolution in an enterprise system. Further,
this research provides tools to assist software
developer in using MiPAF. MiPAF is a framework
that can be implemented using any programming
language. In our experimentation, we implement the
framework using C programming language and the
target platform is Windows.

Due to the advantages offered by middleware
approach, particularly the benefits of segregating
codes that drive adaptation and codes that implement
the business rules, MiPAF is implemented using this
approach. The benefit of implementation includes
scalability, heterogeneity, better performance and
evolvability of the application systems to be
adapted.

The compositional or dynamic adaptation is
implemented using web services. This approach is
selected due to several reasons such as it is an open
standard and widely accepted in the IT industry. As
a result, it will increase the chance of practitioners to
embrace MiPAF.

MiPAF make use the concept of policy to drive
adaptation. This approach allows user to segregate

A MIDDLEWARE BASED, POLICY DRIVEN ADAPTATION FRAMEWORK TO SIMPLIFY SOFTWARE
EVOLUTION

251

adaptation requirements into separate components.
Adaptation logic can be specified outside the
Adaptation Manager thus enable loose coupling
between the components in the framework. The use
of policy enables user to easily specify the
adaptation logic in an XML format. Since XML is
well accepted by the IT community, the
representation of policy using XML is thought to be
a good choice since it will increase the software
developer acceptance of the framework.

We are now in the midst of implementing a more
elaborated implementation of the framework. In the
above experimentation, we use socket-based
communication. In future, we plan to experiment
with SOAP-based communication. Further, we plan
to do more evaluation testing on other systems such
as banking front-end system. To ensure that the
framework can be used by both client/server and
web based application, we plan to test the
framework implementation with both architectures.

Currently we have not developed any tools to
ease developers in using MiPAF. In the near future,
we plan to develop a tool to specify adaptation
policy, without the need for them to create raw XML
file. The tool will also verify the validity of the
policy created.

REFERENCES

Awang, N. H., Wan Kadir, W. M. N. & Shahibuddin, S.
(2009) Comparative Evaluation Of The State-Of-The
Art On Approaches To Software Adaptation. Fourth
International Conference On Software Engineering
Advances. Porto.

Deitel, H. M., Deitel, P. J., Waldt, B. D. & Trees, L. K.
(2003) Web Services A Technical Introduction,
Prentice Hall.

Foggon, D., Maharry, D., Ullman, C. & Watson, K. (2004)
Programming Microsoft .Net Xml Web Services.
Microsoft Press.

Frei, A., Popovici, A. & Alonso, G. (2003) Event Based
Systems As Adaptive Middleware Platforms.
Workshop Of The 17th Europeean Conference For
Object-Oriented Programming, Darmstadt, Germany.

Garlan, D., Cheng, W. C., Huang, A. C., Schmerl, B. &
Steenkiste, P. (2004) Rainbow: Architecture-Based
Self-Adaptation With Reusable Infrastructure. Ieee
Computer Society, 46 - 54.

Ghoneim, A. M. A. (2007) Reflective And Adaptive
Middleware For Software Evolution Of Information
Systems. Fakultät Für Informatik Germany, Otto-
Von-Guericke-Universität Magdeburg.

Godfrey, M. W. & German, D. M. (2008) The Past,
Present, And Future Of Software Evolution. Frontiers
Of Software Maintenance, 2008. Fosm 2008.

Holger, K., Dirk, N. & Andreas, R. (2007) A Component
Model For Dynamic Adaptive Systems. International
Workshop On Engineering Of Software Services For
Pervasive Environments: In Conjunction With The 6th
Esec/Fse Joint Meeting. Dubrovnik, Croatia, Acm.

John, C. G. & Richard, N. T. (2008) Policy-Based Self-
Adaptive Architectures: A Feasibility Study In The
Robotics Domain. Proceedings Of The 2008
International Workshop On Software Engineering For
Adaptive And Self-Managing System. Leipzig,
Germany, Acm.

Keeney, J., Cahill, V. (2003) Chisel: A Policy-Driven,
Context-Aware, Dynamic Adaptation Framework. Ieee
4th International Workshop, 3-14.

Lehman, M. M. (1996) Laws Of Software Evolution
Revisited. Proceedings Of The 5th European
Workshop On Software Process Technology. Springer-
Verlag.

Lundesgaard, S. A., Arnor, S., Oldevik, J., France, R.,
Aagedal, J. O. & Eliassen, F. (2007) Constriction And
Execution Of Adaptable Applications Using An
Aspect-Oriented And Model Driven Approach.
Lecture Notes In Computer Science. Springer
Berlin/Heidelberg.

Maciel Da Costa, C., Da Silva Strzykalski, M. & Bernard,
G. (2007) An Aspect Oriented Middleware
Architecture For Adaptive Mobile Computing
Applications. Computer Software And Applications
Conference, 2007. Compsac 2007. 31st Annual
International.

Mckinley, P. K., Sadjadi, S. M., Kasten, E. P. & Cheng, B.
H. C. (2004) Composing Adaptive Software.
Computer, 37, 56-64.

Mens, T., Wermelinger, M., Ducasse, S., Demeyer, S.,
Hirschfeld, R. & Jayazeri, M. (2005a) Challenges In
Software Evolution. Principles Of Software Evolution,
Eighth International Workshop On.

Mens, T., Wermelinger, M., Ducasse, S., Demeyer, S.,
Hirschfeld, R. & Jazayeri, M. (2005b) Challenges In
Software Evolution. Principles Of Software Evolution,
Eighth International Workshop On.

Meyer-Wegener, K. (2005) Thirty Years Of Server
Technology - From Transaction Processing To Web
Services. Lecture Notes In Computer Science.
Springer Berlin / Heidelberg.

Michel, W., Antonia, L. & Jose, L., Fiadeiro (2001) A
Graph Based Architectural (Re)Configuration
Language. Proceedings Of The 8th European Software
Engineering Conference Held Jointly With 9th Acm
Sigsoft International Symposium On Foundations Of
Software Engineering. Vienna, Austria, Acm.

Oreizy, P., Medvidovic, N., Taylor, R.N., Gorlick, M.M.,
Heimbigner, D., Johnson, G., Quilici, A., Rosenblum,
D.S., Wolf, A.L. (1999) An Architecture Based
Approach To Self-Adaptive Software. Ieee Intelligent
System, 54 - 62.

Paek, K. & Kim, T. (1999) Aom: An Agent Oriented
Middleware Based On Java, Springer
Berlin/Heidelberg.

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

252

Qureshi, N. A. & Perini, A. (2008) An Agent-Based
Middleware For Adaptive Systems. Quality Software,
2008. Qsic '08. The Eighth International Conference
On.

Reiss, S. P. (2005) Evolving Evolution [Software
Evolution]. Principles Of Software Evolution, Eighth
International Workshop On.

Roland, T. M. (2001) Software Evolution: Let's Sharpen
The Terminology Before Sharpening (Out-Of-Scope)
Tools. Proceedings Of The 4th International
Workshop On Principles Of Software Evolution.
Vienna, Austria, Acm.

San-Yih, H., Ee-Peng, L., Chien-Hsiang, L. & Cheng-
Hung, C. (2007) On Composing A Reliable Composite
Web Service: A Study Of Dynamic Web Service
Selection. Web Services, 2007, Icws 2007. Ieee
International Conference On.

Seungwok, H., Sung Keun, S. & Hee Yong, Y. (2007)
Dynamic Software Adaptation With Dependence
Analysis For Multi-Agent Platform. Computational
Science And Its Applications, 2007. Iccsa 2007.
International Conference On.

Stephens, M. & Rosenberg, D. (2003) Extreme
Programming Refactored: The Case Against Xp.
Apress.

Subramanyam, R. (2008) Position Statement: How Well
Technology Supports Software Evolution. Computer
Software And Applications, 2008. Compsac '08. 32nd
Annual Ieee International.

Tarkoma, S. & Laukkanen, M. (2003) Adaptive Agent-
Based Service Composition For Wireless Terminals,
Springer Berlin/Heidelberg.

Zhang, H., Ben, K. & Zhang, Z. (2008) A Reflective
Architecture-Aware Framework To Support Software
Evolution. Young Computer Scientists,2008. Icycs
2008. The 9th International Conference For.

A MIDDLEWARE BASED, POLICY DRIVEN ADAPTATION FRAMEWORK TO SIMPLIFY SOFTWARE
EVOLUTION

253

