
AN EVALUATION FRAMEWORK FOR VALIDATING ASPECTUAL
PERVASIVE SOFTWARE SERVICES

Dhaminda B. Abeywickrama and Sita Ramakrishnan
Faculty of Information Technology, Monash University, Clayton Campus, Melbourne, Australia

Keywords: Pervasive services, Model-driven development, Model checking, Aspect-oriented modeling.

Abstract: Context-dependent information has several qualities that make pervasive services challenging compared to
conventional Web services. Therefore, sound software engineering practices are needed during their devel-
opment, execution and validation. This paper establishes a framework to evaluate pervasive service-oriented
software architectures. The method of evaluation is based on key features comparison. The framework con-
sists of two views: vertical and horizontal. The vertical evaluation compares several research tools to the
Aspectual FSP Generation tool developed in this research. The tools are compared across the platform-
independent and platform-specific levels of the model-driven architecture. The horizontal evaluation view is
designed to validate several desired key features that are mainly required at the platform-specific level of the
service specification. These criteria mainly cover two aspects: formal methods and tools employed, and the
context and adaptation dimensions of the customization approach used in the services. The vertical evaluation
has demonstrated that the Aspectual FSP Generation tool has unique features in context-dependent be-
havioral modeling and code generation. The horizontal evaluation has shown that the formal methods and tools
employed, and the customization approach used in the services are effective towards the overall objectives of
this research. The approach is explored using a real-world case study in intelligent transport.

1 INTRODUCTION

A pervasive service is a special type of service that
adapts its behavior or the content it processes to the
context of one or several parameters of a target entity
in a transparent way (e.g. restaurant finder services,
attractions and activities recommendation services)
(Hegering et al., 2003). With the proliferation of ubiq-
uitous computing devices and Internet, pervasive ser-
vices continue to evolve from simple proof of concept
implementations created in the laboratory to large and
complex real-world services developed in industry.
Context-awareness capabilities in service interfaces
introduce additional challenges to the software engi-
neer. Context information is characterized by sev-
eral qualities that make pervasive services challeng-
ing compared to conventional Web services, such as a
highly dynamic nature, real-time requirements, qual-
ity of context information and automation. The addi-
tional complexities associated with these special ser-
vices necessitate the use of solid software engineer-
ing methodologies during their development, execu-
tion and validation. Most state-of-the-art approaches

to pervasive services relate to the detailed design or
implementation stages (Mandato et al., 2002; Moste-
faoui and Hirsbrunner, 2004) of the software life-
cycle, such as pervasive Web services. Little work
focuses on the early phase of design such as architec-
ture design, which is of a higher level and abstract in
design.

This systematic, architecture-centric approach
(Abeywickrama, 2010; Abeywickrama and Ramakr-
ishnan, 2010; Abeywickrama and Ramakrishnan,
2008b; Abeywickrama and Ramakrishnan, 2008a) for
modeling and verifying pervasive services integrates
the benefits of sound software engineering principles
such as model-driven architecture, aspect-oriented
modeling, and formal model checking. It adopts
model-driven development to represent complex
crosscutting context-dependent functionality in ser-
vice interfaces in a modular manner, and to automate
the generation of state machine-based adaptive behav-
ior. The crosscutting context-dependent information
of the interacting pervasive services is modeled as
aspect-oriented models in UML. Using model trans-
formations (Aspectual FSP Generation tool), we

80 B. Abeywickrama D. and Ramakrishnan S..
AN EVALUATION FRAMEWORK FOR VALIDATING ASPECTUAL PERVASIVE SOFTWARE SERVICES.
DOI: 10.5220/0003461200800091
In Proceedings of the 6th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2011), pages 80-91
ISBN: 978-989-8425-57-7
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)



ensure the correct separation of concerns of the cross-
cutting context-dependent functionality at both semi-
informal UML modeling and formal behavioral spec-
ification levels. The generated context-dependent
adaptive behavior and the core service behavior for
the pervasive services are rigorously verified using
formal model checking against specified system prop-
erties.

This paper establishes a framework to evalu-
ate pervasive service-oriented software architectures.
The method of evaluation is based on key fea-
tures comparison. The evaluation framework con-
sists of two dimensions or views: vertical and hor-
izontal. The vertical evaluation compares several
research tools to the Aspectual FSP Generation
tool developed in the current research. The tools
are compared across the platform-independent model
(PIM) and platform-specific model (PSM) levels of
the model-driven architecture (MDA). The horizontal
evaluation view is designed to validate several desired
key features that are mainly required at the PSM level
of the aspectual pervasive software services specifi-
cation. These criteria mainly cover two aspects: for-
mal methods and tools employed, and the context and
adaptation dimensions of the customization approach
used in the services. The vertical evaluation has
demonstrated that the Aspectual FSP Generation
tool has unique features in context-dependent behav-
ioral modeling and code generation. The horizontal
evaluation of the approach has shown that the formal
methods and tools employed, and the customization
approach used in the services are indeed effective to-
wards the overall objectives of this research. The ap-
proach is explored using a real-world case study in
intelligent tagging for transport.

The rest of the paper is organized as follows. Sec-
tion 2 provides background information on this study.
An overview of the evaluation framework established
here is provided in Section 3. In Section 4 vertical
evaluation of the research is discussed while Section
5 addresses the horizontal evaluation. Section 6 con-
cludes this paper with a brief analysis of the evalua-
tion results.

2 PRELIMINARIES

This section provides background information on (1)
the overall pervasive services engineering process, (2)
the case study, and (3) the context-dependent adaptive
behavior generation process applied in the research.

Transport 
Case Study Use Cases MSCs

Component Configuration

Custom UML 
Profile with 

c-FSP Aspects

Behavioral 
Model Synthesis:

MSCs -> FSP

Model 
Transformations:

c-FSP Aspects -> FSP

LTSA
Model 

Checking

1. Service Specification

2. Architecture Definition

3. Architecture Modularization

Figure 1: Pervasive services engineering.

2.1 Pervasive Services Engineering

The overall pervasive service-oriented development
process is divided into three stages (Figure 1) (Abey-
wickrama and Ramakrishnan, 2008b; Abeywickrama
and Ramakrishnan, 2008a). First, using the case study
we extract use cases and define a service specification
for the system under consideration using message se-
quence charts. Second, the architecture for the sys-
tem is defined using a component configuration and
an architecture model in Finite State Processes (FSP)
using the LTSA-MSC tool. Third, the architecture
model synthesized from the previous step is modular-
ized with aspect-oriented models in UML called the
contextual-FSP aspects (c-FSP aspects), and
automatically transformed into FSP before applying
model checking using the Labeled Transition System
Analyzer tool (LTSA).

2.2 Case Study

The research approach is explored using a real-world
case study in intelligent tagging for transport known
as the ParcelCall project. ParcelCall (Davie, 2002) is
a European Union project within the Information So-
ciety Technologies program. The case study describes
a scalable, real-time, intelligent, end-to-end tracking
and tracing system using radio frequency identifica-
tion (RFID), sensor networks, and services for trans-
port and logistics. This case study is particularly ap-
pealing to the current research as it provides several
scenarios for representing software services that in-
teroperate in a pervasive, mobile and distributed envi-
ronment. A significant subset of the ParcelCall case
study is exception handling that needs to be enforced
when a transport item’s context information violates
acceptable threshold values. The reference scenario
used here describes an awareness monitoring and
notification pervasive service, which alerts
with regards to any exceptional situations that may
arise on transport items, primarily to the vehicle driver
of the transport unit. The threshold values for en-

AN EVALUATION FRAMEWORK FOR VALIDATING ASPECTUAL PERVASIVE SOFTWARE SERVICES

81



vironment status (e.g., temperature, pressure, accel-
eration) of transport items and route (location) for
the vehicle are set by the carrier organization in ad-
vance. The service alerts if items’ environment sta-
tus exceeds acceptable levels or if an item is lost or
stolen during transport. The primary context parame-
ters modeled in the study include item identity, loca-
tion, temperature, pressure and acceleration.

2.3 Adaptive Behavior Generation

The notion of context used in this research is based
on a definition provided by ()analyti for context in
information modeling. They describe context as a
set of objects, each of which is associated with a
set of names and another context called its reference.
Furthermore, they enhance the definition for context
by stating that each object of a context is either a
simple object or a link object (attribute, instance-of,
ISA) and each object can be related to other objects
through attribute, instance-of or ISA links. (Analyti
et al., 2007) use traditional object-oriented abstraction
mechanisms of attribution, classification, generaliza-
tion and encapsulation to structure the contents of a
context.

The model transformation tool created in our
study is called the Aspectual FSP Generation
tool. The transformations have been applied to
the reference scenario in intelligent transport. We
use model transformations to automate the applica-
tion of design patterns and generate infrastructure
code for the c-FSP aspects using FSP semantics.
The current study explores the strengths of both
semi-informal UML meta-level extensions and for-
mal finite state machines for representing the context-
dependent behavior of software services, and model
transformation techniques are applied as a bridge to
enforce correct separation of concerns between these
two design abstractions. The main benefits of this ap-
proach are: improving the quality and productivity of
service development; easing system maintenance and
evolution; and increasing the portability of the service
design for the pervasive services engineer.

This approach focuses on the application of
model-driven development for engineering pervasive
services at finite state machine level. An aspect
in FSP can be identified as an independent finite
state machine that executes concurrently and syn-
chronizes with its base state machine. In general,
an aspect in FSP needs to contain synchronization
events (transitions) to coordinate with its base state
machine and other aspects. Also, each aspect type
(e.g. context, trigger, and recovery) contains
its unique constructs which can be generated au-

Software Services
(MSCs)

FSP Synthesis 
using LTSA-MSC 

Core service FSP

c-FSP-UML Profile

c-FSP Aspects
(UML Models)

Model to Text 
(UML to FSP)

Aspectual FSP

Model to Model
(UML to EMF)

EMF Intermediate Model

Model to Text 
(XML to FSP)

Model Verification
(LTSA Model Checking)

Flow 1

Flow 2

Flow 3
Flow 3

Flow 2

Flow 2

Flow 2

Flow 1

Figure 2: Adaptive behavior generation process (source:
(Abeywickrama and Ramakrishnan, 2010)).

tomatically using model transformation techniques.
For example, a trigger aspect requires constructs
to alert and send notifications while a recovery
aspect needs constructs to recover from exception-
handling situations. On the other hand, a context
aspect has attribution, instance-of, ISA, and refer-
ence constructs from the notion of context applied
here. In Figure 2, the models and activities of the
development process are represented as ellipses and
square boxes respectively. The development process
is structured into three main flows of activities. Flow
1 and Flow 2 extensively apply model transforma-
tions where Flow 1 uses a model-to-text JET trans-
formation and Flow 2 applies an effective pipeline
of model-to-model and model-to-text JET transfor-
mations. Both Flow 1 and Flow 2 originate from
the c-FSP-UML profile. Flow 3 represents activ-
ities involved for rigorously verifying the context-
dependent adaptive behavior and the core service be-
havior of the pervasive software services using formal
model checking.

3 EVALUATION FRAMEWORK

This evaluation framework (Abeywickrama, 2010)
mainly validates the main contributions or deliver-
ables of this study against several key evaluation cri-
teria. The main tools used in this study include the
Aspectual FSP Generation tool created in this
research, the LTSA model checker and the LTSA-
MSC tool. First, this research has developed a custom
tool (Aspectual FSP Generation tool) applying
an effective pipeline of model-to-model and model-
to-text JET transformations using the IBM Rational
Software Architect to automate the application of de-

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

82



PIM

PSM

Aspectual FSP
Generation tool

Other aspects-based
tools

Key feature analysis of
context and adaptation, formal methods used

Key feature analysis of 
context-dependent behavioral modeling, explicit join point model of AOM, 
weaving performed, and context-dependent behavioural code generation

Figure 3: Evaluation framework: vertical, horizontal views.

sign patterns and generate infrastructure code for the
aspects. Second, this research has performed rigor-
ous specification and verification of concurrent mod-
els of pervasive software services and their composi-
tions using the LTSA model checker to assure the cor-
rectness and quality of the pervasive services design.
Third, in this study the interaction patterns defining
the pervasive software services of the specification
have been modeled using the LTSA-MSC tool, from
which a core service model was extracted. The eval-
uation framework established in this paper intends to
validate the aforementioned three main deliverables
against key evaluation criteria.

The method of evaluation used here is based on
key features comparison. The evaluation framework
developed here does not produce additions to the re-
search methodology but instead validates the methods
and tools used in the research as a whole. The eval-
uation framework consists of two views: vertical and
horizontal. The prototype or proof of concept nature
of the methods and tools employed in this research,
however, makes it challenging to compare their bene-
fits with the more advanced industry-based tools. Fig-
ure 3 illustrates the two views of the overall evalua-
tion approach.

4 VERTICAL EVALUATION

This section discusses the vertical view of the evalua-
tion framework (Abeywickrama, 2010). In the verti-
cal view of the evaluation framework, several tools on
aspect-oriented modeling (AOM) are compared with
the Aspectual FSP Generation tool as a whole
at the PIM and PSM levels of model-driven devel-
opment. As the Aspectual FSP Generation tool

covers several modeling layers of the MDA stack such
as PIM and PSM levels, the evaluation process is es-
sentially vertical in nature. The vertical evaluation es-
sentially provides an analysis of several features of
the Aspectual FSP Generation tool against sev-
eral aspect-oriented modeling-based tools. This eval-
uation is based on the following criteria: context-
dependent behavioral modeling at the PIM level, ex-
plicit joinpoint model of AOM at the PIM level, weav-
ing performed at the PIM level or PSM level, and
context-dependent behavioral code generation from
the PIM level to PSM level. The results of this evalu-
ation are presented in Tables 1- 4.

4.1 Aspectual FSP Generation Tool

The Aspectual FSP Generation tool created in
this research (Abeywickrama, 2010; Abeywickrama
and Ramakrishnan, 2010; Abeywickrama and Ra-
makrishnan, 2008b; VIDE, 2009) using IBM Rational
Software Architect provides for context-dependent
behavioral modeling at the PIM level, and context-
dependent behavioral code generation from the PIM
level to the PSM level of model-driven develop-
ment. This tool effectively applies model-driven de-
velopment in pervasive services engineering at the
state machine level. Context-dependent behavior
at the service interface level has been modeled us-
ing a custom UML profile called the c-FSP-UML
profile, and aspect-oriented UML class models
called the c-FSP aspects. The profile supports
an explicit joinpoint model of AOM at the PIM
level, and towards this the profile defines sev-
eral stereotypes such as Aspect, ContextAspect,
TriggerAspect, RecoveryAspect, Advice and
Pointcut. The Aspectual FSP Generation tool
can be employed to generate PSMs in formal be-
havioral specification level in FSP using an effective
chain of model transformations. Model transforma-
tions are employed here to automate the application
of design patterns and generate infrastructure code for
the c-FSP aspects using FSP semantics. Also, us-
ing transformations the correct separation of concerns
both at UML modeling and FSP behavioral specifica-
tion levels is ensured. The main benefits of this ap-
proach are: improving the quality and productivity of
service development; easing system maintenance and
evolution; and increasing the portability of the ser-
vice design. Weaving between an aspect and a base
state machine is performed using an explicit weav-
ing mechanism at the executable state machine level
in FSP. The context modeling and transformations
features of the Aspectual FSP Generation tool
have been explored using the reference scenario on

AN EVALUATION FRAMEWORK FOR VALIDATING ASPECTUAL PERVASIVE SOFTWARE SERVICES

83



intelligent transport.

4.2 Groher and Schulze’s Approach

(Groher and Schulze, 2003) present an approach
for specifying crosscutting concerns using aspect-
oriented modeling and discuss the seamless integra-
tion of those models to implementation. In their ap-
proach, UML has been customized for supporting
aspect-oriented modeling using UML’s standard ex-
tension mechanisms, such as stereotypes, tagged val-
ues and constraints. Their design notation for aspect-
oriented modeling provides a base package for mod-
eling the business logic, an aspect package for model-
ing the crosscutting concerns, and a connector (weav-
ing rules) for linking the aspect and the base ele-
ments. The connector includes program execution
points (pointcuts), and actions to be executed at those
points (advices). The weaving in their approach is
essentially performed at the PIM level and not at
the PSM level as in the current study. The authors
have implemented an AspectJ code generator using
the CASE tool Together from Borland. In their tool
aspect-oriented validation and code generation in As-
pectJ have been implemented as modules. The au-
thors’ work (Groher and Schulze, 2003) is not based
on pervasive services, which is a key difference to the
current research. Also, the code generation is at the
implementation level with AspectJ whereas in the cur-
rent research it is at the architectural level with FSP.

4.3 Whittle and Jayaraman’s Approach

(Whittle and Jayaraman, 2008) present a UML-based
aspect-oriented modeling tool called MATA that ap-
plies graph transformations for specifying and com-
posing aspect models. Their work is different to
most other approaches on aspect-oriented modeling
in three respects. First, there is no support for ex-
plicit joinpoints and composition is considered as a
special form of model transformations. Second, the
use of graph transformations for aspect composition,
and third, support for statically analyzing aspect in-
teractions using critical pair analysis, make their ap-
proach different to other approaches. In their ap-
proach (Whittle and Jayaraman, 2008), the compo-
sition of a base model and an aspect model (weav-
ing) is specified using a graph rule. A main differ-
ence in the authors’ approach is that graph rules have
been defined over the concrete syntax of the modeling
language and not at the meta-level as in most known
approaches on model transformations. The authors
use a cell phone example to demonstrate the valid-
ity of their method and tool. Tool support for MATA

has been built using IBM Rational Software Mod-
eler. The tool uses graph transformation as its un-
derlying theory for aspect composition. MATA uses
AGG as its graph rule execution tool as it supports
critical pair analysis. Similar to (Groher and Schulze,
2003)’s approach, MATA is not based on pervasive
services. The authors’ work (Whittle and Jayaraman,
2008) does not support explicit joinpoints as provided
in the current research. Also, no code generation of
the models has been provided in their work.

4.4 Cottenier et al. Approach

()cottenierMotorolaWEAVRAspect present Motorola
WEAVR, which provides aspect-oriented weaving for
UML state charts that include action semantics. Mo-
torola WEAVR is an industrial-strength aspect weaver
for UML 2.0, which is implemented as an add-in to
the Telelogic TAU G2. The tool essentially performs
four main functions. First, the tool’s profile allows
engineers to define aspects in UML 2.0. Second, it
presents a joinpoint visualization engine for visualiz-
ing and validating the effects of the aspects. Third,
the tool provides full aspect weaving at the model-
ing level. Finally, the tool’s simulation engine allows
the simulation of the aspect models without breaking
their modular structure. The authors have provided
several UML stereotype classes for identifying vari-
ous constructs of an aspect at the PIM level. Motorola
WEAVR introduces two fundamental language con-
structs to support aspect-oriented modeling. First, the
authors provide constructs to specify the locations or
joinpoints in the models where crosscutting behavior
emerges. In the approach, action joinpoints capture
call expressions, timer set actions or constructor calls,
whereas transition joinpoints capture sets of execu-
tion paths within a state machine. Second, the authors
provide constructs to specify the actual behavior of
the crosscutting concerns using the connector stereo-
type. Weaving process consists of two phases: advice
instantiation and advice instance binding. As weav-
ing is performed at the PIM level with aspects wo-
ven into executable UML models, it allows PSMs and
source code to be generated automatically. Source
code, which can be for example in C or C++, is gener-
ated using an optimizing code generator. Several ex-
amples on exception handling and recovery have been
developed by the authors to demonstrate the validity
of their approach. However, the authors’ work (Cot-
tenier et al., 2007) is not in the pervasive computing
domain as in the current research. Also, their PSMs
are not at the formal behavioral specification level as
in our study.

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

84



4.5 Fuentes et al. Approach

()fuentes present an aspect-oriented executable mod-
eling UML 2.0 profile called AOEM for design-
ing pervasive applications. Using the AOEM pro-
file, (Fuentes et al., 2008) demonstrate how aspect-
oriented executable design models for context-aware
pervasive applications can be constructed and exe-
cuted. These models are run and tested using Pop-
ulo, which is an eclipse plug-in created by the au-
thors for interpreting executable UML models. The
AOEM profile aims at addressing two challenges in
pervasive applications. They are the crosscutting na-
ture of context-awareness, and the complexity associ-
ated with reasoning about the correctness of the de-
sign model. In their approach, weaving of aspects to
core components is performed at the PIM level. Spe-
cial composition rules expressed as pointcuts in the
AOEM profile describe how aspects are applied to the
core components. An aspect-oriented model weaver,
which is a type of compiler or preprocessor, has been
developed for weaving. The weaver essentially cre-
ates the design model by injecting the crosscutting
behavior of the aspects into the core modules that the
aspects crosscut. The authors illustrate their approach
using a location-aware intelligent transportation sys-
tem. Although (Fuentes et al., 2008) provide for mod-
eling of adaptive behavior at the PIM level, they do
not provide any model transformations to generate
PSMs. Also, in general, their context models are at
the context-aware application and middleware levels
and not at the service interface level (state machine
level) as in the current study.
Tables 1- 4 show that the Aspectual FSP
Generation tool satisfies all the criteria as
opposed to the other tools.

Table 1: Comparison matrix: PIM level support for context-
dependent behavioral modeling.

Evaluation Criteria
(PIM level)

4.1 4.2 4.3 4.4 4.5

Context-dependent
behavioral modeling

Table 2: Comparison matrix: PIM level support for explicit
joinpoint model of aspect-oriented modeling.

Evaluation Criteria
(PIM level)

4.1 4.2 4.3 4.4 4.5

Explicit joinpoint
model of AOM

Table 3: Comparison matrix: PIM level or PSM level sup-
port for weaving.

Evaluation Criteria
(PIM level or PSM
level)

4.1 4.2 4.3 4.4 4.5

Weaving

Table 4: Comparison matrix: PIM level and PSM level sup-
port for context-dependent behavioral code generation.

Evaluation Criteria
(PIM level & PSM
level)

4.1 4.2 4.3 4.4 4.5

Context-dependent
behavioral code
generation

Complete
Partial
No cover

5 HORIZONTAL EVALUATION

This section describes the horizontal dimension of
the framework (Abeywickrama, 2010). In contrast to
vertical evaluation discussed above, horizontal eval-
uation validates only particular features at a specific
level of abstraction of the MDA stack. The horizontal
evaluation view is designed to validate several desired
key features that are mainly required at the PSM level
of the aspectual pervasive software services specifi-
cation. These evaluation criteria cover two aspects of
the study. They are the formal methods and tools em-
ployed in the study, and the context and adaptation
dimensions of the customization approach used in the
services.

5.1 Formal Methods and Tools Used

In this subsection, the formal methods and tools used
in the current study at the PSM level of abstraction are
evaluated. (Clarke et al., 1996) provide several crite-
ria that formal methods-based approaches and tools
need to support. According to ()clarkeFormal, al-
though some of these criteria are ideals, it is still con-
sidered good to aim for them. As provided in Section
2.1, the research methodology of the current study
contains three stages: service specification, architec-
ture definition and architecture modularization. In the
present study, formal methods and tools have been
applied during the service specification and architec-
ture definition stages of the research methodology,

AN EVALUATION FRAMEWORK FOR VALIDATING ASPECTUAL PERVASIVE SOFTWARE SERVICES

85



and finally for model checking the aspectual pervasive
software services specification. The LTSA-MSC tool
has been used for specifying the software services of
the service specification and generating a behavioral
model in FSP. Using this generated behavioral model,
a core service model was extracted. The formal model
checker, the LTSA, has been used to verify the aspec-
tual pervasive software service specification against
specified system requirements. This subsection eval-
uates the application of the aforementioned formal
methods and tools in the current research against the
criteria provided by (Clarke et al., 1996).

� Early Payback. Early payback is one of the key
benefits of the current study. This study is focused
on the architectural level of the software life-
cycle. This architecture-centric approach builds
models of pervasive software services and their
compositions and verifies their behavior against
specified system properties. Building architec-
tural models of pervasive software services allows
the software engineers to validate the actual cor-
rectness of the services before the services are im-
plemented later in the software life-cycle. Thus, it
provides early payback or feedback to the service
engineer on the validity of the services.

� Incremental Gain for Incremental Effort. In the
study, the PSMs of the aspectual pervasive soft-
ware services specification have been derived fol-
lowing the three incremental stages of the re-
search methodology: service specification, archi-
tecture definition and architecture modularization.
Each of these stages has its own deliverables such
as an message sequence chart specification for
software services, architecture model for the soft-
ware services in FSP, and a modularized archi-
tecture with aspect-oriented models to represent
context-dependent behavior at the service inter-
face level. This demonstrates that the service en-
gineer can receive the benefits of the methodology
in an incremental manner.

� Multiple Use. The pervasive services engineer-
ing methodology established in this research in
general covers the requirements and architecture
design stages of the software life-cycle. There-
fore, the benefits of this methodology can be
seen in multiple stages of the software life-
cycle. This design methodology effectively fa-
cilitates the transition from requirements-oriented
scenario descriptions of pervasive software ser-
vices to architecture-centric behavioral models of
aspectual pervasive software services.

� Integrated Use. The formal methods and tools
used in this research are widely known in both

academia and industry. First, this research has
modeled the pervasive software services using
message sequence charts provided by the LTSA-
MSC tool. Message sequence charts are one of
the most widely used sequence chart notations for
describing system behavior. Second, the model
checking tool employed in this study (LTSA tool)
is widely used for behavior modeling and analysis
and is well supported with documentation (Magee
and Kramer, 2006).

� Ease of Use. This research applies three auto-
mated tools in the pervasive services engineering
process: the LTSA-MSC tool to generate the ar-
chitecture model in FSP which is later used to ex-
tract the core service model, the Aspectual FSP
Generation tool to generate context-dependent
behavior in FSP, and the LTSA tool for simulat-
ing, animating and model checking pervasive ser-
vices. The use of automated tools such as the
LTSA makes the engineering process much easier
to understand and adopt for the service engineer.

� Efficiency. One of the limitations of the current
study is efficiency in terms of time and space.
This is mainly attributed to the formal model
checking technique used for verifying the perva-
sive services specification. One of the main chal-
lenges associated with model checking technique
is the state space explosion problem. Neverthe-
less, by using action hiding and minimization fea-
tures of the LTSA model checker the present study
has proven sufficiently efficient in modeling and
verifying the case study subset of this research.

� Ease of Learning. The graphical interfaces pro-
vided in the LTSA-MSC tool and the Aspectual
FSP Generation tool and the automated nature
of these tools effectively reduce the need to know
formal FSP to start realizing the benefits of this
research. The use of basic and high-level message
sequence charts in the service specification stage
of the methodology are widely used and under-
stood in both academia and industry. Also, the se-
quence chart notion and semantics applied in the
LTSA-MSC tool are restricted to basic features. It
does not include complex constructs such as mes-
sage queues, gates, parametric messages, or dy-
namic creation and termination of instances.

� Orientation Toward Error Detection. The ap-
proach presented in this paper is oriented to-
wards detecting errors in the aspectual pervasive
software services specification using the formal
model checking technique. Aspects can intro-
duce an additional correctness problem in soft-
ware specifications because of their crosscutting

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

86



effect and obliviousness nature. Therefore, tool
support if possible automatic, is highly desirable
to ensure the correctness of the specification. This
research employs formal model checking to find
errors concerning safety, progress, and fluent lin-
ear temporal logic assertions in the service spec-
ification, which can be hidden behind the indi-
vidual components and aspects, or in the woven
model. In the study, two techniques - counterex-
amples and witness executions - have been em-
ployed to point out any errors in the specification,
which can be used by the service engineer to im-
prove the state models or the system properties for
the aspectual pervasive software services.

� Focused Analysis. This research is explored using
a modified subset of a real-world case study
called the ParcelCall project. The case study
subset focuses on exception handling that needs
to be enforced when a transport item’s context
information violates acceptable threshold values.
The reference scenario used in the research
describes an awareness monitoring and
notification pervasive service, which
alerts with regards to any exceptional situations
that may arise on transport items primarily to
the vehicle driver of the transport unit. This is
an example where the research is focused on
analyzing only a particular aspect of the system
and not the entire system. Also, at the PSM level
only temperature and pressure context properties
have been modeled and verified. Similarly, other
context properties such as item identity, location
and acceleration can also be supported.

� Evolutionary Development. The incremental and
iterative nature of the activities performed in each
stage of the methodology essentially facilitates
evolutionary system development. This can be
demonstrated by the fact that the engineering pro-
cess, which is initiated as a scenario-based spec-
ification expressed as message sequence charts,
has evolved into a modularized service architec-
ture where complex context-dependent informa-
tion has been separated from the core service be-
havior as aspect-oriented models.

5.2 Context and Adaptation of the
Customization Approach

This subsection evaluates the customization approach
used in the pervasive services of the current study.
This evaluation focuses mainly on the PSM level of
abstraction. ()kappel and ()schwinger present a com-
prehensive and uniform evaluation framework, which

can be used to compare customization capabilities
of approaches originating from the mobile computing
and the personalization domains. The notion of cus-
tomization refers to the adaptation of an application’s
services towards the current context. Their frame-
work has two orthogonal dimensions, which are con-
text and adaptation, and the mapping between con-
text and adaptation represented by the notion of cus-
tomization. (Kappel et al., 2003) and (Schwinger
et al., 2005) provide detailed criteria for both the
context and adaptation dimensions of the framework.
Their evaluation framework aims at providing three
main benefits. First, it provides a structured and uni-
form view of the various aspects of customization.
Second, the framework can be effectively used as
a conceptual framework for evaluating existing cus-
tomization approaches. Finally, the framework can be
effective for developing any future customization ap-
proaches. The criteria for context and adaptation from
(Kappel et al., 2003; Schwinger et al., 2005) are out-
lined next before applying them to validate the cus-
tomization approach used in the pervasive software
services of the current research.
� Context. Context characteristics are important for

the management of context data. These charac-
teristics can be categorized as scope of context,
representation, acquisition, and the access mech-
anism used.
– Scope. The scope of context comprises several

characteristics as outlined next. First, the scope
includes different context properties (C.P.) sup-
ported by the system, such as location, time,
device, network and user. Second, it describes
the ability to extend (C.E.) the properties in or-
der to handle any unforseen requirements. Fi-
nally, for each of the context properties the
time dimension needs to be considered with the
chronology (C.C.), validity (C.V.), and avail-
ability (C.Av.) of context data.

– Representation. The representation of con-
text is characterized by two issues: reusability
(C.R.) and abstraction (C.Ab.). First, the rep-
resentation of context needs to provide mech-
anisms to reuse already defined context from
various context sources, such as geographic in-
formation systems or device profiles. Second,
the level of abstraction used for representing
context can be physical, such as sensed context
data, or logical, which is derived context.

– Acquisition. Acquisition is characterized by
two key issues: automation (C.Au.) and dy-
namicity (C.D.). First, the degree of automa-
tion identifies who is responsible for acquiring
context, which can be either a human (manual)

AN EVALUATION FRAMEWORK FOR VALIDATING ASPECTUAL PERVASIVE SOFTWARE SERVICES

87



or the system (automatic) or a combination of
both (semi-automatic). Second, the degree of
dynamicity indicates when the context is ac-
quired, which can be statically at system start-
up or dynamically at run-time.

– Mechanism. This characteristic identifies
the mechanism (C.M.) used for acquiring
the context information and made accessi-
ble to services, which can be pull-based or
push-based. Pull-based approaches request
for context information while push-based ap-
proaches provide context information when
context changes.

� Adaptation. The second dimension of the evalua-
tion framework is provided by the notion of adap-
tation. Adaptation can be categorized as the kind
of adaptation, the subject of adaptation, and the
process of adaptation.
– Kind. The kind of adaptation can be a built-

in adaptation operation (A.O.) such as filter
content, add links, or an extension mechanism
(A.Ex.), which introduces a new user-defined
adaptation operation. The adaptation can af-
fect (A.Ef.) the system when certain parts of
the system are added, removed or transformed.
Complex adaptations (A.C.) can be formed by
combining a series of adaptation operations.

– Subject. The subject of adaptation is character-
ized by several issues as discussed next. First,
the level (A.L.) of the Web application that is
affected by the adaptation can be content level,
hyperbase level, and presentation level. Sec-
ond, these layers contain several application el-
ements (A.El.) that can be adapted, such as
links, pages, access structures and input fields.
Third, the granularity of adaptation (A.G.) can
be micro or macro adaptation depending on the
number of application elements affected in the
adaptation.

– Process. The process of adaption comprises
several characteristics such as task (A.T.), au-
tomation (A.A.), dynamicity (A.D.) and incre-
mentality (A.I.). The process of adaptation can
contain several tasks such as initiation, pro-
posal, selection, production, presentation and
reversion of the adaptation. This separation ef-
fectively allows fine-grained control about the
automation and dynamicity of the tasks. As
in the context dimension, automation identi-
fies who is responsible for performing the tasks
which can be performed automatically, manu-
ally or semi-automatically. Dynamicity of the
adaptation indicates when the adaptation tasks
are performed, which can be at design time

(static) or at run-time (dynamic). Incremen-
tality signifies whether the adaptation is per-
formed from scratch or incrementally. Perform-
ing the adaptation incrementally means that the
subsequent adaptations are done based on the
results of the pervious adaptations.

Having presented the evaluation criteria provided
in (Kappel et al., 2003; Schwinger et al., 2005), next
the context and adaptation dimensions of the cus-
tomization approach used in the services are evalu-
ated using those criteria. The results of this evaluation
are summarized in two tables respectively: Table 5
and Table 6. This evaluation is part of the horizontal
evaluation dimension of the framework, and mainly
covers the PSM level of the MDA stack. However,
several examples on the PIM level are also provided.
This evaluation is presented in three logical sections
as suggested in (Kappel et al., 2003; Schwinger et al.,
2005). First, general details of the customization ap-
proach are provided covering issues on origin, ma-
jor focus, technology, architecture and implementa-
tion (if applicable) of the customization approach.
Second, the context dimension of the approach is de-
scribed, and third, the adaptation dimension of the ap-
proach is discussed.

The current research originates from the perva-
sive computing domain in general, and specifically
from the pervasive services domain. This research
is at the software architectural level, and no imple-
mentation of services such as pervasive Web services,
has been considered in the study. The main focus
of the awareness monitoring and notification
pervasive service is to alert on any exceptional
situations that may arise on transport items primarily
to the vehicle driver of the transport unit. The compo-
nent configuration of the architecture defined for the
pervasive software services specification is based on
an event-control-action architecture pattern. The re-
search approach has been applied to a modified sub-
set of a real-world case study in intelligent transport
called the ParcelCall project. As stated previously
in this paper, three automated tools have been used
in the research: LTSA-MSC tool, Aspectual FSP
Generation tool, and the LTSA model checker.
The customization of the architecture can be consid-
ered internal as the system is not aware of the cus-
tomization in terms of knowing about context or adap-
tation.

The context dimension of the customization ap-
proach is described next (Table 5). The primary
context parameters modeled at the PIM level of ab-
straction comprise location, temperature and pres-
sure. However, at the PSM level only temperature
and pressure primary context properties have been

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

88



Table 5: Current study’s context characteristics.

Scope of Context Representation of Context Acquisition of Context Access of Context

Pr
op

er
ty

(C
.P

.)

E
xt

en
si

bi
lit

y
(C

.E
.)

C
hr

on
ol

og
y

(C
.C

.)

V
al

id
ity

(C
.V

.)

R
eu

sa
bi

lit
y

(C
.R

.)

A
bs

tr
ac

tio
n

(C
.A

b.
)

A
ut

om
at

io
n

(C
.A

u.
)

D
yn

am
ic

ity
(C

.D
.)

M
ec

ha
ni

sm
(C

.M
.)

lo
ca

tio
n

te
m

pe
ra

tu
re

pr
es

su
re

tim
e

de
vi

ce

ne
tw

or
k

us
er

ap
pl

ic
at

io
n

hi
st

or
y

fu
tu

re

m
an

ua
l

se
m

i-
au

to
m

at
ic

au
to

m
at

ic

st
at

ic

dy
na

m
ic

pu
sh

pu
ll

Explicitly supported
Not explicitly supported
Not applicable

Table 6: Current study’s adaptation characteristics.

Kind of Adaptation Subject of Adaptation Process of Adaptation

O
pe

ra
tio

n
(A

.O
.)

E
xt

en
si

bi
lit

y
(A

.E
x.

)

E
ff

ec
t(

A
.E

f.)

C
om

pl
ex

ity
(A

.C
.)

L
ev

el
(A

.L
.)

E
le

m
en

t(
A

.E
l.)

G
ra

nu
la

ri
ty

(A
.G

.)

Ta
sk

s
(A

.T
.)

A
ut

om
at

io
n

(A
.A

.)

D
yn

am
ic

ity
(A

.D
.)

In
cr

em
en

ta
lit

y
(A

.I.
)

ad
d

re
m

ov
e

tr
an

sf
or

m

si
m

pl
e

co
m

pl
ex

co
nt

en
t

hy
pe

rb
as

e

pr
es

en
ta

tio
n

ot
he

rs

te
xt

au
di

o

im
ag

e

vi
de

o

lin
k

ot
he

rs

m
ic

ro

m
ac

ro

au
to

m
at

ic

se
m

i-
au

to
m

at
ic

m
an

ua
l

st
at

ic

dy
na

m
ic

Explicitly supported
Not explicitly supported
Not applicable

modeled (C.P.). Nevertheless, at the PSM level other
context properties such as item identity, location and
acceleration can be supported as well (C.E.). These
context parameters as a whole constitute the phys-
ical context of the study. Context modeling at the
PIM level is provided by the c-FSP-UML profile
and the c-FSP aspects. The profile essentially pro-
vides several stereotypes to represent the core service
behavior, the context-dependent behavior, and the de-
pendencies between the core service behavior and the
context-dependent behavior at the service interface
level. The use of stereotypes essentially supports the
notion of extensibility (C.E.). The object-oriented no-
tions used in the profile such as generalization fur-
ther support the notion of extensibility. At the PSM

level, the notions of attribution, classification, gener-
alization and encapsulation from the context defini-
tion have been modeled to structure and link the ob-
jects defined in the aspects (C.E.). In the study, va-
lidity period (C.V.), chronology (C.C.) or availability
(C.Av) of context are not supported as the time di-
mension of the context properties have not been con-
sidered. The explicit support provided for attribu-
tion, instance-of and ISA notions at the PSM level,
facilitates reusability of context (C.R.). The approach
provides a high-level inference mechanism to auto-
matically derive higher-level logical context (C.Ab).
Both primary and logical context are modularized
into aspects as atomic context aspects and compos-
ite context aspects respectively. Thus, the study sup-

AN EVALUATION FRAMEWORK FOR VALIDATING ASPECTUAL PERVASIVE SOFTWARE SERVICES

89



ports an explicit separation between physical and log-
ical context (C.Ab). For example, low-level temper-
ature readings from the RFID tags are inferred as
low temperature or high temperature during the re-
finement step of the pervasive service. At the PIM
level, the profile is maintained manually by the ser-
vice engineer (C.Au.). At the PSM level, both physi-
cal and logical context information are acquired auto-
matically (C.Au.) and at run-time (C.D.). The perva-
sive service engineer using the LTSA animator can
select values for the temperature or pressure read-
ings from a range of values at run-time. The mech-
anism (C.M.) used to acquire context and made ac-
cessible to the pervasive service can be considered
push-based as context readings from the RFID tags
are provided based on context changes and not on
requests. The second dimension of the customiza-
tion approach is provided by the notion of adapta-
tion (Table 6). In this study, there are two types of
adaptation operations: triggering and recovery opera-
tions (A.O.). At the PSM level, both these operations
have been supported by the Trigger and Recovery
c-FSP aspects (A.O.). Trigger aspects, for
example Trigger Aspect Adverse Environment
Status, effectively send notifications or alert mes-
sages to the vehicle driver when a transport
item’s context information violates acceptable levels.
Recovery aspects, for example Recovery Aspect
Adverse Environment Status, model any recov-
ery actions that need to be enforced after an excep-
tion situation is raised by a Trigger aspect. Both
these aspects have been modeled as independent state
machines at PSM level, which synchronize with their
base state machines using explicit synchronization
events. The adaptation operations provided by the
aspects are associated with the core service model
through weaving, and the behavior of these aspects
can affect the core service behavior depending on the
context information (A.Ef.). This can be, for exam-
ple, executing or modifying a service based on con-
text information (A.Ef.). At the PIM level, adapta-
tion operations are specified using the stereotypes:
TriggerAspect and RecoveryAspect. As the adap-
tation process contains a series of stages, it can be
considered a complex process (A.C.). Also, a dis-
tinct separation can be identified between the differ-
ent tasks of the adaptation process (A.T.). When an
item’s context information is violated, first, the per-
vasive service alerts the vehicle driver by sending an
SMS. Second, the service can perform any appropri-
ate recovery actions to remedy the situation, such as
control the refrigerator’s temperature (A.C.). Third,
the service adaptation can be extended as follows
(A.Ex.). If the environment status of items is critical

the service can alert the goods tracing server and
eventually the customer being affected through the
goods information server (A.Ex.). In the current
study, context information is represented at the ser-
vice interface level (A.L.) that essentially consists of
operation invocations and the exchange of respective
input/output parameters. The core service elements
represented at the modeling level include states, tran-
sitions, processes, and services (A.El.). Any adapta-
tion operation, which can be a triggering operation or
a recovery operation, is bound to the transitions of the
core service model. Therefore, the adaptation level
and adaptation elements of this study are the service
interface level (A.L.) and transitions (A.El.) respec-
tively. As a result, different Web application levels
such as content, hyperbase and presentation are not
applicable in this study nor the Web adaptation ele-
ments of text, audio, image, video and link provided
in (Kappel et al., 2003; Schwinger et al., 2005). The
adaptation granularity (A.G.) can be considered mi-
cro considering the number of elements affected by
the adaptation process in the study. Also, it is per-
formed automatically (A.A.) and at run-time (A.D.).
The adaptation process can be considered incremen-
tal (A.I.) as recovery operations are dependent on trig-
gering operations at both PIM and PSM levels.

6 CONCLUSIONS

To summarize this paper has discussed the evalua-
tion framework developed to validate the main meth-
ods and tools employed in this study for engineer-
ing pervasive software services. The method of eval-
uation used here is based on key features compari-
son. The evaluation framework consists of two di-
mensions or views: vertical and horizontal. The
vertical evaluation of the research compared several
research tools to the Aspectual FSP Generation
tool developed in the current research. The tools
were compared across the PIM and PSM levels of
the MDA stack. This evaluation was based on sev-
eral criteria: context-dependent behavioral modeling
at the PIM level, explicit joinpoint model of AOM at
the PIM level, weaving performed at PIM or PSM
levels, and context-dependent behavioral code gen-
eration from the PIM level to the PSM level. The
horizontal evaluation view was designed to validate
several desired key features required mainly at the
PSM level (i.e. FSP) of the aspectual pervasive soft-
ware services specification. These evaluation criteria
mainly cover two aspects. They are the formal meth-
ods and tools employed in the study and the context
and adaptation dimensions of the customization ap-

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

90



proach used in the pervasive services.
The results of the evaluation are assuring.

The vertical evaluation has demonstrated that the
Aspectual FSP Generation tool has unique fea-
tures in context-dependent behavioral modeling and
context-dependent behavioral code generation. The
horizontal evaluation of the approach has shown that
the formal methods and tools employed in the re-
search, and the customization approach used in the
services are indeed effective towards the overall ob-
jectives of this research. However, the prototype or
proof of concept nature of the methods and tools em-
ployed in this research makes it challenging to com-
pare their benefits with more advanced industry-based
tools, which is a limitation.

REFERENCES

Abeywickrama, D. B. (2010). Pervasive Services Engineer-
ing for SOAs. Ph.D Thesis, Faculty of IT, Clayton
Campus, Monash University, Australia.

Abeywickrama, D. B. and Ramakrishnan, S. (2008a). A
Model-Based Approach for Engineering Pervasive
Services in SOAs. In Proc. 5th International Confer-
ence on Pervasive Services (ICPS’08), pages 57–60,
Sorrento, Italy. ACM.

Abeywickrama, D. B. and Ramakrishnan, S. (2008b). To-
wards Engineering Models of Aspectual Pervasive
Software Services. In Proc. 3rd Workshop on Soft-
ware Engineering for Pervasive Services (SEPS’08),
pages 3–8, Sorrento, Italy. ACM.

Abeywickrama, D. B. and Ramakrishnan, S. (2010).
Model-Driven Development of Aspectual Pervasive
Software Services. In Proc. 14th IEEE International
Enterprise Distributed Object Computing Conference
Workshops, pages 49–59, Vitoria, Brazil. IEEE.

Analyti, A., Theodorakis, M., Spyratos, N., and Constan-
topoulos, P. (2007). Contextualization as an Indepen-
dent Abstraction Mechanism for Conceptual Model-
ing. Information Systems Journal, 32(1):24–60. Else-
vier Science Ltd., Oxford, UK.

Clarke, E. M., Wing, J. M., and Alur, R. (1996). Formal
Methods: State of the Art and Future Directions. ACM
Computing Surveys, 28(4):626–643. ACM.

Cottenier, T., van den Berg, A., and Elrad, T. (2007).
Motorola WEAVR: Aspect Orientation and Model-
Driven Engineering. Journal of Object Technology,
6(7):51–88. Chair of Software Engineering, ETH
Zurich, Switzerland.

Davie, A. (2002). Intelligent Tagging for Transport and
Logistics: The ParcelCall Approach. Electronics &
Communication Engineering Journal, 14(3):122–128.
Institution of Electrical Engineers, London, UK.

Fuentes, L., Gamez, N., and Sanchez, P. (2008). Aspect-
Oriented Executable UML Models for Context-Aware

Pervasive Applications. In Proc. 2008 5th Interna-
tional Workshop on Model-Based Methodologies for
Pervasive and Embedded Software (MOMPES’08),
pages 34–43, Budapest, Hungary. IEEE.

Groher, I. and Schulze, S. (2003). Generating Aspect
Code from UML Models. In Proc. 3rd Interna-
tional Workshop on Aspect-Oriented Modeling co-
located with 2nd International Conference on Aspect-
Oriented Software Development (AOSD’03), Boston,
USA.

Hegering, H.-G., Küpper, A., Linnhoff-Popien, C., and
Reiser, H. (2003). Management Challenges of
Context-Aware Services in Ubiquitous Environments.
In Self-Managing Distributed Systems, volume 2867
of Lecture Notes in Computer Science, pages 321–
339. Springer Berlin / Heidelberg.

Kappel, G., Proll, B., Retschitzegger, W., and Schwinger,
W. (2003). Customisation for Ubiquitous Web Appli-
cations: A Comparison of Approaches. International
Journal of Web Engineering and Technology, 1(1):79–
111. Inderscience Publishers, Geneva, Switzerland.

Magee, J. and Kramer, J. (2006). Concurrency: State Mod-
els and Java Programs. John Wiley and Sons, second
edition.

Mandato, D., Kovacs, E., Hohl, F., and Amir-Alikhani, H.
(2002). CAMP: a Context-Aware Mobile Portal. IEEE
Communications Magazine, 40(1):90–97. IEEE.

Mostefaoui, S. K. and Hirsbrunner, B. (2004). Context-
Aware Service Provisioning. In Proc. IEEE/ACS
International Conference on Pervasive Services
(ICPS’04), pages 71–80, Beirut, Lebanon. IEEE.

Schwinger, W., Grün, C., Pröll, B., Retschitzegger, W.,
and Schauerhuber, A. (2005). Context-Awareness in
Mobile Tourism Guides - A Comprehensive Survey.
Technical report, Johannes Kepler University, Linz,
Austria.

VIDE (2009). VIsualize all moDel drivEn pro-
gramming (VIDE), WP 11, Deliverable number
D11.3 (European Commission supported Specific
Targeted Research Project, Information Society
Technologies). WWW page. http://www.vide-
ist.eu/download/VIDE D11.3.pdf (Last accessed on
02/04/2011).

Whittle, J. and Jayaraman, P. (2008). MATA: A Tool for
Aspect-Oriented Modeling based on Graph Transfor-
mation. In Models in Software Engineering, volume
5002 of Lecture Notes in Computer Science, pages
16–27. Springer Berlin / Heidelberg.

AN EVALUATION FRAMEWORK FOR VALIDATING ASPECTUAL PERVASIVE SOFTWARE SERVICES

91


