
COLLECTIVE SPECIFICATION AND VERIFICATION OF
BEHAVIOR MODELS AND OBJECT-ORIENTED

IMPLEMENTATIONS ∗

Qing Yi, Jianwei Niu and Anitha R. Marneni
University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, U.S.A.

Keywords: Code generation, Modeling checking, Finite state machine.

Abstract: We present a finite-state-machine-based language, iFSM, to seamlessly integrate the behavioral logic and im-
plementation strategies of object-oriented abstractions and prevent them from being out-of-sync. We provide
a transformation engine which automatically translates iFSM specifications to lower-level C++/Java class im-
plementations that are similar in style to manually written code. Further, we automatically verify that these
implementations are consistent with their behavior models by translating iFSM specifications into the input
language of model checker NuSMV.

1 INTRODUCTION

A large collection of development tools, e.g.,
Pathfinder, Metamill, UModel, among others (Bal-
asubramanian et al., 2005; Kogekar et al., 2006) can
automatically generate C++/Java code from models
in various notations, such as class diagrams and stat-
echarts. However, most of these tools require devel-
opers to manually complete the auto-generated code
skeletons. Since the manual implementations are
maintained separately from their higher-level design,
they can easily become out-of-sync.

We introduce a finite-state-machine based lan-
guage, iFSM, to seamlessly integrate software
modeling notations such as HTS (Niu et al., 2003)
with implementations using lower-level languages
such as C++ and Java. A key contribution of iFSM
is a concise mapping from the behavior models of
arbitrary C++/Java classes, expressed using FSMs,
to their implementations, expressed using a language
that is independent of either C++ or Java. Such a
mapping effectively unifies the design and implemen-
tation of OO classes to provide the following benefits.

• The behavior models and implementation strate-
gies of object-oriented classes are unified and
maintained together, and their consistency auto-
matically verified via model checking techniques.

∗This research is funded by the NSF through award
CCF0747357 and CNS-0964710.

Figure 1: The iFSM framework.

• A single iFSM specification can be automatically
translated to equivalent OO implementations in
different programming languages and thus can
conveniently support multi-lingual applications.

• The behavior models of C++/Java classes can be
made available to compilers and potentially en-
able more aggressive optimization, which is the
subject of our future work.

Figure 1 shows the work flow of our framework,
where we use a single transformation engine to au-
tomatically translate iFSM specifications to C++/Java
classes and to the input language of model checker
NuSMV (Cimatti and et. al., 2002). The auto-
generated C++/Java classes are similar in style to
manually written code and therefore can be easily in-
tegrated with existing legacy code. The unification of
behavior and implementation notations within iFSM

15Yi Q., Niu J. and R. Marneni A..
COLLECTIVE SPECIFICATION AND VERIFICATION OF BEHAVIOR MODELS AND OBJECT-ORIENTED IMPLEMENTATIONS.
DOI: 10.5220/0003439300150024
In Proceedings of the 6th International Conference on Software and Database Technologies (ICSOFT-2011), pages 15-24
ISBN: 978-989-8425-77-5
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)

aFSM(Iterator,dstate(Started),tparam(T),inherit()) {

States: Started,Ended;

Events: Advance:()->(); Reset:()->();

ReachEnd:()->bool; Current:()->T;

Trans: Advance(): Started->(Started,Ended);

Reset(): (Started,Ended)->Started;

Current(): Ended->ERROR;

}

Figure 2: Example aFSM for anIterator interface.

also allows their consistency to be automatically ver-
ified using model checking techniques.

2 THE iFSM LANGUAGE

Our iFSM language supports three main concepts, the
abstractFSM (aFSM), which models the runtime be-
havior of an object-oriented class (see Section 2.1);
the implementation FSM (iFSM), which extends the
aFSM to additionally model implementation strate-
gies (see Section 2.2); andiFSM class, which spec-
ifies how to adapt the interface of automatically gen-
erated OO classes when translating iFSM to program-
ming languages such as C++/Java (see Section 2.3).

2.1 The Abstract FSM

As illustrated by theIterator interface in Figure 2,
each aFSM has a default state (specified by thedstate
attribute), a list of type parameters (specified by the
t paramattribute), a list of base FSMs that the current
FSM inherits (specified by theinherit attribute), and
the following additional components.

• A Finite Number of Control States which cat-
egorize the runtime values that an arbitrary FSM
object may have. Each object can stay in exactly
one of the declared states at any time. For ex-
ample, an object of theIterator FSM in Figure 2
can stay either in stateStarted, which means the
object is in normal working condition, or in state
Ended, which means the object is no longer in
operation.

• A List of Events which define the interface of
an FSM object to communicate with the exter-
nal world. Each event has a list of parameters
and can optionally return a value. Theiterator
FSM in Figure 2 has four events, whereAdvance
and Resethave no parameter and return noth-
ing; ReachEndtakes no parameter and returns a
boolean, andCurrent returns a typeT value.

• A List of Transitions which model the change
of states within an object as it responds to dif-
ferent events. Each transition has a triggering

1: aFSM(CloneFSM,dstate(),tparam(),inherit())

{Events:Clone:()->ref(fsm(CloneFSM));}

2: iFSM(CountRefHandle,dstate(objNULL),tparam(T:CloneFSM),

inherit(),init(),delete(reset)){

3: Vars: obj:ref(T)=null; count:ref(int)=null;

4: States: objNULL: (count==null) -> (obj==null);

5 objUnique: (count!=null&&val(count)==1) -> (obj!=null);

6: objShared: (count!=null&&val(count)>1) -> (obj!=null);

7: Events: build:(t:T)->(); const_ref:()->obj;

modify:()->obj; reset:()->();

copy:(that:fsm(CountRefHandle,T))->();

8: EQ: (that:fsm(CountRefHandle,T))->(obj==that.obj);

9: Actions:share:(that:ref(fsm(CountRefHandle,T)))->()

{obj=that.obj;count=that.count;val(count)=val(count)+1;}

10 init:(t:ref(T))->() {obj=t;count=new(int,1);}

11: destroy:()->() { delete(count,obj);}

12: Trans:build(t):objNULL->objUnique: {init(t.Clone());}

13: build(t):objUnique->objUnique

{destroy(); init(t.Clone());}

14: build(t):objShared->objUnique

{val(count)=val(count)-1;init(t.Clone());}

15: reset():objUnique->objNULL {destroy();}

16: reset():objShared->objNULL

{val(count)=val(count)-1;obj=null;count=null;}

17: copy(that) & !in_state(that,objNULL):

objNULL->objShared {share(that);}

18: copy(that) & !in_state(that,objNULL):

objUnique->objShared {destroy();share(that);}

19: copy(that) & !in_state(that,objNULL): objShared

20: ->objShared {val(count)=val(count)-1;share(that);}

21: copy(that) & in_state(that,objNULL):

objUnique->objNULL { destroy();}

22: copy(that) & in_state(that,objNULL): objShared->objNULL

23: {val(count)=val(count)-1,obj=null,count=null;}

24: modify():objShared->objUnique

{val(count)=val(count)-1;init(val(obj).Clone());}

25: iFSM_class(CountRefHandle) {

26: constructors: build,copy;

27: access: modify:protected;

28: binding: reset:dynamic;

29: extra: copy=>"operator="; EQ=>"operator=="

30: }

Figure 3: Example iFSM for a reference counting C++
class.

event, a set of source and destination states, and
an optional boolean expression which specifies
additional constraints required for the transition.
For example, theAdvanceevent in Figure 2 will
trigger anIterator object to transition from state
Startedto eitherStartedor Ended, and theCur-
rent event will raise an exception (enter theER-
RORstate) if the object is in theEndedstate.

In summary, each aFSM specifies the expected be-
havior of a C++ abstract class or a Java interface.
They serve as interface specifications to support in-
teractions between different software components.

2.2 The Implementation FSM

As illustrated by Figure 3, each iFSM extends the

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

16

aFSM to additionally specify implementation details
including the following.
Object Construction and Deletion. For example,
at line 2 of Figure 3,init () specifies that no parame-
ter is required to build aCountRefHandleobject, and
delete(reset) specifies that theresetevent should be
triggered when deleting aCountRefHandleobject.
Member variables. For example, line 3 of Figure 3
declares two iFSM variables,ob j, which points to a
typeT object, andcount, which points to an integer.
Both variables are initialized withnull.
Conditions and Implications of Control States.
Each iFSM control states has two attributes,
condition(s), which evaluates to true if and only if the
iFSM object is in thes state; andimply(s), which is
implied if the object is in thesstate. For example, line
4 of Figure 3 specifies that aCountRe f Handleobject
is in theobjNULL state if and only ifcount==null is
satisfied at runtime. Further, if an object is in theob-
jNULL state, thenobj==null is guaranteed to hold.
Event Implementations. Each iFSM event can in-
clude its own local variables, control states, and tran-
sitions; that is., each event can contain an embedded
iFSM to model any complex algorithm triggered by
the event. Note that events cannot be nested inside
one another, so local transitions within an event no
longer have any triggering event (these are calledau-
tonomoustransitions). In Figure 3, lines 7-8 contain
all event definitions, all of which are simple enough
that no embedded iFSMs are required.
Local Actions. which are defined similarly as events
but are private members of the iFSM. Specifically,
they cannot be used to as triggers of state transitions
and cannot be invoked from outside the iFSM. The
iFSM in Figure 3 has three actions,share, init, and
destroy, defined at lines 9-11.
Transition Implementations. As illustrated by Fig-
ure 3 at lines 12-24, each iFSM transition contains
a sequence of statements as its implementation. The
statements currently supported by iFSM are listed in
Table 1. Note that iFSM does not directly support
any control-flow statements, so Table 1 has no if-
conditionals or while-loops. This restriction is nec-
essary to simplify the verification of iFSMs.
Autonomous Transitionsnot triggered by any event.
Each autonomous transitiont is controlled by a
boolean attributerepeat which specifies whethert
should be triggered repetitively until the triggering
condition no longer holds. If local to an eventev,
an autonomous transitiont can be triggered by three
options,pre, which triggerst before evaluating any
transition triggered byev; post, which triggerst af-
ter evaluating all transitions triggered byev; andloop,
which evaluatest as part of eachLOOP() statement

Table 1: iFSM Expressions and Statements.
type expressions

fsm(n,targs) an aFSM/iFSM with namen and type paramstargs

ref(t) a reference (pointer) type to values of typet

array(t,s) an array of sizesand element typet
expressions

+,-,*,/,%, arithmetic operators

==,>=,<=,!=,>,< comparison operators

&&, ||, ! boolean operators (and, or, andnot)

f (args) invoke action/eventf usingargsas parameters

new(t,o) a new object of typet and initialized with valueo

new array(t,n,o) a new array ofn typet items, each initialized witho

a[s] the element at subscripts of arraya

a.b the attributeb of an FSM/iFSM objecta

val(p) the value of the memory referenced by addressp

ref(v) the memory address associated with variablev

in state(x,y) whether theaFSM/iFSMobjectx is in statey
statements

delete(p) free the memory referenced byp

except(x) raise an exceptionx

m= exp assign a new valueexpto memory expressionm.

LOCAL(x : t = i) create a local variablex with typet and initial valuei

LOOP() iteratively evaluate autonomous transitions

(see table 1) invoked by a transition triggered byev.
Exception Handling and Debugging Support,

which can be associated with each event, action, or
transition. We omit their explanations here due to
space constraints.

template <class T> class CountRefHandle {

private:

int* count; T* obj;

void share(const CountRefHandle<T>& that)

{ obj = that.obj; count = that.count;

(*count) = (*count)+1; }

void init(T* t) {obj=t; count=new int(1);}

void destroy()

{ delete count; delete obj; obj = 0; count = 0; }

protected:

T* modify()

{ if (count!=0&&(*count)>1)

{(*count)=(*count)-1; init((*obj).Clone());}

return obj; }

public:

CountRefHandle() : obj(0),count(0) {}

CountRefHandle(const T& t) {init(t.Clone());}

CountRefHandle(const CountRefHandle<T>& that)

{ if (!(that.count==0)) share(that);

else { count = 0;obj = 0; } }

void build(const T& t) {

if (count==0) init(t.Clone());

else if (count!=0&&(*count)==1)

{ destroy(); init(t.Clone()); }

else if (count!=0&&(*count)>1)

{ (*count) = (*count)-1; init(t.Clone()); }

}

const T& const_ref() const {return (*obj);}

......

}

Figure 4: Auto-generated C++ code from Figure 3.

COLLECTIVE SPECIFICATION AND VERIFICATION OF BEHAVIOR MODELS AND OBJECT-ORIENTED
IMPLEMENTATIONS

17

Table 2: Mapping iFSM to object-oriented C++/Java
classes.

iFSM component C++/Java component

iFSM variables private member variables in C++/Java classes

iFSM actions private member functions in C++/Java classes

Nested iFSMs inner classes nested inside C++/Java classes

iFSM events public/protected methods in C++/Java classes

event variables local variables of C++/Java methods

event transitions top-level if-conditionals in C++/Java methods

auto. transitions loops or nested if-conditionals in C++/Java methods

2.3 Interface Adaptation for C++/Java

Each iFSM component is designed to correlate FSM
notations with OO implementation details, and the
translation mappings are shown in Table 2. In partic-
ular, All aFSM events are translated to dynamically-
bound public methods, All iFSM actions and events
are translated to statically-bound (i.e., non-virtual)
methods in C++ but dynamically-bound (i.e., non-
static) methods in Java, as these are the default
method bindings in C++ and Java. The default access
control and binding of each method can be overrid-
den, as illustrated by theiFSM class at lines 25-30
of Figure 3, via the following interface adaptations.

• Extra class constructors. In Figure 3, line 26 spec-
ifies that two extra constructors should be defined
for theCountRefHandleiFSM based on state tran-
sitions triggered by thebuild andcopyevents.

• Alternative access control. In Figure 3, line 27
specifies that the eventmodi f y should be made
protectedinstead ofpublic.

• Alternative method binding. In Figure 3, line 28
specifies that the eventresetshould be made dy-
namically bound.

• Alternative names for existing events. In Figure 3,
line 29 specifies that an extra name “operator=”
should be used for eventcopy, and an extra name
“operator==” should be used for eventEQ.

TheiFSM class specification provides flexibility for
users to easily adapt the interface of an auto-generated
C++/Java class for different needs. Figure 4 shows a
portion of the C++ code automatically generated from
the iFSM specification in Figure 3. The code genera-
tion is discussed in more detail in Section 3.

2.4 Expressiveness of the Language

As it stands, our iFSM language serves as a proof-of-
concept in collectively specifying both software be-
havioral designs and their OO implementations. Ta-
ble 1 shows the set of expressions and statements cur-
rently supported by the language, which are a small

subset of those in C++/Java and are expected to be
extended when used to model larger and more com-
plex software systems beyond what we have studied.

While incomplete, iFSM has the potential to
conveniently specify arbitrary general-purpose OO
classes. To demonstrate this potential, we have used
the language to fully specify a large and complex C++
class which supports the parsing capability of a re-
search compiler project (see Section 5.1). Although
compilers and language interpreters are typically se-
quential and do not need to deal with concurrent eval-
uation of components, they are among the most chal-
lenging software to build, and their implementations
typically feature extremely complex and delicate con-
trol logics that are easily broken when the code needs
to be modified for maintenance (e.g., bug fixing) or
for functionality enhancement. We found that by ex-
plicitly specifying its behavioral logic, the new gener-
ated code has better structure and is easier to read and
understand. Further, since the behavior model of class
implementations are made explicit, their consistency
can be more easily verified (see Section 4).

3 AUTO-GENERATING C++/JAVA
CODE

To automatically translate iFSM specifications to
C++/Java class implementations, we use the trans-
formation engine shown in Figure 1 which is imple-
mented using POET (Yi et al., 2007), an interpreted
program transformation language designed for build-
ing ad-hoc translators between arbitrary languages
(e.g. C/C++, Java) as well as applying transforma-
tions to programs in these languages. Our iFSM trans-
lator can be configured via command-line parameters
to dynamically produce output in C++, Java, or the in-
put language of the NuSMV model checker. Figure 4
shows a portion of the C++ class automatically gen-
erated by our transformation engine from Figures 3.

3.1 The Code Generation Algorithm

Figure 5 shows our algorithm for translating iFSMs
to C++/Java classes. The algorithm takes two param-
eters, a list of aFSM/iFSM declarations (ifsm decls)
and a list of interface adaptations (adaptdecls).
It first applies type checking to verify that all
aFSM/iFSMs inifsm declsare properly defined and
constructs a symbol table for each FSM in the pro-
cess. The algorithm then takes each interface adapta-
tion from adaptdcls, finds the corresponding iFSM,
and generates an object-oriented class accordingly.

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

18

GenClassImpl(ifsm_decls, adapt_decls)

globalTable = TypeCheck(ifsm_decls);

for each (ifsm,adapt) in adapt_decls

symTab= lookup_symbol_table(globalTable, ifsm);

clsBody = empty; /*body of generated class*/

1. generate_member_variable_decls(clsBody, symTab, ifsm);

2. generate_private_actions(clsBody, symTab, ifsm);

3. for (each inner iFSM m nested inside ifsm):

gen_inner_class(clsBody,symTab,m,adapt);

4. /* map event names to relevant info.*/

accMap=map_event_to_accessCtrl(adapt);

bndMap=map_event_to_binding(adapt);

trMap=map_event_to_transitions(ifsm);

autoMap=map_event_to_autoTransitions(ifsm);

5. gen_default_constructor(clsBody, symTab,ifsm);

for (each event ev in extra_constructors_of(adapt)):

gen_constructor_from_event(clsBody,symTab,ev,trMap[ev],

autoMap[ev],accMap[ev],bndMap[ev]);

6. if (ifsm has a destructor event ev)

gen_destructor_from_event(clsBody,symTab,ev,trMap[ev],

autoMap[ev],accMap[ev],bndMap[ev]);

7. for (each event ev defined in ifsm)

gen_method_from_event(clsBody,symTab,ev,trMap[ev],

autoMap[ev],accMap[ev],bndMap[ev]);

8. for (each additional method wrapper (ev,name) in adapt)

gen_method_wrapper(clsBody, ev, name);

9. output_class_impl(name_of(ifsm),type_param_of(ifsm),

inherit_by(ifsm),clsBody);

Figure 5: Generating class implementations.

TheGenClassImplroutine in Figure 5 essentially
follows the mapping rules shown in Table 2 to trans-
late each iFSM to a corresponding C++/Java class. In
particular, after setting up the symbol table properly,
steps (1-2) of the algorithm translate iFSM variables
and actions; step(3) recursively invokes the algorithm
to translate nested iFSMs; steps(4-7) translate events
and transitions into class member functions; and steps
(8-9) post-process the class body (based on interface
adaptations) and unparse the final class implementa-
tion with proper syntax in either C++ or Java.

The main task of the algorithm is translating
events to class member functions. Here step(4) pre-
computes two associative maps,trMap, which maps
each event to the state transitions triggered by it,
and autoMap, which maps each event to the perti-
nent autonomous transitions. Steps (5-7) then com-
bine such information with additional interface adap-
tation information (accMapandbndMap) to translate
each eventev to a member function or a construc-
tor/destructor of the class. Specifically, an if-else-
branch is generated for each transitiont triggered by
ev, where the if-condition considers both the source
states and any additional constraints associated with
t, the true-branch includes all statements associated
with t, and the else branch includes implementations
of other transitions triggered byev.

Most iFSM statements can be translated to
C++/Java in a straightforward fashion. A special case

is theLOOPstatement (see Table 1), which is trans-
lated to a sequence of loops and if-statements. In par-
ticular, for eachloop-triggered autonomous transition
t within the current event, awhile loop is generated if
the source and destination states oft are different or
if the repeatattribute oft is set to true; otherwise, an
if-statement is generated fort. Code generation for
pre- and post-triggered autonomous transitions (see
Section 2.2) are supported in a similar fashion, except
that these transitions are evaluated at the entry and
exit of the corresponding event or action.

3.2 Correctness and Profitability

Our algorithm loyally follows the translation rules
shown in Table 2, which define the operational se-
mantics of the iFSM specifications. Consequently, the
generated code is guaranteed to be correct if the input
is known to be correct. However, if the input iFSM
contains a semantic error, e.g., dereferencing a null-
pointer or accessing an array out-of-bound, the error
appears accordingly in the generated code. To allevi-
ate this problem, we translate iFSM specifications to
the input of a model checker, NuSMV, to automati-
cally detect semantic errors in iFSM specifications.

The goal of our iFSM language is to raise the
level of abstractions so that developers can focus on
the behavior design of OO classes and then explicitly
map their design to concrete implementations. The
design and implementation are collectively specified
and maintained together so that they never become
out-of-sync. As illustrated by Figure 4, our auto-
generated code is similar in style to hand written code
and is easily understandable by both human and com-
pilers, so it can be seamlessly integrated with existing
code and can benefit from the same level of automatic
performance optimization by compilers.

4 VERIFYING iFSM
SPECIFICATIONS

A key objective of iFSM is to unify the behavior and
implementation of an OO class so that their consis-
tency can be readily verified. In particular, the con-
trol states of each iFSM categorize the different val-
ues that an iFSM object may have at runtime. As the
object goes through various modifications triggered
by event invocations, the modification of iFSM vari-
ables must conform to the declared state transitions.
We use NuMSV (Cimatti and et. al., 2002), a BDD-
based general-purpose model checker, to trace modi-
fications to the iFSM variables as different events are
invoked and relevant state transitions are triggered.

COLLECTIVE SPECIFICATION AND VERIFICATION OF BEHAVIOR MODELS AND OBJECT-ORIENTED
IMPLEMENTATIONS

19

VAR

1: state : {objNULL,objUnique,objShared};

obj : 0..3; count : 0..3; val_count : -21..20;

2: copy_that_obj : 0..1; copy_that_count : 0..1;

val_copy_that_count : -21..20;

3: EQ: boolean; const_ref: boolean; reset: boolean;

modify: boolean; copy: boolean; build: boolean;

ASSIGN

4: init(state) := objNULL; init(count) := 0; init(obj) := 0;

5: next(state) := case

6: build : objUnique;

7: reset : objNULL;

8: copy&(!(copy_that_count=0))&(state=objNULL) : objShared;

9: copy&!(copy_that_count=0)&(state=objUnique) : objShared;

10: copy&!(copy_that_count=0)&(state=objShared) : objShared;

11: copy&(copy_that_count=0)&(state=objUnique) : objNULL;

12: copy&(copy_that_count=0)&(state=objShared) : objNULL;

13: modify&(state=objShared) : objUnique; 1 : state;

esac;

14:next(obj) := case

15: build&(obj=0)&(count=0) : 1;

16: build&(obj!=0)&(count!=0)&(val_count>=1) : 1;

17: reset&(obj!=0)&(count!=0)&(val_count>=1) : 0;

copy&(!(copy_that_count=0))&(count=0) : 2;

18: copy&!(copy_that_count=0)&(count!=0)&(val_count=1) : 2;

19: copy&(copy_that_count=0)&(count!=0)&(val_count=1) : 0;

20: copy&!(copy_that_count=0)&(count!=0)&(val_count>1) : 2;

21: copy&(copy_that_count=0)&(count!=0)&(val_count>1) : 0;

22: modify&(obj!=0)&(count!=0)&(val_count>1):3; 1 : obj;

esac;

23:next(val_count) := case esac;

24:next(count) := case esac;

25:LTLSPEC G(state=objNULL -> obj=0&count=0)

26:LTLSPEC G(obj=0&count=0 -> state=objNULL)

27:LTLSPEC G(state=objUnique -> obj!=0&count!=0&val_count=1)

28:LTLSPEC G((count!=0)&val_count=1 -> state=objUnique)

29:LTLSPEC G(state=objShared -> obj!=0&count!=0&val_count>1)

30:LTLSPEC G((count!=0)&(val_count>1) -> state=objShared)

Figure 6: Auto-generated NuSMV input from Fig. 3.

Figure 6 shows the result of translating theCountRe-
fHandle iFSM in Figure 3 to the NuSMV input for
verification.

4.1 Translating iFSM to NuSMV

Our translation from iFSM to NuSMV aims to simul-
taneously simulate the state transitions and the cor-
responding iFSM variable modifications so that their
agreement can be verified using temporal logic prop-
erties. Figure 6 shows the translation result from the
iFSM specifications in Figure 3.

A key translation step from iFSM to NuSMV is
to convert all iFSM values to integers with explicit
lower/upper bounds, so that NuSMV can check all
values against the proposed properties. To accom-
plish the conversion, we associate a unique integer
with each unknown external memory reference (e.g.,
an event parameter or the result of anewoperator).

We then use these integers as values for iFSM vari-
ables that have non-integer types. For example, at
line 15 of Figure 6, when responding to eventbuild,
the next value for ob j is set to 1 because the ex-
pressiont.Clone() used to modifyob j at lines 12-
14 of Figure 3 has been associated with integer 1.
For iFSM variables that already have an integer type
but can hold an unlimited number of different val-
ues, we impose an artificial bound configured via
command-line options. In Figure 6, this artificial
bound is set to be 20. So both variablesval count
andval copythat counthave a value range−21..20,
where−21 is used to represent all values beyond
−20..20. The translation approximation, as defined
above, could potentially cause NuSVM to report fail-
ure with a counter example that does not exist in real-
ity, thus making our verification conservative.

The rest of the translation simply maps each iFSM
constituent to a corresponding NuSMV component.
As illustrated by Figure 6, the resulting SMV code
contains the following components.
Variables. Four groups of SMV variables are de-
clared, illustrated at lines 1-3 of Figure 6.

• Thestatevariable, which is used to keep track of
the control states of an iFSM object;

• The internal variables, each corresponding to a
memory reference used inside the definition of an
iFSM control state. In Figure 6, these variables
are ob j, count and val count (which represents
val(count)) used at lines 4-6 of Figure 3.

• The external variables, each corresponding
to a memory reference used in modifying
the internal variables. In Figure 6, these
variables arecopythat ob j, copythat count,
and val copythat count, which correspond to
that.ob j, that.count, andval(that.count) used by
the eventcopyat lines 17-23 of Figure 3.

• The event variables, each corresponding to an
iFSM event and used to keep track of the random
invocation of each event. In Figure 6, these vari-
ables areEQ, constref, reset, modify, copy, and
build, which are the events declared in Figure 3.

Initializations. Thestatevariable is initialized with
the default state of the iFSM, and theinternal vari-
ables are initialized with their default iFSM values,
as illustrated by line 4 of Figure 6. Theexternaland
eventvariables are not initialized, so that NuSMV will
enumerate all possible values for them.
State Modification. The statevariable is modified
based on which event is being invoked, the values of
event parameters, and the previous value ofstate, as
illustrated by lines 5-13 of Figure 6.
Internal Variable Modifications. The next value of
eachinternal variable is computed based on the im-

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

20

GenNuSMV(ifsm,symTab)

1. traceThis= memory refs used instateso f(i f sm);

2. /* compute alias info. of pointer variables */

for (each pointer variablex in traceThis):

tracePtr[x] = stmts that modifyx in transitionso f(i f sm);

aliasMap[x] = memory refs aliased tox by stmts intracePtr[x];

3. /*compute conditions and side effects of transitions*/

for (eacht in transitionso f(i f sm)):

condMap[t] =condition(t) && condition(src o f(t));

for (each memory refx in traceThis):

modMap[t][x]=stmts int that modifyx or aliasMap[x]

4. traceExt=empty; /*external memory refs to be traced by SMV*/

for (eacht in transitionso f(i f sm)):

traceExt∪= externalmemoryre f s(condMap[t]);

for (each refx in traceThis):

traceExt∪= externalmemoryre f s(modMap[t][x]);

5. /* generate SMV variable declarations*/

for (eachx in traceThis∪ traceExt∪events(i f sm)∪{”state”}):

genSMV variabledeclaration(symTab, i f sm,x);

6. /* generate initialization of state and internal variables */

for (eachx in traceThis∪{”state”}) :

genSMV variableinitialization(symTab, i f sm,x));

7. cases = empty; /* generate SMV state modification */

for (eacht in transitionso f(i f sm)):

appendSMV mod case(cases,condMap[t],deststates(t));

genSMV variablemodification(”state” ,cases);

8. /* generate internal variable modifications */

for (each memory referencex in traceThis):

cases = empty;

for (eacht in transitionso f(i f sm)):

appendSMV mod case(cases,condMap[t],modMap[t][x]);

genSMV variablemodification(x,cases);

9. for eachs in stateso f(i f sm) /* generate properties */

genSMV property(nameo f(s),condition(s));

Figure 7: Algorithm for generating SMV code.

plementations of event-triggered transitions (i.e., how
each transition modifies theinternal variables), as il-
lustrated by lines 14-24 of Figure 6.
LTL (Linear Temporal Logic) Properties to verify.
This is discussed in Section 4.3.

4.2 The Translation Algorithm

Figure 7 shows our algorithm for translating iFSM
specifications to NuSMV input. The algorithm takes
two parameters,ifsm, the input iFSM specification to
verify, andsymTab, the symbol table ofifsm. The
translation process includes the following steps.
Step(1): Collect Internal Variables, which are vari-
ables used in boolean expressions associated with the
iFSM states. Save the result to variabletraceThis.
Step(2): Compute Pointer Aliasing Information.
For each pointer variablex in traceThis, extract all
the memory references that can be aliased withx.
Step(3): Analyze Event-triggered Transitions.
Here condMapmaps each transitiont to a boolean
expression that controls its evaluation, and for each

variablex in traceThis, modMap[t][x] mapst to the
new values it could assign tox. Note thatmodMap
collects only the last value assigned to eachinternal
variable without tracing intermediate modifications.
Step(4): Collect External Variables,which include
all the external memory references that are used in
expressions insidecondMapor modMap. The col-
lection is saved into thetraceExtvariable in Figure 7.
Step(5): Create SMV Variable Declarations.In ad-
dition to state, a variable is declared for each iFSM
event and each item intraceThisor tranceExt.
Step(5-9): Generate SMV Code for Variable Ini-
tialization, Modification, and LTL Properties , as
discussed in Sections 4.1 and 4.3.

4.3 Verifying Properties of iFSM

As illustrated by lines 25-30 of Figure 6, we generate
an LTL property for each control states to verify that
at any time, thestatevariable equals tos if and only if
the boolean expression associated withs in the origi-
nal iFSM specification evaluates to true. Because the
auto-generated SMV code separately simulates the
state transitions and the corresponding iFSM memory
modifications, the LTL properties essentially recon-
cile the results of both simulations, thereby verifying
their consistency. Once the LTL properties are con-
firmed by the NuSMV model checker, the input iFSM
is guaranteed to satisfy the following constraints.

1. The boolean expressions associated with differ-
ent control states are mutually exclusive. Oth-
erwise, the LTL properties would imply that the
statevariable have two different values simulta-
neously, which is a contradiction.

2. An iFSM object cannot possibly enter any state
beyond those explicitly declared in the iFSM.
Otherwise, since the SMVstatevariable always
has a validenumvalue, says, the property relevant
to state= swould have failed the verification.

3. Immediately after initializing all member vari-
ables, an iFSM object is guaranteed to enter its
declared default state. Otherwise, the LTL prop-
erties pertinent to the iFSM default state will fail.

4. After evaluating the implementation of each iFSM
transitiont, the resulting new values for the mem-
ory satisfy the boolean constraints associated with
one of the declared destination states oft. If this
is violated, the SMV verification will fail imme-
diately as the value of thestatevariable no longer
agrees with the values of theinternalvariables.

In summary, our verification algorithm will detect
errors that cause an iFSM object to violate its de-
clared runtime behavior. For example, ifval count

COLLECTIVE SPECIFICATION AND VERIFICATION OF BEHAVIOR MODELS AND OBJECT-ORIENTED
IMPLEMENTATIONS

21

in Figure 6 becomes< 1 at any point, e.g., due to the
programmer forgetting to examineval(count) before
decrementing it, the verification will report the path
that causesval countto become out-of-sync.

5 EVALUATION

Our experimental evaluation aims to confirm two
hypotheses regarding iFSM: (1) the language has
the potential to conveniently specify most general-
purose C++/Java classes, and (2) the auto-generated
C++/Java class implementations are comparable to
manually written code in terms of readability and ef-
ficiency. To verify these hypotheses, we have taken a
number of existing manually written C++ classes and
generated iFSM specifications for them. We then use
our iFSM transformation engine to automatically gen-
erate equivalent C++/Java implementations from the
iFSM specifications. This approach enables us both to
look into the expressiveness of the language in terms
of specifying randomly chosen existing C++ classes
and to compare the quality of the auto-generated code
with existing manual software implementations.

5.1 A Use Case Study

To verify the expressiveness of our iFSM language,
we have taken a large, complex C++ class from an
open-source compiler project, POET (Yi et al., 2007).
We choose the POET project because its adaptive
parser includes extremely complex control flow that
was difficult to understand without documentation.

The single C++ class we took from POET is
namedParseMatchVisitorand contains 490 lines of
C++ code. This class inherits from two base classes
and uses the visitor pattern to dynamically match syn-
tax descriptions of an arbitrary language with a given
input token stream. We have used iFSM to fully spec-
ify the behavioral logic and implementation strategies
of this class, and have regenerated an equivalent class
implementation from the iFSM. The resulting auto-
generated C++ code has 540 lines and has confirmed
many of our expectations of the iFSM language.

First, when using iFSM to specify each class
method, we are required to consider both the overall
side effects and the different runtime situations that
may occur when invoking the method. Each situation
is then specified using a state transition. The separate
definitions of transitions and the explicit specification
of their source and destination states serve to clearly
document the semantic intention of each transition.
The end result is a successful unification of the im-
plementation with its higher-level behavioral design.

Second, cross-cutting concerns are made more ex-
plicit by iFSM. In particular, after specifying the be-
ginning and ending states of all transitions, common
traits of different events become easily noticeable.
For example, all events ofParseMatchVisitormust re-
turn empty if the input stream is empty, and when the
leading input token is matched against a designated
syntax, all events must advance the token pointer.

Third, iFSM imposes some programming con-
straints which offer better coding structure. In par-
ticular, since each iFSM transition includes a straight
line of statements as implementation, andLOOP() is
the only statement that can introduce additional con-
trol flow, at most two levels of branches can be di-
rectly nested inside one another in the auto-generated
code. If a deeper nesting of control-flow is required,
additional methods must be introduced. Since com-
plex control flow is a main source of confusion which
reduces program readability, the auto-generated code
is easier to understand than the original code.

When integrated within the POET project, the
performance difference between the auto-generated
ParseMatchVisitorclass and the manually written one
is indiscernible (below 0.01%). Therefore the coding
structure difference had minimal performance impact.

5.2 Performance Comparison

Besides the use case study, we have used iFSM to
generate a number of smaller C++/Java classes, in-
cluding theCountRe f Handleclass in Figure 3, two
iterator classes namedSingleIterator(which supports
the iterator interface in Figure 2 for a single item)
and MultiIterator (which unifies two iterator inter-
faces into a single one), and two container classes
namedMatrix andSinglyLinkedList. Both Java and
C++ code are generated for each iFSM except for
CountRe f Handle, where only C++ code is generated
because Java does not support memory deletion. All
iFSMs are based on existing manually written C++
code. Therefore we compare the performance of auto-
generated C++ code with that of the manual imple-
mentations. Figure 8 shows the result of comparison.

To test each C++ class, we construct a large num-
ber of class objects and then invoke the public meth-
ods of each object a constant number of times. There-
fore, the runtime of each class implementation is pro-
portional to the object container size, e.g., a matrix
of size 500*500 or a singly-linked list with 500*500
items. We compiled all the C++ code using g++ 4.2.0
with -O2. The elapsed time of each evaluation is mea-
sured on an Intel 2.16 GHz Core2Duo processor with
1GB memory and 4MB L2 cache.

From Figure 8, the auto-generated C++ classes

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

22

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

500*500 1000*1000 1500*1500 2000*2000

Sizes

T
im

e
 i

n
 s

e
c
o
n

d
s

iFSM-multiIterator

manual-multiIterator

iFSM-singleIterator

manual-singleIterator

iFSM-refcounting

manual-refcounting

iFSM-matrix

manual-matrix

iFSM-singleList

manual-singleList

Figure 8: Performance using different input sizes.

performed similarly as the manually written ones.
In particular, the auto-generated iterator classes per-
formed slightly better than the manually written
ones, while the auto-generated reference counting and
singly-linked list classes performed slightly worse.
The matrix classes performed almost identically.

Since the differences in performance are minor be-
tween the iFSM-generated class implementations and
the manually written ones, they are likely caused by
random factors in the compiler. The main benefit to
gain from the iFSM specifications is the automatic
verification of consistency between implementation
details and behavior design, and the potential of the
iFSM compiler utilizing the behavior information to
improve the efficiency of their interactions.

6 RELATED WORK

Model-driven development (Kleppe et al., 2003) cap-
tures important aspects of a software system through
models (Goguen and Burstall, 1992; Gray et al.,
2001) before producing lower-level implementations
of the system (Balasubramanian et al., 2005; Ko-
gekar et al., 2006). In particular, FSM-based no-
tations have long been used in previous research to
model the dynamic behavior of large reactive sys-
tems (Harel, 1987; Harel and Naamad, 1996), and
many research projects have automatically produced
code to simulate the behavior of various state machine
models (Knapp and Merz., 2002; Prout et al., 2008;
Whalen, 2000).

Runtime behavior modeling, however, is only one
aspect of software development. Unless the behav-
ioral notations are correlated with other aspects of
software implementation, e.g., data structures and al-
gorithms, the behavioral notations are merely artifacts
of the software design phase and have to be kept sepa-
rate from complete implementations of software sys-
tems. Working towards similar goals, Poizatet. al.
have developed a semi-automated approach to gen-

erate Java code from both data and behavioral mod-
els (Poizat et al., 1999). Our iFSM language offers a
way to unify modeling notations and implementation
strategies so that they can be maintained together, and
their agreement can be automatically verified.

By unifying behavior modeling with domain-
specific implementation specifications, previous re-
search has produced efficient finite-state-machine im-
plementations in some specialized domains, e.g., em-
bedded systems (Wasowski, 2003) and lexer/parser
generation (Levine et al., 1992). Our work is differ-
ent from these domain-specific code generators in that
we target general-purpose object-oriented C++/Java
code, and we automatically verify the consistency be-
tween the implementation specifications and the cor-
responding behavioral design.

Program transformation tools have long been used
to analyze and modify existing software implemen-
tations, including re-documenting/re-implementing
code, reverse engineering, and porting to new plat-
forms (Baxter et al., 2004; Futamura et al., 2002).
Several general-purpose transformation languages
and systems have been developed (Huang et al.,
2005; Erwig and Ren, 2002; Bravenboer et al., 2008;
Bagge et al., 2003) and some have been widely
adopted (Bravenboer et al., 2008; Bagge et al., 2003).
These tools and systems do not use modeling nota-
tions and are typically not concerned with the consis-
tency between software design and implementation.
We focus on combining program transformation with
software verification to better support both the cor-
rectness and the efficiency of generated code.

Formal methods have been widely used to verify
both software designs and implementations (Clarke
et al., 1999; Owre et al., 1992; Chaki et al., 2004;
Necula, 1997; Das and et. al., 2002; Kawaguchi et al.,
2009). A number of projects can effectively verify im-
portant properties or generate test cases of software
systems via analyzing the source code (Beyer et al.,
2004; Das and et. al., 2002; Chaki et al., 2004). While
more appealing, directly verifying low-level software
implementations is in general extremely challenging
due to the unlimited memory references dynamically
modified by user applications. Our iFSM language
explicitly categorizes the unlimited memory modifi-
cations using a finite number of runtime state tran-
sitions. As a result we can more readily bridge the
semantic gap between the behavior properties and the
implementation details. For example, if a variablex
is modified within a transition, a small set of unique
expressions can be determined to be the new values
for x, which is typically not possible when directly
verifying programs in lower-level languages such as
C++/Java. The iFSM annotations may be embedded

COLLECTIVE SPECIFICATION AND VERIFICATION OF BEHAVIOR MODELS AND OBJECT-ORIENTED
IMPLEMENTATIONS

23

inside existing implementations to enable more effec-
tive verification, but this belongs to our future work.

7 CONCLUSIONS

We present a high-level specification language, iFSM,
to effectively unify the behavior design of object-
oriented classes with detailed implementation strate-
gies. We have automatically generated efficient
C++/Java code from iFSM specifications and have
automatically verified their consistency via model
checking techniques.

REFERENCES

Bagge, O. S., Kalleberg, K. T., Haveraaen, M., and Visser,
E. (2003). Design of the CodeBoost transformation
system for domain-specific optimisation of C++ pro-
grams. In Binkley, D. and Tonella, P., editors,Third
International Workshop on Source Code Analysis and
Manipulation (SCAM 2003), pages 65–75, Amster-
dam, The Netherlands. IEEE Computer Society Press.

Balasubramanian, K., Krishna, A. S., Turkay, E., Balasub-
ramanian, J., Parsons, J., Gokhale, A., and Schmidt,
D. C. (2005). Applying model-driven development to
distributed real-time and embedded avionics systems.
International Journal of Embedded Systems. Special
issue on Design and Verification of Real-time Embed-
ded Software.

Baxter, I., Pidgeon, P., and Mehlich, M. (2004). Dms: Pro-
gram transformations for practical scalable software
evolution. InProceedings of the International Con-
ference on Software Engineering. IEEE Press.

Beyer, D., Chlipala, A. J., and Majumdar, R. (2004). Gen-
erating tests from counterexamples. InProceedings of
the 26th International Conference on Software Engi-
neering (ICSE), pages 326–335.

Bravenboer, M., Kalleberg, K. T., Vermaas, R., and Visser,
E. (2008). Stratego/XT 0.17. A language and toolset
for program transformation. Science of Computer
Programming.

Chaki, S., Clarke, E., and Groce, A. (2004). Modular veri-
fication of software components in c.Transactions of
Software Engineering, 1(8).

Cimatti, A. and et. al. (2002). NuSMV Version 2: An Open-
Source Tool for Symbolic Model Checking. InCAV,
volume 2404 ofLNCS.

Clarke, E. M., Grumberg, O., and Peled, D. A. (1999).
Model Checking. MIT Press.

Das, M. and et. al. (2002). Esp: path-sensitive program
verification in polynomial time. InPLDI ’02, pages
57–68.

Erwig, M. and Ren, D. (2002). A rule-based language
for programming software updates.SIGPLAN Not.,
37(12):88–97.

Futamura, Y., Konishi, Z., and Glück, R. (2002). Ws-
dfu: program transformation system based on general-

ized partial computation.The essence of computation:
complexity, analysis, transformation, pages 358–378.

Goguen, J. A. and Burstall, R. M. (1992). Institutions:
abstract model theory for specification and program-
ming. J. ACM, 39(1):95–146.

Gray, J., Bapty, T., and Neema, S. (2001). Handling cross-
cutting constraints in domain-specific modeling. In
Communications of the ACM, pages 87–93.

Harel, D. (1987). Statecharts: A visual formalism for com-
plex systems.Science of Comp. Prog., 8(3).

Harel, D. and Naamad, A. (1996). The statemate seman-
tics of statecharts.ACM Trans. Softw. Eng. Methodol.,
5(4):293–333.

Huang, S. S., Zook, D., and Smaragdakis, Y. (2005). Stat-
ically safe program generation with safegen. InGen-
erative Programming and Component Engineering.

Kawaguchi, M., Rondon, P., and Jhala, R. (2009). Type-
based data structure verification. InPLDI ’09, pages
304–315.

Kleppe, A., Warmer, J., and Bast, W. (2003).MDA Ex-
plained: The Model Driven Architecture Practice and
Promise. Addison Wesley.

Knapp, A. and Merz., S. (2002). Model checking and code
generation for uml state machines and collaborations.
In Proc. 5th Wsh. Tools for System Design and Verifi-
cation, pages 59–64.

Kogekar, A., Kaul, D., Gokhale, A., Vandal, P., Prapha-
montripong, U., Gokhale, S., Zhang, J., Lin, Y., and
Gray, J. (2006). Model-driven generative techniques
for scalable performability analysis of distributed sys-
tems. InIn Proceedings of the NSF NGS Workshop,
International Conference on Parallel and Distributed
Processing Symposium (IPDPS). IEEE.

Levine, J. R., Mason, T., and Brown, D. (1992).Lex & Yacc.
O’Reilly & Associates.

Necula, G. C. (1997). Proof-carrying code. InPOPL’97,
pages 106–119.

Niu, J., Atlee, J. M., and Day, N. A. (2003). Template
semantics for model-based notations.IEEE Transac-
tions on Software Engineering, 29(10):866–882.

Owre, S., Rushby, J., and Shankar, N. (1992). PVS: A pro-
totype verification system. InCADE.

Poizat, P., Choppy, C., and Royer, J.-C. (1999). From in-
formal requirements to coop: A concurrent automata
approach. InProceedings of the Wold Congress on
Formal Methods in the Development of Computing
Systems-Volume II, pages 939–962.

Prout, A., Atlee, J. M., Day, N. A., and Shaker, P. (2008).
Semantically configurable code generation. InMoD-
ELS, pages 705–720.

Wasowski, A. (2003). On efficient program synthesis from
statecharts. InLCTES ’03: Proceedings of the 2003
ACM SIGPLAN conference on Language, compiler,
and tool for embedded systems, pages 163–170, New
York, NY, USA. ACM.

Whalen, M. W. (2000). High-integrity code generation for
state-based formalisms. InICSE ’00: Proceedings of
the 22nd international conference on Software engi-
neering, pages 725–727, New York, NY, USA. ACM.

Yi, Q., Seymour, K., You, H., Vuduc, R., and Quinlan, D.
(2007). POET: Parameterized optimizations for em-
pirical tuning. InWorkshop on Performance Optimiza-
tion for High-Level Languages and Libraries.

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

24

