
ADVANCES IN STRUCTURE EDITORS
Do They Really Pay Off?

Andreas Gomolka and Bernhard G. Humm
Hochschule Darmstadt, University of Applied Sciences, Haardtring 100, 64295 Darmstadt, Germany

Keywords: Programming, Structure editor, Evaluation, Lisp, Eclipse.

Abstract: Structure editors emphasise a high-fidelity representation of the underlying tree structure of a program,
often using a clearly identifiable 1-to-1 mapping between syntax tree elements and on-screen artefacts. This
paper presents layout and behaviour principles for structure editors and a new structure editor for Lisp. The
evaluation of the editor’s usability reveals an interesting mismatch. Whereas by far most participants of a
questionnaire intuitively favour the structure editor to the textual editor, objective improvements are
measurable, yet not significant.

1 INTRODUCTION

Structure editors have fascinated designers of
development environments for decades (Hansen,
1971, Borras et al., 1988, Ballance et al., 1992, Ko
and Myers, 2006). The idea is simple and
convincing. The elements of the syntax tree of a
program are mapped to on-screen artefacts and can
be edited directly.

The basis for this is the awareness that programs
are more than just text (cf. Teitelbaum and Reps,
1981). A programmer designing a piece of code
thinks in structures: classes, methods, blocks, loops,
conditions, etc. Using a textual program editor he or
she has to codify those syntactically using
parentheses such as ‘{...}’, ‘(...)’, ‘[...]’ or using
keywords such as ‘begin ... end’. The compiler then
parses the syntactic elements and re-creates the
structures in the form of an abstract or concrete
syntax tree – the same structures which the
programmer originally had in mind. This just seems
inefficient and not intuitive.

Structure editors fill this gap: What the
programmer thinks is what he or she sees in the
editor. Surprisingly enough, structure editors,
although around for decades, have never become
mainstream.

In this paper, we present layout and behaviour
principles for structure editors and a new structure
editor for Lisp. We then present an evaluation of the
editor’s usability based on a questionnaire – with
interesting results.

The remainder of the paper is structured as
follows: Section 2 describes layout and behaviour
principles for structure editors. In Section 3, we
present a new structure editor for Lisp via samples
and screenshots and give some insights into its
implementation. Section 4 describes how we
evaluated the usability of the editor and in Section 5
we position our work in relation to other approaches.
Section 6 concludes the paper with a critical
discussion.

2 LAYOUT AND BEHAVIOUR
PRINCIPLES

A structure editor should improve the readability and
comprehensibility of the code whilst not
compromising useful features of textual editors. To
this end, we postulate the following layout and
behaviour principles for structure editors:

1. Focus on the Net Code. The code layout should
support the programmer in focussing on the net
program code, i.e., keywords, identifiers, and
literals. The structure of the code should be
visualized in a clear but discrete manner.

A look into the related literature reveals that there is
no overall agreement, which kind of representation
fits this intention. Sergey Dimitriev, for example,
states that programmers always translate program
text to tree structures in their mind (Dimitriev, 2004)
and argues that editors should emphasise this view.

60 Gomolka A. and G. Humm B..
ADVANCES IN STRUCTURE EDITORS - Do They Really Pay Off?.
DOI: 10.5220/0003428600600069
In Proceedings of the 6th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2011), pages 60-69
ISBN: 978-989-8425-57-7
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)

In contrast to that, Jonathan Edwards claims that tree
structures are not satisfying to display conditionals
and therefore proposes to visualize programs using
tables (Edwards, 2007).

We think that the representation should
emphasise the structure of the program, but also
enable the programmer to recognise the original
code. Therefore we propose similar to the approach
of Ko and Myers (2006), to replace syntactic
elements for structuring the code (e.g., parentheses
for block structures, separators like semicolons
between statements, and delimiters like double
quotes for string literals) by graphical elements.

2. Do not Restrain the Programmer. The editor
should help, but not unnecessarily restrain the
programmer. For an editor, it is only possible to
visualize the structure of the program correctly, if it
does not contain any syntactical errors. Some former
approaches handled this problem by preventing the
creation of syntactical errors at all (Hansen, 1971;
Borras et al., 1988). This had the effect that actually
simple operations which change the structure of the
program became quite complex (e.g., removing a
parenthesis and insert it somewhere else). It is
essential for the usability of a structure editor how it
handles this problem.
3. Keep the Layout Compact. Apart from editing, a
programmer uses an editor also for reading and
understanding a piece of code. The structured
representation should support the programmer in
quickly getting an overview of the whole program.
Therefore the structured representation should be as
compact as the plain text representation.
4. Keep Common Look and Feel. The behaviour of
the structure editor should be as similar as possible
to the look and feel of widely used editors.
Examples are shortcuts, colouring, and behaviour
during typing. This facilitates getting accustomed
with it for experienced programmers.
5. Do not Introduce New Dependencies. A structure
editor is just one of many more tools to work with a
program. The textual form of a program makes it
very easy to change between different editors. This
independence should not be dismissed without a
very good reason. Thus, a structure editor should not
necessitate changes to the programming language or
the way programs are stored.
6. Make the Layout Configurable. Where possible,
the programmer should be able to configure the
presentation of the code. For example, colours that
are used in the layout should be configurable.
7. Leave the Choice to the Programmer. Some
programming tasks might be easier to achieve with a
simple structure editor, some with an advanced

structure editor and yet others with a textual editor.
Therefore, the programmer should be able to freely
and easily swap between different editors
respectively editor modes.

3 A STRUCTURE EDITOR FOR
LISP

This section presents a new structure editor for the
programming language Lisp that was developed as a
research prototype. It follows the principles we
propose above.

3.1 Why Lisp?

The main reason why we decided to build the
research prototype for Lisp – or to be more precise
Common Lisp – is Lisp’s uniform syntax. Lisp data
is expressed as a so called S-expression (McCarthy,
1960). The term S-expression means symbolic
expression and includes symbols and nested lists. As
there is no syntactical difference between data and
code, a Lisp program also consists of S-expressions.
This simplicity and uniformity and the ability to
treat Lisp code as data make it particularly easy to
develop a structure editor for Lisp.

Also, in a different research context, we use Lisp
as a base language for developing domain-specific
languages (DSLs) in the context of language-
oriented programming (cf. Humm and Engelschall,
2010). A structure editor may be particularly useful
for developing programs using DSLs that are based
on Lisp.

3.2 Code Presentation

Our structure editor is based on the Eclipse plug-
in CUSP (Jasko and Ritchey, 2010). CUSP already
provides an environment for developing Lisp
programs using Eclipse including a Navigator View
for browsing Lisp projects, a REPL (Read-Eval-
Print-Loop) and an Outline of the currently
displayed Lisp file. The new structure editor has
been integrated into this environment as an
additional Editor Window (see
Figure 1).

The Editor Window consists of two separate
representations of the code. Besides the structured
representation, we also provide a textual one. The
user is able to switch between these two using the
tabs at the lower left corner of the editor window.

ADVANCES IN STRUCTURE EDITORS - Do They Really Pay Off?

61

Figure 1: Overview of the GUI of our structure editor.

The following Figures 2-4 demonstrate the
different possibilities of viewing the code that are
provided. All three figures show the same snippet of
Lisp code defining a new function called “hello-
world” which just prints a string n-times.

Figure 2: Textual representation.

Figure 3: Default structured representation.

Figure 4: Coloured structured representation.

Figure 2 shows the snippet using the textual
representation. The structure of the code is
visualized by the indention of the lines and the
individual symbol types (e.g., keywords, string

literals, comment, etc.) are indicated by different
colours.

Figure 3 shows the same snippet displayed in the
structure editor. All parentheses are replaced by grey
boxes which visualize the block structure. Also, the
double quotes delimiting the string literals are
hidden and expressed by the light orange
background. Similar to that, the leading semicolons
introducing the comment are hidden and the
comment is indicated by the light green background.
All this removes syntactic delimiters from the code
and accentuates the net code, which satisfies
Principle 1 stated in Section 2.

A slightly different representation of the same
code snippet is shown in Figure 4. There, in
addition, coloured bars are displayed at the left side
of each box and the boxes themselves are also
coloured. The colours indicate whether a block
contains a call to a function or macro (e.g., “defun”)
or just an ordinary list (e.g., the parameter list of the
function “hello-world”).

According to Principle 7, the programmer may
decide which representation to use and enable or
disable the additional information expressed by
those colours via the “Preferences” of the plug-in.
Furthermore, all colours to be used (background and
foreground) can be configured (Principle 6).

Editor Window

REPL Outline

Navigator

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

62

3.3 Editing

The code can be directly edited in the nested block
structure. There are no additional commands or
shortcuts necessary compared to editing the code in
the textual representation. As shown in Figure 5,
typing an opening parenthesis will open a new box.
Typing a closing parenthesis will close the current
box and move the caret outside. In each step the
layout rearranges itself according to the changes.
This satisfies our claim to enable the programmer
doing the same typing as using a textual editor
(Principle 4).

1.

2.

3.

4.

5.

6.

7.

Figure 5: Behaviour during typing.

The caret can be moved around using the mouse
or the keyboard. The arrow keys will move it one
character to the left or right or one line up or down
and using <Tab> respectively <Shift><Tab> it is
moved one field in forward or backward direction.
<Pos1> will place the caret at the beginning of the
first field of the current line and <End> at the end of
the last field.

The programmer may decide about line breaks or
blank lines. They will be inserted by typing
<Return>. Each new line is inserted to the current
block. Line indention is calculated automatically
depending on the context of the current block,
because this is part of the block structure.

The structure editor provides code completion,
which also shows additional information about the
selected symbol as shown in Figure 6. As common
in Eclipse, this is invoked using <Ctrl><Space>.

Common actions like undo/redo or cut, copy and
paste may be called via the “Edit” menu or by using

the usual shortcuts, for example <Ctrl><C> for
“copy” (Principle 4).

Figure 6: Code completion.

3.4 Implementation

The implementation of the new Editor Window
containing the structure editor is based on the
Graphical Editing Framework (GEF) provided by
Eclipse (The Eclipse Foundation, 2011).

GEF applies the Model-View-Controller (MVC)
design pattern that explicitly separates the data
structures themselves and the way they are displayed
in the user interface. GEF is designed in a generic
way so that any kind of model can be used. In our
case, the model is the syntax tree that was parsed
from the Lisp code. We extended the parser that
came with CUSP to enrich the individual tree
elements (e.g., to distinguish between different kinds
of symbols like function names and keyword
symbols).

Each model element is mapped to a figure which
visualizes the different type of expression or symbol.
Each change which is done using the structured
representation in the user interface is reflected to the
model. In some cases, an operation causes more than
one change. For example, typing an opening
parenthesis changes the whole structure because the
following elements have to be moved into a newly
created box. These modifications are performed in
the model and afterwards the affected elements of
the view are adjusted accordingly.

Figure 7 displays the whole process of editing a
piece of code using the structure editor. First the text
is read from the source file and directly parsed to get
the corresponding syntax tree. This is mapped to the
figures that represent the individual elements of the
tree. As mentioned before, each change which is
done by the programmer is reflected back to the
model. The corresponding Lisp code is not touched
until the user saves the current document or changes
to the textual representation. This means, using the

inserted "some code"

inserted "("

inserted "("

inserted ")"

inserted ")"

inserted "<Return>"

ADVANCES IN STRUCTURE EDITORS - Do They Really Pay Off?

63

Figure 7: Changing the model using the structure editor.

structure editor, the programmer directly works on
the syntax tree of the program.

The editor takes care of performing editing
operations only if they result in a valid syntax tree.
For example, it is not possible to paste code that
contains unbalanced parentheses. If this is necessary
the programmer may circumvent this restriction
(Principle 2) by switching to the textual
representation to fix the appearing parsing errors.
The code that was edited using the structure editor
will not contain any structural parsing errors at all.

The following numbers give an impression of the
extent of the implementation of the editor. The first
one describes the newly created part of the plug-in
(including some code that was taken from GEF
samples) and the second one also incorporates the
code of the already existing CUSP-plug-in.

Lines of code (structure editor): 8290

Lines of code (entire plug-in): 25571

4 EVALUATION

In order to evaluate the usability of our structure
editor in comparison to a common textual editor we
conducted a survey.

4.1 Survey Preparation

Following Dumas and Redish, we presume that
“usability means that the people who use the product
can do so quickly and easily to accomplish their own
task” (Dumas and Redish, 1999, p. 4). We defined
that the task we analyze by this evaluation is to
understand the meaning and the structure of a piece
of Lisp code – in other words: how the structure
editor supports the readability and comprehensibility
of the code. Considering that the users just need to
read a piece of code, we decided to conduct a survey
in terms of examining screenshots of the editor.

In literature, there are many metrics for
analyzing the usability of software such as
effectiveness, efficiency, measures of learning, and
subjective usability (cf. Bevan, 1995, Schalles et al.,
2010). We focused on measuring the efficiency and
a subjective rating of the usability.

To this end, three questionnaires were composed.
Two of them show screenshots showing a piece of
Lisp code and ten multiple-choice questions related
to the meaning of the displayed code. We produced
two versions of each questionnaire: one containing a
screenshot of the code in textual representation and
one containing a screenshot of the structure editor.
This made the results comparable. In the third
questionnaire, the participants were asked to rate
how they experienced code reading in the two
different representations and to give statements
about things they liked or disliked in the screenshots
of the structure editor.

4.2 Conducting the Survey

We conducted the survey with two different groups
of participants. The first group was a group of
second semester bachelors’ students (37 people).
They did not know Lisp before. The second group
was a team of masters’ students (13 people) who
were engaged in a development project using Lisp
and PROLOG.

Both groups were randomly (according to their
last names) divided into two groups and each group
got one version of the first questionnaire. After
exactly five minutes the students were told to stop
working and to mark how far they got in answering
the questions. For the second questionnaire, the
groups were swapped: the group that worked on a
questionnaire containing screenshots of the textual
editor first then got the ones containing screenshots
of the structure editor and vice versa. Again, the
students had five minutes time to answer the
questions. Finally, the students answered the third
questionnaire.

Structure Editor

ProgrammerSource File

(foo

(bar))

Program text

Write

Model

 foo

 bar

foo

bar

View

Generate Change

Edit

Read Parse Display

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

64

4.3 Results

As explained in section 4.1, the first two
questionnaires contained questions for comparing
the efficiency in reading and understanding code in
the two different representations.

Figure 8: Efficiency results.

Figure 8 shows the cumulated results of this part
of the survey in terms of the percentage of correct
answers. As one can see, the results using the
structure editor are slightly better (2%) but there is
no significant difference.

We also examined how many questions the
students managed to answer in the rather short
period of five minutes. Figure 9 shows the results.
The students working with the structure editor did a
bit better, but again, the difference is not significant.

Figure 9: Number of finished questions.

In the third questionnaire, the participants were
asked to rate the structure editor compared to the
textual editor regarding:
 Clarity of code
 Perceptibility of structures
 Perceptibility of associated code blocks
 Perceptibility of keywords and literals
 General readability of the code
The rating was possible within a range from
“significantly better” (1) to “significantly worse”
(5). A value of 3 means “no difference”.

Figure 10 shows the result. All ratings are in the
positive half of the spectrum. Most ratings are close
to 2 which means “slightly better”. The master
students who were already experienced in working
in Lisp gave better rates than the bachelor students.

Figure 10: Subjective ratings of the structure editor.

Most of the statements the participants gave
about what they liked regarding the structure editor
pointed in a similar direction. Several people wrote
something like “code is clearly arranged” or “the
structure is clearly visible”. However, a few people
contrarily stated that they were confused by the
structured representation of the code.

In general, the diagram indicates the subjective
feeling of the participants that the structure editor
helps them reading and understanding the code
better.

Figure 11: Question "If there were a structure editor for
your favourite programming language - would you use
it?".

As a last question, we asked the participants
whether they would use such a structure editor if
there was one for their favourite programming
language. Figure 11 shows that the majority (61% in
total, 82% of the master students) would at least give
it a try. Students that voted negatively argued that
they got used to their current editor and do not want
to spend time in learning how to use a different one.

The evaluation does not reveal significant
benefits of the structure editor as one may have

ADVANCES IN STRUCTURE EDITORS - Do They Really Pay Off?

65

expected. Nevertheless, it shows an interesting
mismatch between the subjective ratings of the
participants in the third questionnaire and the actual
results from the first two questionnaires. This will be
discussed in Section 6.

5 RELATED WORK

We are not the first ones thinking about visualising
the structure of a program in the editor and directly
working on the syntax tree that was created from the
code. In this section we present other approaches
that were developed to achieve these goals.

5.1 Early Structure Editors

The idea of an editor which visualizes the structure
of the underlying code is not new. In 1971, Wilfred
J. Hansen presented a system called “Emily”
(Hansen, 1971) which was, in fact, a structure editor
for PL/I. The basic idea was to create a program by
recursive replacement of placeholders according to
their role in the Backus-Naur Form (BNF) notation
of the programming language. The structure of the
program and even of every command was fixed by
structures of placeholders. Emily physically stored
the whole program in a hierarchical structure that
supported descending into sub-structures along the
hierarchy. From the programmer’s point of view, it
was technically not possible to create programs that
contained syntactical errors.

Other systems that follow a similar approach are
“MENTOR” (Donzeau-Gouge et al, 1980) and the
“Cornell Program Synthesizer” (Teitelbaum and
Reps, 1981). Particularly in the Lisp community,
programmers were fascinated by the idea of working
directly on the structure of the code instead of a
textual representation. An example of a structure
editor for Lisp is Interlisp-D (Burton et al., 1980).

However, these early structure editors that are
mostly summarized as syntax-directed editors could
not satisfy the expectations and did not become
widely accepted. Looking at these ancient examples
which ran on terminals, restricted the programmers
in several ways (violating Principle 2) and were
quite tedious to use compared to a textual editor, this
seems comprehensible. But what about newer
systems based on the same idea?

5.2 Program Tree Editor

A newer example of a structure editor of a different
flavour is the “Program Tree Editor” (Yurov, 2006).

This system visualises a piece of code written in a
common programming language as a tree, similar to
a file browser. It supports C, C++, C#, Java, Java
Script, J#, XML, XHTML. Each tree node
represents a structure from the underlying code and
can be contracted and expanded. The tree structure is
created upon opening a file containing source code
and is translated back to the textual representation
when a file is saved.

The user navigates through the tree using the
keyboard and is able to edit the individual nodes
directly in the tree. Nodes can be added or removed
without the need of a mouse. Features like auto
completion are provided.

This type of editor literally implements working
on the underlying tree structure of the code.
However, we question that this kind of visualization
is particularly useful. We believe that programmers
do not think in such file browser-like tree structures
when they program. They more likely think in block
structures. This is why we designed the GUI of our
structure editor in a different way, consisting of
nested boxes that emphasise the structure in a more
discrete, but nevertheless clear way.

5.3 Subtext

A totally different approach of representing the
structure of a program is presented as a system
called Subtext (Edwards, 2007). Subtext is not based
on an existing programming language. Instead, it
introduces its own programming language that is not
based on a textual representation of code any longer
but stores its code in a database.

Using Subtext, the programmer composes
programs from combining so called schematic tables
which the author of the system describes as “a cross
between decision tables and data flow graphs” and
which are intended to replace all kinds of
conditional constructs. The basic idea behind such
schematic tables is to visualize the structure of the
program in two-dimensional way. The horizontal
axis contains the different cases of a conditional
statement (“deciding”) and the vertical axis
determines what happens if the individual cases
become active (“doing”).

Subtext seems to be quite an interesting approach
for visualizing decision structures such as nested
case statements. The greatest drawback appears to
be its lack of compatibility. Subtext cannot be used
to visualize the structure of already existing
programs written in a common programming
language (Principle 5).

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

66

5.4 A Structured Editor for C#

The most similar approach to our structure editor we
are aware of is a Structured Editor for C# (Osenkov,
2007). We regard it as the most capable editor of the
ones we compared. This editor also represents the
structure of the code in a discreet way by coloured
bars at the beginning of each line. The actual bounds
of a code block are shown as soon as one clicks on it
using the mouse. All syntactic delimiters like curly
brackets and semicolons are hidden, because they
are not needed any longer.

One difference is, that the programmer is forced
to change his way of typing. The delimiters are not
only hidden, they are also not typed at all. For
example, for entering the body of a C# class, the
programmer just presses the <Return> key instead of
typing a curly bracket. Our philosophy is that the
programmer may type exactly the same code with
the textual and the structural editor in order to
minimize the learning curve and to easily switch
between editors (Principle 4).

Another quite similar but even more generic
system is the “Barista” framework presented by Ko
and Myers (2006).

5.5 Structure Editors and
Language-oriented Programming

All structure editors that were mentioned so far try
to be an alternative or extension to the textual editors
that are normally used to read and edit programs. In
different ways they visualize the structure of a
program. In the context of language-oriented
programming (LOP) there is one more step of
abstraction where structure editors can be quite
useful.

The main idea of LOP is to enable domain
experts to contribute more directly to the
programmatic solution of a problem by creating the
solution using a DSL that uses the domain-specific
notation and is well suited for the appropriate
problem domain. This DSL may be an extension to
an existing programming language (internal DSL) or
a completely new language that not even has to
consist of text at all (external DSL). In the latter case
the program is created using a special kind of
structure editor (mostly called projecting editor) that
afterwards does a mapping from the program written
using the DSL to a runnable program. In that case
the structure editor is more than just an alternative
view on the program – it is actually part of the
language itself.

A system that provides a complete development
environment for external DSLs is the “Meta-
Programming-System” (Dimitirev, 2004) developed
by JetBrains, which includes an “editor language” to
create structure editors for each newly developed
DSL. Similar to this is the system called “Intentional
Software” that was proposed by Charles Simonyi
(2006).

6 CONCLUSIONS

In this paper we described layout and behaviour
principles for structure editors and presented a new
structure editor for Lisp. We also presented an
evaluation of our editor. Do structure editors really
pay off?

6.1 An Interesting Mismatch

Structure editors have been around for decades.
However, they have not succeeded in replacing
classical textual program editors.

We think that this is an interesting mismatch: on
the one hand, the concept of displaying the
underlying structure of a program and directly
working on the syntax tree is intuitively attractive.
On the other hand, this kind of editor has gained low
acceptance in practice so far.

The results of our survey revealed this mismatch,
too. The majority of the participants had the intuitive
feeling that the structure editor was superior to the
textual editor. However, the quantitative results
showed no significant improvement.

Why is this the case?
Certainly, structure editors are no silver bullet for
software engineering (Brooks, 1987). Understanding
the concepts of a programming language or
paradigm is far more difficult than coping with a
particular syntax. For example, a programming
novice who has understood the concept of classes,
inheritance, and polymorphism will not have a major
problem in getting acquainted with different
syntaxes, be it curly or other parentheses or, instead,
boxes in a structure editor. Insofar, one should not
expect an extraordinary measurable improvement in
usability.

Also, many programmers are reluctant to change
their way of programming. Our survey confirmed
this opinion. Some participants conceded that the
structure editor might be useful, but they got
accustomed to their favourite IDE and do not want
to change tools without really having to.

ADVANCES IN STRUCTURE EDITORS - Do They Really Pay Off?

67

This is why we integrated the structure editor
into a popular IDE like Eclipse and also provided the
textual editor as part of the plug-in. As a result, the
programmers may just use the structured
representation where this seems helpful – and
perhaps find out that this applies in more cases than
expected.

6.2 Structure Editors are Still Useful

However, we still feel that structure editors can be
useful and that programmers will slowly adapt to
them as soon as there are powerful structure editors
widely available and plugged into mainstream IDEs.

We particularly expect benefits in the context of
language-oriented programming, i.e., programming
with Domain-Specific Languages. Using external
DSLs a structure editor is needed to do the mapping
between the “domain code” (Simonyi, 2006) and the
runnable code. As expressed before, it actually
becomes part of the language itself. Even using
internal DSLs that are based on some extendable
programming language like Lisp, structure editors
can be quite useful. The DSLs most likely will be
different from widely known languages so most
users with will be novices in using them, at first. We
feel that a structure editor will help people getting
started with a new language. Similar experience was
made by Conway et al. (2000) and Myers et al.
(2004) who developed and evaluated structure
editors that were designed for programming novices
and even for children.

An experienced programmer perhaps will feel
more comfortable using a textual editor. However,
trying to understand a piece of code that was written
by someone else or some time ago can sometimes be
a difficult task. We think that in this case it would be
advantageous to be able to switch to a structured
representation of the code to get an overview and to
understand the structure of the code.

6.3 Future Work

As future work, we plan to extend our evaluation of
the structure editor towards its use in programming
DSLs. In addition to readability and
understandability of code we will examine the
effects of the editor on the learning curve for DSLs
as well as the effectiveness and efficiency of
programming.

A program editor is a tool and no silver bullet. In
the end, it is a matter of taste which kind of editor a
programmer feels most appropriate for achieving a
task – and this is a case for structure editors.

REFERENCES

Ballance, R. A., Graham, S. L., and van de Vanter, M. L.,
1992. The Pan language-based editing system. In ACM
Transactions on Software Engineering Methodology
(TOSEM), Vol. 1, pp. 95-127.

Bevan, N., 1995. Measuring usability as quality of use. In
Software Quality Journal, Vol. 4, pp. 115–30.

Borras, P., Clement, D., Despeyroux, T., Incerpi, J., Kahn,
G., Lang, B., and Pascual, V., 1988. Centaur: the
system. In SDE 3: Proceedings of the third ACM
SIGSOFT/SIGPLAN software engineering symposium
on Practical software development environments. New
York, NY, USA, ACM, pp. 14-24.

Brooks, F. P., 1987. No Silver Bullet: Essence and
Accidents of Software Engineering. In IEEE
Computer, Vol. 20, pp. 10-19.

Burton, R. R., Masinter, L. M., Bobrow, D. G.,
Haugeland, W. S., Kaplan, R. M., and Sheil, B. A.,
1980. Overview and status of DoradoLisp. In LFP '80
Proceedings of the 1980 ACM conference on LISP and
functional programming, pp. 243-247.

Conway, M., Audia, S., Burnette, T., Cosgrove, D., and
Chistiansen, K., 2000. Alice: lessons learned from
building a 3D system for novices. In CHI ‘00:
Proceedings of the SIGCHI conference on Human
factors in computing systems. New York, NY, USA,
ACM, pp. 486–93.

Dimitriev, S., 2004. Language Oriented Programming:
The Next Programming Paradigm. In onBoard, Vol. 1

Donzeau-Gouge, V., Huet, G., Kahn, G., Lang, B., 1980.
Programming Environments based on Structured
Editors: The MENTOR Experience

Dumas, J. S. and Redish, J. C., 1999. A practical guide to
usability testing. Exeter, Intellect.

Edwards, J., 2007. No Ifs, Ands, or Buts. Uncovering the
Simplicity of Conditionals. In Proceedings of the 22nd
annual ACM SIGPLAN conference on Object-oriented
programming systems and applications (OOPSLA '07)

Hansen, W. J., 1971. User engineering principles for
interactive systems. In AFIPS 1971 Fall joint
computer conference. Montvale, New Jersey, AFIPS
Press, pp. 523–32.

Humm, B. G. and Engelschall, R. S., 2010. Language-
oriented Programming via DSL Stacking. In
Proceedings of the 5th International Conference on
Software and Data Technologies (ICSOFT 2010), pp.
279–287.

Jasko, T. and Ritchey, T., 2010. CUSP - A Lisp plugin for
Eclipse. http://www.bitfauna.com/projects/cusp/.

Ko, A. J. and Myers, B. A., 2006. Barista: An
implementation framework for enabling new tools,
interaction techniques and views in code editors. In
CHI ‘06: Proceedings of the SIGCHI conference on
Human Factors in computing systems. New York, NY,
USA, ACM, pp. 387-396.

McCarthy, J., 1960. Recursive functions of symbolic
expressions and their computation by machine, Part I.
Communications of the ACM, Vol. 3, pp. 184-195.

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

68

Myers, B. A., Pane, J. F., and Ko, A., 2004. Natural
programming languages and environments.
Communications of the ACM, Vol. 47, pp. 47-52.

Osenkov, K., 2007. Designing, implementing and
integrating a structured C# code editor. Diploma-
Thesis, Brandenburg University of Technology.

Schalles, C., Rebstock, M. and Creagh, J., 2010. Ein
generischer Ansatz zur Messung der
Benutzerfreundlichkeit von Modellierungssprachen. In
Modellierung 2010. 24. - 26. März 2010, Klagenfurt,
Österreich, Vol. 161. Bonn, GI, pp. 15-30 (161).

Simonyi, C., 2006. Intentional Software. In Proceedings of
the 21st annual ACM SIGPLAN conference on Object-
oriented programming systems, languages, and
applications (OOPSLA '06).

Teitelbaum T., Reps T., 1981. The Cornell Program
Synthesizer: A Syntax-Directed Programming
Environment. In Communications of the ACM, Vol.
24, pp 563-573.

The Eclipse Foundation, 2011. GEF (Graphical Editing
Framework). http://www.eclipse.org/gef/.

Yurov, A. 2006. Program Tree Editor. http://www.
programtree.com/.

ADVANCES IN STRUCTURE EDITORS - Do They Really Pay Off?

69

