
ON THE PREDICTABILITY OF SOFTWARE EFFORTS
USING MACHINE LEARNING TECHNIQUES

Wen Zhang, Ye Yang and Qing Wang
Laboratory for Internet Software Technologies, Institute of Software, Chinese Academy of Sciences, Beijing 100190, China

Keywords: Software effort prediction, K-medoids, BPNN, Data imputation.

Abstract: This paper investigates the predictability of software effort using machine learning techniques. We employed
unsupervised learning as k-medoids clustering with different similarity measures to extract natural clusters of
projects from software effort data set, and supervised learning as J48 decision tree, back propagation neural
network (BPNN) and naïve Bayes to classify the software projects. We also investigate the impact of imput-
ing missing values of projects on the performances of both unsupervised and supervised learning techniques.
Experiments on ISBSG and CSBSG data sets demonstrate that unsupervised learning as k-medoids clustering
has produced a poor performance in software effort prediction and Kulzinsky coefficient has the best perfor-
mance in software effort prediction in measuring the similarities of projects. Supervised learning techniques
have produced superior performances in software effort prediction. Among the three supervised learning tech-
niques, BPNN produces the best performance. Missing data imputation has improved the performances of
both unsupervised and supervised learning techniques.

1 INTRODUCTION

Software effort refers to estimate the human effort
needed to develop a software artifact (Finnie et al.,
1997). Overestimate of software effort may lead to
tight schedule of development and faults may leave
in the system after delivery whereas underestimate of
effort may lead to delay of deliver of system and com-
plains from customers. The importance of software
development effort estimation has motivated the con-
struction of models to predict it as accurate as possi-
ble.

Current software effort prediction techniques can
be categorized into four types-empirical, regres-
sion, theory-based, and machine learning technqiues
(Pendharkar et al., 2005). Machine Learning (ML)
techniques learn patterns (knowledge) from historical
project data and use these patterns for effort predic-
tion, such as Artificial Neural Network (ANN), de-
cision tree, and naı̈ve Bayes. Recent studies (Pend-
harkar et al., 2005) (Jorgensen, 2004) provide detailed
reviews of different studies on predicting software de-
velopment effort.

The primary concern of this paper is on using ma-
chine learning techniques to predict software effort.
Despite that COCOMO has provided a viable solu-
tion to effort estimation by building analytic model,

machine learning techniques such as naïve Bayes and
artificial neural network have come up with alterna-
tive approaches by making use of knowledge learned
from historical projects. Although machine learning
techniques though may not be the best solution for
effort estimation, we believe they can be used at least
by project managers to complement other models. Es-
pecially in intensely competitive software market, ac-
curate estimation of software development effort has
a decisive effect on success of a software project.
Consequently, effort estimation using different tech-
niques, and further risk assessment of budget over-
run are of necessity for a trustworthy software project
(Yang et al., 2009).

The basic idea of using machine learning tech-
niques for effort prediction is that, historical data set
contains many historical projects which are described
by features with their values to characterize those
projects and, similar values of the features of projects
may induce almost the similar project efforts. The
task of machine learning methods is to learn the inher-
ent patterns of feature values and their relations with
project efforts, which can be used for predicting the
effort of new projects.

The rest of this paper was organized as follows.
Section 2 introduced evaluation measures of soft-
ware effort prediction. Section 3 described the data

5Zhang W., Yang Y. and Wang Q..
ON THE PREDICTABILITY OF SOFTWARE EFFORTS USING MACHINE LEARNING TECHNIQUES.
DOI: 10.5220/0003408200050014
In Proceedings of the 6th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2011), pages 5-14
ISBN: 978-989-8425-57-7
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)

sets used in this paper and the preprocessing for ex-
periments. Section 4 conducted clustering software
projects in the data sets for effort prediction. Section 5
classified software projects on their efforts using ma-
chine learning classifiers. Section 6 presented the re-
lated work of this paper and Section 7 concluded this
paper.

2 EVALUATION MEASURES

In software engineering, the deviation of predicted ef-
fort to real effort is used to measure the accuracy of
effort estimators, such as MMRE (Magnitude of Rel-
ative Error), PRED(x) (Prediction within x) and AR
(Absolute Residual) (Korte and Port, 2008). In ma-
chine learning, the performance of classification is of-
ten evaluated by accuracy and, F-measure (Steinbach
et al., 2000) is usually used to evaluate the perfor-
mance of unsupervised learning. Essentially, the eval-
uation measures of effort predictors in software engi-
neering and those in machine learning do not conflict.
In this paper, we adopted the measures from machine
learning to evaluate the performances of effort predic-
tors.

2.1 Accuracy

Assuming that D = (D1, ...,Di, ...,Dm) is a collection
of software projects, where Di is a historical project
and it is denoted by n attributes Xi(1 6 i 6 n). That
is, Di = (xi1, ...,xi j, ...,xin)

T . hi denotes the label of
effort for project Di.

xi j is the value of attribute X j(1 6 j 6 n) on D j.
To evaluate the performance of a classifier in effort
prediction, the whole data set was divided into two
subsets: one is used for training the classifier and the
other one is used for testing. That is, D = (Dtrain |
Dtest) = (D1, ...,Dk | Dk+1, ...,Dm)

T , where k is the
predefined number of projects in training set and m is
the total number of projects in D. For instance, in 10-
fold-cross validation, k should be predefined as 0.9m
and the remaining 0.1m projects are used for testing
the trained model. hi is known for training set but re-
mains unknown for testing set. By machine learning
on the training set, a classifier denoted as M is pro-
duced. If we define a Boolean function F as Equation
1, then the performance of M is evaluated by accuracy
as Equation 2.

F(M(D j),h j) =

{
1, if M(D j) = h j;
0, otherwise. (1)

accuracy =
1

m− k ∑
k< j≤m

F(M(D j),h j) (2)

2.2 F-measure

In classification, Y was partitioned into l clusters and
l is a predefined number of clusters in the data set.
That is, Y = c1, ...,cl , ci = {Di,1, ...,Di,|ci|} (1 ≤ i ≤ l)
and ci ∩c j = ϕ. F-measure [14] is employed to evalu-
ate the performance of unsupervised learning (cluster-
ing). The formula of F-measure is depicted as Equa-
tions 6 with the supports of Equations 3, 4, and 5.

P(i, j) =
ni, j

n j
(3)

R(i, j) =
ni, j

ni
(4)

F(i, j) =
2×P(i, j)×R(i, j)

P(i, j)+R(i, j)
(5)

F −measure = ∑
i

ni

n
max jF(i, j) (6)

Here, ni is the number of software projects with
effort label hi, n j is the cardinality of cluster c j, and
ni, j is the number of software projects with effort la-
bel hi in cluster c j. n is the total number of software
projects in Y . P(i, j)is the proportion of projects in
cluster c j with effort label hi; Ri, j is the proportion of
projects with effort label hi in cluster c j; F(i, j) is the
F-measure of cluster c j with respect to projects with
effort label hi. In general, the larger the F-measure is,
the better is the clustering result is.

3 THE DATA SETS

We employed two data sets to investigate the pre-
dictability of software effort using machine learn-
ing techniques. The one is ISBSG (International
Software Benchmarking Standard Group) data set
(http://www.isbsg.org) and the other one is CSBSG
(Chinese Software Benchmarking Standard Group)
data set (He et al., 2008).

3.1 ISBSG Data Set

ISBSG data set contains 1238 projects from insur-
ance, government, etc., of 20 different countries and
each project was described with 70 attributes. To
make the data set suitable for the experiments, we
conduct three kinds of preprocessing: data pruning,
data discretization and adding dummy variables.

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

6

Table 1: The used attributes from ISBSG data set.

Branch Description Type

Sizing technique Count Approach Nominal
Adjusted Functional Points Continuous

Schedule Project Activity Scope Nominal

Quality
Minor Defects Continuous
Major Defects Continuous

Extreme Defects Continuous

Grouping Attributes

Development Type Nominal
Organization Type Nominal

Business Area Type Nominal
Application Type Nominal

Architecture Architecture Nominal
Documents Techniques Development Techniques Nominal

Project Attributes

Development Platform Nominal
Language Type Nominal

Primary Programming language Nominal
1st Hardware Nominal

1st Operating System Nominal
1st Data Base System Nominal

CASE Tool Used Nominal
Used Methodology Nominal

Product Attributes Intended Market Nominal

We pruned ISBSG data set into 249 projects with
22 attributes using the criterion that each project must
have at least 2/3 attributes whose values are observed
and, for each attribute, its values must be observed on
at least 2/3 of total projects. We adopt the criterion
for data selection in that too many missing values will
deteriorate the performances of most machine tech-
niques thus a convincing evaluation of software effort
prediction is impossible. Among the 22 attributes, 18
of them are nominal attributes and 4 of them are con-
tinuous attributes. Table 1 lists the attributes used in
the ISBSG data set.

Data discretization is utilized to transfer the con-
tinuous attributes into discrete variables. The values
of each continuous attribute are preprocessed into 3
unique partitions. Too many partitions of values of
an attribute will cause data redundancy nevertheless
too few partitions may not capture the distinction of
values of continuous attributes.

For each nominal attribute, dummy variables are
added according to its unique values to make all vari-
ables having binary values. As a result, all the projects
are described using 99 boolean variables with 0-1 and
missing values. Only some of machine learning tech-
niques can handle mixed data of nominal and continu-
ous values but, most machine learning techniques can
be used to handle Boolean values. In preprocessing,
missing values are denoted as “-1” and kept for all
projects on corresponding variables. Table 2 shows

the value distribution of variables of ISBSG projects
after preprocessing. Most values of the variables are
zeros due to the transferring from discrete attributes
to binary variables.

Table 2: The value distribution of variables of projects in
ISBSG data set.

Value Proportion
1 20% ∼ 50%
0 20% ∼ 60%
-1 5% ∼ 33%

Table 3: The effort classes categorized in ISBSG data set.

Class No Number of projects Label
1 64 Low
2 85 Medium
3 100 High

Finally, software effort of those selected 249
projects in the ISBSG data set was categorized into
3 classes. The projects with “normalized work ef-
fort” more than 6,000 person hours were categorized
into the class with effort label as ”high”, projects with
”normalized work effort” between 2,000 and 6,000
person hours as ”medium” and projects with ”nor-
malized work effort” less than 2,000 person hours as
”low”. Table 3 lists the effort distribution of the se-
lected projects in the ISBSG data set.

ON THE PREDICTABILITY OF SOFTWARE EFFORTS USING MACHINE LEARNING TECHNIQUES

7

Table 4: The used attributes from CSBSG data set.

Branch Description Type

Basic information of projects

Count Approach Nominal
City of development Nominal

Business area Nominal
Development type Nominal
Application type Nominal

Development Platform Nominal
IDE Nominal

Programming Language Nominal
Operation System Nominal

Database Nominal
Target Market Nominal
Architecture Nominal

Maximum Number of Concurrent Users Nominal
Life-cycle model Nominal

CASE Tool Nominal

Size

Added lines of code Continuous
Revised lines of code Continuous
Reused lines of code Continuous

Number of team members in inception phase Continuous
Number of team members in requirement phase Continuous

Number of team members in design phase Continuous
Number of team members in coding phase Continuous
Number of team members in testing phase Continuous

Schedule Time limit in planning Continuous

Quality

Predicted number of Defects in requirements phase Continuous
Predicted number of Defects in design phase Continuous
Predicted number of Defects in testing phase Continuous

Number of defects within one month after deliver Continuous

Other

Number of requirement changes in requirement phase Continuous
Number of requirement changes in design phase Continuous
Number of requirement changes in coding phase Continuous
Number of requirement changes in testing phase Continuous

3.2 CSBSG Data Set

CSBSG data set contains 1103 projects from Chinese
software industry. It was created in 2006 with its mis-
sion to promote Chinese standards of software pro-
ductivity. CSBSG projects were collected from 140
organizations and 15 regions across China by Chi-
nese association of software industry. Each CSBSG
project is described with 179 attributes. The same
data preprocessing as those used in ISBSG data set
is used on CSBSG data set. In data pruning, 104
projects and 32 attributes (15 nominal attributes and
17 continuous attributes) are extracted from CSBSG
data set. Table 4 lists the attributes used in the CSBSG
data set.

In data discretization, the values of each contin-
uous attribute are partitioned into 3 unique classes.
Dummy variables are added to transfer nominal at-

tributes into Boolean variables. As a result, 261
Boolean variables are produced to describe the 104
projects with missing values denoted as “-1”. The
value distribution of variables of CSBSG projects is
shown in Table 5 and we can see that CSBSG data set
has more missing values than ISBSG data set.

Table 5: The value distribution of variables for describing
projects in CSBSG data set.

Value Proportion
1 15% ∼ 40%
0 20% ∼ 60%
-1 10% ∼ 33%

Finally, the projects in CSBSG data set were cat-
egorized into 3 classes according to their real efforts.
The projects with “normalized work effort” more than

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

8

5,000 person hours were categorized into the class
with effort label as “high”, projects with “normalized
work effort” between 2,000 and 5,000 person hours
as ”medium” and projects with “normalized work ef-
fort” less than 2,000 person hours as “low”. Table 6
lists the effort distribution of the selected projects in
the CSBSG data set.

Table 6: The effort classes categorized in CSBSG data set.

Class No Number of projects Label
1 27 Low
2 31 Medium
3 46 High

4 PREDICTING SOFTWARE
PROJECTS WITH
UNSUPERVISED LEARNING

4.1 k-medoids Clustering and Similarity
Measures

Generally, researchers in software engineering hold
the assumption that projects with similar character-
istics, such as the number of function points, applica-
tion domain and programming language, are expected
to have approximately equivalent efforts (at least they
should be in the same effort class). In the standpoint
of machine learning, clustering software projects on
the basis of a random subset can capture informa-
tion on the unobserved attributes (Krupka and Tishby,
2008). If we regarded effort as an attribute that also
characterize software projects in the data set, then
software effort can be deduced by clustering projects
using other attributes.

To validate this assumption, k-medoids (Theodor-
idis and Koutroumbas, 2006) is adopted for clustering
the projects and three similarity measures are used to
measure the similarities of boolean vectors that rep-
resent the software projects. k-medoids is actually
evolved from k-means (Theodoridis and Koutroum-
bas, 2006) and their difference lies in that k-medoids
assigns existing element in a cluster as cluster cen-
ter but k-means assigns mean vector of elements
in a cluster as the cluster center. We adopt k-
medoids other than k-means because the mean vector
of boolean vectors lacks explainable meaning in prac-
tice nevertheless their medoid denotes a real project.
The typical k-medoids clustering is implemented by
partitioning around medoids (PAM) algorithm as de-
picted in Algorithm 2.1. The computation complex-
ity and the convergence of PAM algorithm refers to

Table 7: Three similarity measure used in k-medoids clus-
tering.

Measure Similarity Range
Dice A

2A+B+C [0, 1
2]

Jaccard A
A+B+C [0,1]

Kulzinsky A
B+C ∞

(Theodoridis and Koutroumbas, 2006).

Algorithm 1. The k-medoids clustering implemented
by PAM algorithm.
Input:
k, the number of clusters
m, Boolean vectors
Output:
k clusters partitioned from the m Boolean vectors.
Procedure:
1. Initialize: randomly select k of the m Boolean
vectors as the mediods.
2. Associate each Boolean vector to the closest
medoid under predefined similarity measure.
3. For each mediod d
4. For each non-medoid Boolean vector b
5. Swap d and b and compute the total cost of
the configuration
6. End for
7. End for
8. Select the configuration with the lowest cost.
9. Repeat steps 2 to 5 until there is no change in
the medoid.

The three adopted similarity measures are Dice
coefficient, Jaccard coefficient and Kulzinsky coeffi-
cient for binary vectors (Gan et al., 2007). Assuming
that Di and D j are two n-dimensional Boolean vectors
and spq(Di,D j) is the number of entries in Di and D j
whose values are p and q respectively, we define A, B,
C and D in Equation 7.

A = s11(Di,D j),B = s01(Di,D j),

C = s10(Di,D j),D = s00(Di,D j)
(7)

The similarity measures of Dice, Jaccard and
Kulzinsky coefficients are listed in Table 7. We re-
gard that D, which means that the characteristic does
not exist in both Di and D j, might not be an important
factor when measuring similarity of two projects be-
cause, the proportion of zero in values of variables is
very large in both ISBSG and CSBSG data set.

4.2 Clustering Results

PAM algorithm is used to cluster the software projects
in ISBSG and CSBSG data sets. The number of clus-
ters is predefined as the number of classes. That is, the

ON THE PREDICTABILITY OF SOFTWARE EFFORTS USING MACHINE LEARNING TECHNIQUES

9

Table 8: k-medoids clustering on ISBSG data set.

Similarity Measure F-measure
Without imputation With imputation

Dice Coefficient 0.3520 0.3937
Jaccard Coefficient 0.3824 0.4371

Kulzinsky Coefficient 0.4091 0.4624

parameter k in PAM algorithm for both ISBSG and
CSBSG data sets was set as 3. Without imputation,
we regard the missing values in boolean vectors as
zeros. We also employed MINI imputation technique
(Song and Shepperd, 2007) to impute the missing val-
ues before clustering. Due to the unstable clustering
results caused by initial selection of cluster centers
in PAM algorithm, we repeated each experiment 10
times and ensemble clustering proposed by Zhou et
al (Zhou and Tang, 2006) was utilized to produce the
final clusters. Table 8 shows the performances of k-
medoids clustering on ISBSG data set using PAM al-
gorithm with three similarity measures with and with-
out imputation.

We can see from Table 8 that in similarity
measure, Kulzinsky coefficient has the best perfor-
mance among the three measures and Jaccard coef-
ficient has better performance than Dice coefficient.
In k-medoids clustering without (with) imputation,
Kulzinsky coefficient increases the F-measure by
16.29% (17.45%) and Jaccard Coefficient increases
the F-measure by 8.6% (5.78%) using Dice coeffi-
cient as the baseline.

This outcome illustrates that the number of com-
mon entries as in Equation 7 is more important than
other indices in similarity measure of software project
in effort prediction using clustering. Imputation sig-
nificantly improves the quality of clustering results.
This validates the effectiveness of imputing missing
values of projects represented by boolean vectors in
k-medoids clustering.

To have a detailed look at the clustering results,
Table 9 shows the projects in the produced clusters
across the classes in Table 3. These clusters were pro-
duced by k-medoids clustering using Kulzinsky co-
efficient with imputation (i.e. F-measure is 0.4624).
We can see that k-medoids clustering actually has not
produced high-quality clusters in the ISBSG data set.
The results are not good as acceptable in real practice
of software effort prediction. For instance, cluster 2
mixes projects in both class 1 and 2 and, most projects
in one class scatter on more than one cluster such as
the projects in class 2 and class 3.

Table 10 shows the performance of PAM algo-
rithm on CSBSG data set. Table 11 shows the dis-
tribution of projects in clusters across classes. Simi-

Table 9: Clustering result using Kulzinsky coefficient with
imputation on ISBSG data set.

Similarity Class 1 Class 2 Class 3 Total
Cluster 1 26 23 28 77
Cluster 2 32 40 27 99
Cluster 3 6 22 45 73

Total 64 85 100 249

larly, k-medoids clustering has not produced a favor-
able performance on CSBSG data set. By contrast,
the performance of k-medoids clustering on CSBSG
data set is worse than that on ISBSG data set. Without
(with) imputation, the average F-measure on the three
coefficients on CSBSG data set is decreased by 7.5%
(3.7%) using the average on ISBSG data set as base-
line. We explain this outcome as that CSBSG data set
has less ones and more missing values (denoted as “-
1”) in boolean vectors than ISBSG data set, as can be
seen in Tables 2 and 5. Based on the analysis, the
predictability of software effort using unsupervised
learning is not acceptable by software industry.

5 CLASSIFICATION OF
SOFTWARE PROJECTS

5.1 Supervised Learning Techniques

The employed supervised learning techniques are
those usually used in effort prediction, including J48
decision tree, BPNN and naı̈ve Bayes. The J48 de-
cision tree classifier follows the following simple al-
gorithm. In order to classify the effort of a software
project, it firstly creates a decision tree based on the
values of variables in the training data set. Whenever
it encounters a set of boolean vectors (training set) it
identifies the variable that has the largest information
gain (Quinlan, 1993). Among the possible values of
this variable, if there is any value for which there is
no ambiguity, that is, for which the projects falling
within this value having the same label of effort, then
we terminate that branch and assign to the terminal
node the label of effort.

The back propagation neural network (BPNN)
(Rumelhart et al., 1986) is used to classify the soft-

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

10

Table 10: k-medoids clustering on CSBSG data set.

Similarity Measure F-measure
Without imputation With imputation

Dice Coefficient 0.3403 0.3772
Jaccard Coefficient 0.3881 0.4114

Kulzinsky Coefficient 0.4065 0.4560

Figure 1: BPNN with 5 nodes in hidden layer and 3 nodes
in output layer.

ware projects in both ISBSG and CSBSG data sets
as well. BPNN defines two sweeps of the network:
first a forward sweep from the input layer to the out-
put layer and second a backward sweep from the out-
put layer to the input layer. The back ward sweep is
similar to the forward sweep except that error values
are propagated back through the network to determine
how the weights of neurons are to be changed during
training. The objective of training is to find a set of
network weights of neurons that construct a model for
prediction with minimum error.

Table 11: Clustering result using Kulzinsky coefficient with
imputation on CSBSG data set.

Similarity Class 1 Class 2 Class 3 Total
Cluster 1 9 11 16 36
Cluster 2 10 10 17 37
Cluster 3 8 10 13 31

Total 27 31 46 104

A three-layer fully connected feed-forward net-
work which consists of an input layer, a hidden layer
and an output layer is adopted in the experiments. The
“tansigmod” function is used in the hidden layer with
5 nodes and “purelinear” function for the output layer
with 3 nodes [17]. The network of BPNN is designed
as shown in Figure 2.

Naı̈ve Bayes (Duda et al., 2003) is a well known
probabilistic classifier in machine learning. It is based
on the Bay’s theorem of posteriori probability and
assumes that the effect of an attribute value on a
given class is independent of the value of the other
attributes. This class conditional independence as-
sumption simplifies computation involved in build-
ing the classifier so we called the produced classi-
fier “naive”. Compared to other traditional prediction
models, naı̈ve Bayes provides tools for risk estima-
tion and allows decision-makers to combine histori-

cal data with subjective expert estimates (Pendharkar
et al., 2005).

The J48 decision tree and naı̈ve Bayes
are implemented using Weka (Waikato
Environment for Knowledge Analysis)
(http://www.cs.waikato.ac.nz/ml/weka/) and, BPNN
is implemented using Matlab simulink tool box
(http://www.mathworks.com/products/neural-net/).
Also, MINI algorithm [12] is used to impute the
missing values of Boolean vectors if necessary.
Our experiments were carried out with 10-flod
cross-validation technique. For each experiment,
we divided the whole data set (ISBSG or CSBSG
data set) into 10 subsets. 9 of 10 subsets are used
for training and the remaining 1 subset was used for
testing. We repeat the experiment 10 times and, the
performance of the prediction model is measured by
the average of 10 accuracies of the 10 repetitions.

5.2 Classification Result

Table 12 shows the performances of the three men-
tioned classifiers in classifying the projects in ISBSG
data set. On average, we can see that BPNN out-
performs other classifiers in classifying the software
projects based on efforts. J48 decision tree has bet-
ter performance than naı̈ve Bayes. Using the per-
formance of naı̈ve Bayes as the baseline, BPNN in-
creases the average accuracy by 16.25% (11.71%) and
J48 decision tree by 5.6% (2.5%) without (with) im-
putation.

We explain this outcome that BPNN has the best
capacity to eliminate the noise and peculiarities be-
cause it adopts back sweep to change the weights
of neurons for reducing errors of predictive model.
However, the performance of BPNN is not robust
as other classifiers (we observe this point from its
standard deviation). The adoption of cross-validation
technique may reduce overfitting of BPNN to some
extent but, it cannot eliminate the drawback of BPNN
entirely. The J48 decision tree classifies the projects
using learned decision rules. Due to the adoption of
information gain [15], those variables having more
discriminative power will be fetched out by J48 in ear-
lier branches in constructing decision rules and thus,
the noise and peculiarities connotated in the variables

ON THE PREDICTABILITY OF SOFTWARE EFFORTS USING MACHINE LEARNING TECHNIQUES

11

with less discriminative power will be ignored auto-
matically (especially in tree pruning).

naı̈ve Bayes has the worst performance among the
three classifiers in classifying software efforts. We
explain this as that the variables used for describing
projects may not be independent of each other. More-
over, naı̈ve Bayes regard all variables as has equiv-
alent weights as each other in the prediction model.
The conditional probabilities of all variables have the
same weight when predicting the label of an incom-
ing project. However, in fact, some variables of
projects have more discriminative power than other
variables in deciding the project effort. The noise
and peculiarities are often contained in the variables
those have little discriminative power and those vari-
ables should be given less importance in the predic-
tion model. We conjecture that this fact is also the
cause of the poor performance of k-medoids in project
clustering projects. In the same manner as that in k-
medoids clustering, MINI technique has significantly
improved the performance of project classification by
imputing missing values in Boolean vectors.

Table 13 shows the performances of the three clas-
sifiers on CSBSG data set. The similar conclusion as
on ISBSG data set can be drawn on CSBSG data set.
However, the performances of three classifiers on CS-
BSG data set are worse than those on ISBSG data set.
The average of overall accuracies of the three tech-
niques without (with) imputation on CSBSG data set
is decreased by 6.95% (6.66%) using that on ISBSG
data set as the baseline. We also explain this outcome
as the lower quality of CSBSG data set than that of
ISBSG data set.

We can see from Tables 12 and 13 that, in both
ISBSG and CSBSG data sets, all the three super-
vised learning techniques have not produced a favor-
able classification on software efforts using project at-
tributes. The best performance that was produced by
BPNN is with the accuracy around 60%. The accu-
racy as 60% is meaningless for software effort pre-
diction in most cases because, that means that at the
probability 0.4, the prediction results fall beyond the
range of each effort class. Combined with the results
of effort prediction from unsupervised learning, we
draw that the predictability of software effort using
supervised learning techniques is not acceptable by
software industry, either.

6 RELATED WORK

Srinivasan and Fisher (Srinivasan and Fisher, 1995)
used decision tree and BPNN to estimate software de-
velopment effort. COCOMO data with 63 historical

projects was used as the training data and Kremer data
with 15 projects was used as testing data. They re-
ported that decision tree and BPNN are competitive
with traditional COCOMO estimator. However, they
pointed out that the performances of machine learning
techniques are very sensitive to the data on which they
were trained. (Finnie et al., 1997) compared three es-
timation techniques as BPNN, case-based reasoning
and regression models using Function Points as the
measure of system size. They reported that neither of
case-based reasoning and regression model was favor-
able in estimating software efforts due to the consid-
erable noise in the data set. BPNN appears capable
of providing adequate estimation performance (with
MRE as 35%) nevertheless its performance is largely
dependent on the quality of training data as well as
the suitability of testing data to the trained model. Of
all the three methods, a large amount of uncertainty is
inherent in their performances. In both (Finnie et al.,
1997) and (Srinivasan and Fisher, 1995), a serious
problem confronted with effort estimation using ma-
chine learning techniques is that huge uncertainty in-
volved in the robustness of these techniques. That is,
model sensitivity and data-dependent property of ma-
chine learning techniques hinder their admittance by
industrial practice in effort prediction. These work as
well as (Prietula et al., 1996) motivates this study to
investigate the effectiveness of a variety of machine
learning techniques on two different data sets.

(Park and Baek, 2008) conducted an empirical
validation of a neural network model for software ef-
fort estimation. The data set used in their experiments
is collected from a Korean IT company and includes
148 IT projects. They compared expert judgment, re-
gression models and BPNN with different input vari-
ables in software effort estimation. They reported
that neural network using Function Point and other 6
variables (length of project, usage level of system de-
velopment methodology, number of high/middle/low
level manpower and percentage of outsourcing) as in-
put variables outperforms other estimation methods.
However, even in the best performance, the average
MRE is nearly 60% with standard deviation more than
30%. This result makes it is very hard that the method
proposed in their work can be satisfactorily admitted
in practice. For this reason, a validation of machine
learning methods is necessary in order to shed light on
the advancement of software effort estimation. This
point also motivates us to investigate the effectiveness
of machine learning techniques for software effort es-
timation and the predictability of software effort using
machine techniques.

(Shukla, 2000) proposed a neuron-genetic ap-
proach to predict software development effort while

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

12

Table 12: Classification of software project efforts on ISBSG data set.

Classifier Average accuracy ± Standard Deviation
Without imputation With imputation

J48 decision tree 0.5706 ± 0.1118 0.5917 ± 0.1205
BPNN 0.6281 ± 0.1672 0.6448 ± 0.1517

naı̈ve Bayes 0.5403 ± 0.1123 0.5772 ± 0.1030

Table 13: Classification of software project efforts on CSBSG data set.

Classifier Average accuracy ± Standard Deviation
Without imputation With imputation

J48 decision tree 0.4988 ± 0.1103 0.5341 ± 0.1322
BPNN 0.1650 ± 0.1650 0.6132 ± 0.1501

naı̈ve Bayes 0.5331 ± 0.1221 0.5585 ± 0.0910

the neural network is employed to construct the pre-
diction model and genetic algorithm is used to op-
timize the weights between nodes in the input layer
and the nodes in the output layer. They used the same
data sets as that was used in Srinivasan and Fisher
(Srinivasan and Fisher, 1995) and reported that the
neuron-genetic approach outperforms both decision
tree and BPNN. However, they also reported that local
minima and over fitting deteriorate the performance
of the proposed method in some cases, even make it
a poorer predictor than traditional estimator as CO-
COMO (Beohm, 1981). The focus of our study is
not to propose a novel approach to software effort es-
timation but to extensively review the usefulness of
machine learning techniques in software effort esti-
mation. That is, to how much extent the typical ma-
chine techniques can accurately estimate the effort of
a given project using historical data.

7 CONCLUDING REMARKS

In this paper, we conducted a series experiments to
investigate the predictability of software effort using
machine learning techniques. With ISBSG and CS-
BSG data sets, unsupervised learning as k- medoids
clustering is used to cluster software projects with re-
spect to efforts and, supervised learning as J48 deci-
sion tree, BPNN and naive Bayes are used to classify
the projects. Our assumption for this investigation is
that the efforts of software projects can be deduced
from the values of other attributes in historical data
and projects with similar values on attributes other
than effort will also have approximately equivalent ef-
forts.

The experimental results demonstrate that neither
unsupervised nor supervised learning techniques can
provide software effort prediction with a favorable

model. Despite of this fact, Kulzinsky coefficient has
produced the best performance in similarity measure
for unsupervised learning and, BPNN has produced
the best performance among the examined supervised
learning techniques. Moreover, the MINI imputation
can improve data quality and improve effort predic-
tion significantly.

ACKNOWLEDGEMENTS

This work is supported by the National Natural
Science Foundation of China under Grant Nos.
6087307261073044, and 60903050; the National
Science and Technology Major Project; the Na-
tional Basic Research Program under Grant No.
2007CB310802; the Scientific Research Foundation
for the Returned Overseas Chinese Scholars, State
Education Ministry.

REFERENCES

Beohm, B. (1981). Software Engineering Economics.
Prentice-Hall, New Jersey, USA, 2nd edition.

Duda, R., Hart, P., and Stork, D. (2003). Pattern Classifica-
tion. John Wiley & Sons, 2nd edition.

Finnie, G., Wittig, G., and Desharnais, J. (1997). A com-
parison of software effort estimation techniques: Us-
ing function points with neural networks, case-based
reasoning and regression models. Journal of Systems
and Software, 39:281–289.

Gan, G., Ma, C., and Wu, J. (2007). Data clustering, theory,
algorithmsm, and applications. ASA-SIAM Series on
Statistical and Applied Probability, page 78.

He, M., Li, M., Wang, Q., Yang, Y., and Ye., K. (2008). An
investigation of software development productivity in
china. In Proceedings of International Conference on
Software Process, pages 381–394.

ON THE PREDICTABILITY OF SOFTWARE EFFORTS USING MACHINE LEARNING TECHNIQUES

13

Jorgensen, M. (2004). A review of studies on expert es-
timation of software development effort. Journal of
Systems and Software, 70:37–60.

Korte, M. and Port, D. (2008). Confidence in software cost
estimation results based on mmre and pred. In Pro-
ceedings of PROMISE’08, pages 63–70.

Krupka, E. and Tishby, N. (2008). Generalization from ob-
served to unoberserved features by clustering. Journal
of Machine Learning Research, 83:339–370.

Park, H. and Baek, S. (2008). An empirical validation of a
neural network model for software effort estimation.
Expert System with Applications, 35:929–937.

Pendharkar, P., G.Subramanian, and J.Roger (2005). A
probabilistic model for predicting software develop-
ment effort. IEEE Transactions on Software Engineer-
ing, 31(7):615–624.

Prietula, M., Vicinanza, S., and Mukhopadhyay, T. (1996).
Software-effort estimation with a case-based resoner.
Journal of Experimental & Theoritical Artificial Intel-
ligence, 8:341–363.

Quinlan, J. (1993). Programs for Machine Learning. Mor-
gan Kaufmann Publishers, 2nd edition.

Rumelhart, D., Hinton, G., and Williams, J. (1986). Learn-
ing internal representations by error propagation. In
Parallel Distributed Processing, Exploitations in the
Microstructure of Cognition, pages 318–362.

Shukla, K. (2000). Neuro-genetic prediction of software
development effort. Information and Software Tech-
nology, 42:701–713.

Song, Q. and Shepperd, M. (2007). A new imputation
method for small software project data sets. Journal
of Systems and Software, 80:51–62.

Srinivasan, K. and Fisher, D. (1995). Machine learning
approaches to estimating software development ef-
fort. IEEE Transactions on Software Engineering,
21(2):126–137.

Steinbach, M., Karypis, G., and Kumar, V. (2000). A com-
parison of document clustering techniques. In KDD-
2000 Workshop on Text Mining, pages 109–110.

Theodoridis, S. and Koutroumbas, K. (2006). Pattern
Recognition. Elsevier, 3rd edition.

Yang, Y., Wang, Q., and Li, M. (2009). Process trustwor-
thiness as a capability indicator for measuring and im-
proving softwaer trustworthiness. In Proceedings of
ICSP 2009, pages 389–401.

Zhou, Z. and Tang, W. (2006). Clusterer ensemble.
Knowledge-Based Systems, 19:77–83.

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

14

