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Abstract: Interest in implementing and deploying many existing and new applications on cloud platforms is 
continually growing. Of these, geospatial applications, whose operations are based on geospatial data and 
computation, are of particular interest because they typically involve very large geospatial data layers and 
specialized and complex computations. In general, problems in many geospatial applications, especially 
those with real-time response, are compute- and/or data-intensive, which is the reason why researchers often 
resort to high-performance computing platforms for efficient processing. However, compared to existing 
high-performance computing platforms, such as grids and supercomputers, cloud computing offers new and 
advanced features that can benefit geospatial problem solving and application implementation and 
deployment. In this paper, we present a distributed algorithm for geospatial data processing on clouds and 
discuss the results of our experimentation with an existing cloud platform to evaluate its performance for 
real-time geoprocessing. 

1 INTRODUCTION 

Cloud computing has received much attention in 
recent years. Enabled by tremendous advances in 
computing, storage, and networking, cloud 
computing has become one of the most promising 
developments towards the vision of utility 
computing. It offers applications an unprecedented, 
on-demand scalability. Much of the current research 
in cloud computing is focused on developing cloud 
infrastructures that can solve problems in a variety 
of disciplines. While elements of such 
infrastructures are in place, many application-
specific issues in cloud computing, such as 
application/service optimization, still remain 
unresolved.  

One class of applications is geospatial modeling, 
analysis, and simulation (geoprocessing). The 
coordination, collaboration, and sharing of 
geoinformation has been a long standing and 
challenging problem ever since Geospatial 
Information System (GIS) technology became 
available as a tool for geoprocessing. In the early 
years, the problem of managing such location-
oriented information was less complex due to the 

limited amount of available geospatial data sources, 
geospatial data formats and structures. Today, the 
problem is extremely complicated and seemingly 
insurmountable due to the availability of numerous 
geospatial data sources, geospatial data in diverse 
and heterogeneous formats and structures, and 
various geospatial data collection technologies 
including geo-positioning and remote sensing. The 
problem is compounded by a paradigm shift from 
centralized geoprocessing, through stand-alone GIS 
software packages, to decentralized geoprocessing 
through Web services.  

While the geospatial community has been active 
in addressing compute- and data-intensive geospatial 
problems by utilizing high-performance computing 
(HPC) platforms, primarily supercomputers and 
grids, over the past decade, there are many existing 
and emerging geospatial applications that have not 
yet been tackled through the HPC approach. One 
reason for this can be attributed to the fact that the 
utilization of existing HPC platforms often requires 
that domain scientists and engineers become 
computer experts by gaining complex computational 
knowledge and skills.  

Using cloud computing for data-intensive, time- 
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sensitive geospatial applications is advantageous 
over supercomputers and grids. Cloud computing 
provides much more suitable platforms for storing 
and manipulating very large map databases, typical 
in geospatial applications. In particular, clouds, 
unlike grids, are able to quickly scale up or down to 
the computing and storage needs of applications. 
This makes them an attractive alternative for 
deploying the next generation of data-intensive 
geoprocessing applications. An example application 
is location-based services (mostly available through 
smartphones) with a large number of current users, 
anticipated to increase by an order of magnitude in 
the next few years. However, for cloud computing to 
be useful in the geospatial community, there is a 
need for solutions and tools that specifically handle 
the unique characteristics of geoprocessing such as 
3D indexing, retrieval, and computation techniques 
(uncommon in most current database management 
systems) and that are simple to utilize allowing 
scientists and engineers to focus on the problem at 
hand rather than trying to tweak and optimize 
complex codes.  

In this paper, we focus on the class of geospatial 
applications that: (i) are increasingly becoming 
available on smartphones, (ii) involve very large 
databases (stored in RDBMSs), (iii) require data-
intensive techniques for efficient geoprocessing, and 
(iv) require real-time response. The objective is to 
overcome the challenges of these applications using 
cloud computing. To that end, we present new 
techniques (distributed and parallel algorithms) 
suitable for real-time processing of data-intensive 
geospatial problems, called Cloud Computing for 
Geoprocessing (C2Geo). C2Geo is unique in several 
ways. First, despite the awareness and the 
availability of cloud computing, to date, 
geoprocessing in cloud computing has been limited 
to a handful of projects and there are no available 
techniques and tools for different classes of 
applications. Second, the real-time processing of 
data-intensive geospatial applications is expected to 
provide an insight into the capabilities and 
limitations of cloud computing paving the way to a 
better understanding of cloud computing as an 
emerging computing platform for problems across 
domains. C2Geo is intended to be scalable and 
provide high-performance geoprocessing 
automatically and transparently. C2Geo is expected 
to facilitate anywhere and anytime computing and 
provide means of solving compute- and data-
intensive geoprocessing.  

To emphasize the need for C2Geo, we evaluated 
a cloud computing platform for storing and 

retrieving large-scale Triangulated Irregular 
Networks (TINs) required for the real-time 
integrated Global Navigation Satellite System 
(iGNSS) QoS prediction for navigation services. 
Google App Engine (GAE) was chosen due to the 
fact that currently it is the only cloud computing 
platform available to researchers at no cost. 

The contributions of the paper are development 
of a distributed algorithm for efficient processing of 
data-intensive geospatial applications in clouds, and 
evaluation of a cloud computing platform for real-
time geospatial applications using navigation 
services as a case study.  

The structure of the paper is as follows. Section 
2 briefly overviews research studies and existing 
services/products that are geospatial related in 
clouds. Section 3 describes the concepts of C2Geo 
with a discussion of each module. Section 4 and 5 
discusses and reported an evaluation of a cloud for 
handling large-scale TINs used in a real-time 
geospatial application. The paper ends with 
conclusions and future research in Section 6. 

2 BACKGROUND 

Geospatial applications typically require the access 
to and manipulation of large volumes of geospatial 
data. Recent trends show tremendous growth in 
geospatial data. This is due to two factors (Foerster 
et al., 2010): (i) the availability of more 
sophisticated data acquisition techniques and devices 
(e.g., airborne laser scanning, smartphones equipped 
with GPS, geo-enabled sensors) and (ii) advances in 
networking and Web technologies enabling 
unprecedented levels of data accessibility. In 
addition to being data intensive, geospatial 
applications often require intensive processing. 
Moreover, many of these applications inherently 
require that a large number of users (potentially 
anyone) be able to share data stored on several 
distant servers which translates into substantial data 
movement. The data, computing, and networking 
intensive nature of geospatial applications has made 
it challenging to achieve reasonable performance 
and scalability at affordable costs. 

Until recently, most geospatial applications have 
been developed to run on desktops (Schäffer and 
Baranski, 2009). For applications that require higher 
levels of performance and scalability, two other 
options have been considered: supercomputers and 
grids. Supercomputers are often too costly for most 
geospatial applications. Grids usually achieve less 
than the required level of performance. With these 

CLOSER 2011 - International Conference on Cloud Computing and Services Science

372



 

and other limitations of both supercomputing and 
grid computing, cloud computing is emerging as, 
potentially, the ideal paradigm for the development 
and deployment of geospatial applications. While 
still in its infancy, geospatial cloud computing is 
currently the focus of an intensive research and 
development efforts. Geospatial cloud computing 
was introduced as a specific type of cloud 
computing that focuses on adding geography to the 
cloud computing paradigm. It provides dynamically 
scalable geographic information technology, 
geospatial data, and geo-applications as a Web 
service/utility. It leverages the power of geography 
without needing the massive investment in 
specialized geo-data, people, and software typically 
required in an “enterprise GIS” implementation 
(Williams, 2009). 

Cloud computing is now widely viewed as a 
promising paradigm for building tomorrow’s 
geoprocessing systems (Brauner et al., 2009). 
Several projects both in academia and in industry 
have recently started efforts to develop prototypes of 
geospatial systems on clouds. For example, 
Cornillon (2009) explored the suitability of cloud 
computing for processing large volumes of satellite-
derived sea surface temperature data. Hill (2009) 
presented the results of experiments using Amazon’s 
Elastic Compute Cloud (EC2) for ocean-atmosphere 
modeling. Blower (2010) presented an 
implementation of a Web map service for raster 
imagery using the GAE environment. Wang et al. 
(2009) describe a prototype for retrieving and 
indexing geospatial data developed for GAE. In 
parallel with these efforts in academia, several 
vendors of GIS software have recognized the 
promise of cloud computing and some have already 
introduced cloud-based GISs. ESRI currently 
provides preconfigured ArcGIS Server Machine 
Images (AMI) for use in the Amazon Cloud 
infrastructure (ESRI, 2010). Running ArcGIS Server 
on Amazon allows organizations to deploy ArcGIS 
Server across more than one data center and access 
to Amazon's elastic computing infrastructure. In 
addition, ESRI’s MapIt features Spatial Data 
Assistant (SDA) and Spatial Data Service (SDS) for 
Microsoft Windows Azure as in its current version it 
is unable  to manage and process geospatial data 
(ESRI, 2009). Another example is Omnisdata’s GIS 
Cloud (Omnisdata, 2010). GIS Cloud is a Web-
based GIS powered by cloud computing with 
advanced capability of creating, editing, uploading, 
sharing, publishing, processing and analyzing 
geospatial and attribute data. Kim and MacKenzie 
(2009) used Amazon’s EC2 in a climate change 

study with the purpose of calculating the number of 
days with rain in a given month on a global scale 
over the next 100 years. The computation used 70 
gigabytes of daily sets of climate projection data. It 
took about 32 hours to process 17 billion records. 

Cloud computing is seen as the needed paradigm 
to finally shift the (often intensive) processing part 
of geospatial applications from the desktop to 
distributed spatial data infrastructures (SDIs) 
(Schäffer and Baranski, 2009). By outsourcing 
computing and/or data intensive tasks to the cloud, 
geospatial applications will benefit in terms of 
performance, scalability, and startup cost. 

While most initial research has concluded that 
cloud computing is a viable paradigm for compute- 
and data-intensive geoprocessing, the fundamental 
limitation remains that cloud infrastructures are, in 
general, developed for generic computing; they often 
are not aware of the spatial nature of the data. As a 
result, existing cloud computing infrastructures still 
require extensive research to develop optimization 
techniques that would lead to true geospatial clouds. 

3 C2GEO TECHNIQUES 
& TOOLS 

C2Geo is a set of techniques and tools designed for 
the efficient processing of real-time data-intensive 
geospatial applications. Considering the continual 
demand for geospatial applications, cloud computing 
providers can implement C2Geo in their clouds, as 
part of geospatial database handling and 
geoprocessing, in order to meet the requirements of 
real-time data-intensive geospatial applications, 
especially those that involve a large number of users 
with mobile devices (e.g., smartphones).  

 
Figure 1: C2Geo in a cloud. 
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Figure 1 shows the concept of C2Geo in clouds. 
C2Geo encompasses three main modules: data 
placement and Virtual Machine (VM) migration, 
optimal query processing, and geospatial data 
access. A VM in the context of geoprocessing 
contains geospatial data and operations on the data 
that can be processed on any physical machine. A 
master VM, called Geospatial Virtual Machine 
(GeoVM), acts as a directory of all VMs (geospatial 
data and processes). 

The objective of the data placement and VM 
migration module is to place geospatial data in the 
most suitable way for the usage pattern of real-time 
data-intensive geospatial applications. The objective 
of the optimal query processing module, Cloud 
Query Processing (CQO), is to discover VMs 
through GeoVM. The objective of the geospatial 
data access module is to provide a suitable indexing 
strategy for optimal retrieval of geospatial data 
based on locations of VMs.  

3.1 Data Placement and VM Migration 

Two key factors determine the performance of a 
data-intensive application in a cloud: data placement 
and VM deployment and migration. Data placement 
determines the location of the data being accessed. 
VM deployment and migration determine where the 
VMs must be initially deployed and, if necessary, 
when and where they must be subsequently 
relocated (Sato et al., 2009). Although they 
generally contribute to the same purposes (higher 
performance, improved availability, and better fault 
tolerance), data placement and VM migration are 
considered, in most current research, as two 
independent mechanisms. As a result, most existing 
data placement and VM relocation solutions are sub-
optimal. For this, algorithms that significantly 
reduce response time through a novel approach 
where data placement and VM relocation are 
accomplished in tandem are needed. Specifically, 
these algorithms should simultaneously take into 
account several criteria relevant to the geospatial 
nature of data and to the workload including: (i) 
location of users, (ii) correlation between data and 
users’ queries, (iii) load distribution on servers, (iv) 
network parameters (e.g., bandwidth of links, 
congestion), and (v) mobility of users. We argue that 
by simultaneously considering these and other 
relevant factors, it will be possible to achieve far 
higher performance, availability, and fault tolerance.  

Static data placement solutions are not able to 
efficiently adapt to dynamic changes in the cloud, 
e.g., increase in the workload at some servers and 

congestion in some areas of the network. The task of 
placement is further complicated by the issues of 
shared data, data inter-dependencies, application 
changes and user mobility (Agarwal et al., 2010). 
Because of the limitations of static data replication, a 
few recent research efforts have introduced dynamic 
replication schemes. These include Skute (Bonvin et 
al., 2009), Re:FRESHiT (Voicu et al., 2010), and 
Volley (Agarwal et al., 2010). In Skute, the number 
of replicas is dynamically adapted to the query load 
while maintaining availability guarantees in case of 
failures. In Re:FRESHiT, the focus is on managing 
replicas of frequently updated data. Because of the 
high cost of updating all replicas, the proposed 
protocol, i.e., Re:FRESHiT, organizes read-only 
sites in virtual trees based on the sites’ freshness 
levels, and introduces a routing mechanism for 
reading data, while at the same time allowing users 
to specify their own freshness requirements. Trees 
are automatically reorganized after individual nodes 
are refreshed or when new replicas join.  

3.2 Cloud Query Optimization  

CQO is based on the assumptions that the geospatial 
data is stored in RDBMSs and the data is available 
through VMs. To find an optimal query processing 
in C2Geo, CQO first, through GeoVM, discovers all 
relevant VMs, i.e., locations of geospatial data 
components and the processes on them. Then, using 
the requirements of the query and the locations of 
the required VMs, it finds an optimal geoprocessing 
strategy, which will then be passed on to the cloud. 
One goal of CQO is to minimize response time and 
power consumption. A second goal of CQO is to 
minimize computing load on smartphones, which 
means pushing geoprocessing to the cloud as much 
as possible. In our previous work, we experimented 
with some of the techniques in CQO using grid 
platforms (see Liu and Karimi, 2008). 

CQO consists of two main modules, resource 
selection and parallelism processing, and three 
auxiliary processes. Optimizing queries for clouds is 
challenging as it entails a large search space that 
decreases the overall performance. To overcome this 
problem, CQO limits the search space by selecting a 
subset of VMs in the resource selection module thus 
improving optimization time performance. The 
resource selection module is based on a ranking 
function that incorporates several performance-
related factors. Available VMs are ranked by their 
costs for a specific operation and the one with the 
least cost is selected for executing the operation. The 
resource selection module helps CQO reduce 
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optimization cost without excluding potential 
superior computing resources. To further improve 
query response time, CQO exploits parallelism by 
detecting data dependency among operations in the 
parallelism processing module. Before discussing 
the two main modules of CQO, auxiliary services 
that supply statistics and other types of information 
for query optimization are presented next. 

3.2.1 Input and Auxiliary Services 

The input to CQO is represented in a tree structure 
called the Abstract Query Tree (AQT). Each leaf 
node in an AQT is an equi-join with two base 
relations and an internal node is an operation on the 
results of its leaf nodes. There are three auxiliary 
services built in CQO to provide run-time 
information for query optimization: Environment 
Information Service (EIS), Database Information 
Service (DIS), and Transmission Prediction Service 
(TPS). EIS is responsible for providing both static 
and dynamic information about a given VM, such as 
system workload in a percentage rate, CPU speed, 
and RAM amount. DIS manages a catalog of 
existing replicas of base relations in the cloud and 
retrieves them back to a client upon request. For a 
given relation, DIS can provide VMs that maintain a 
replica of the relation and statistics about the relation 
such as relation size and field size. For a relation in a 
given query, TPS is responsible for estimating a 
candidate VM’s transmission performance with 
respect to other VMs involved in that query. Mean 
transmission latencies between VMs from historical 
data are often used to measure a VM’s transmission 
capacity. But a problem with this approach is that 
mean values can be significantly affected by data 
distribution—outliers with arbitrarily high or low 
values can greatly impact mean values. In CQO, an 
index, Transmission Latency Reputation (TLR), is 
designed to reduce such inaccuracy. The calculation 
of TLR is as follows. 

Suppose that the query Q to be executed during a 
time period t involves relations R1, R2, …, Ri, …, RN. 
Relation Ri has Mi replicas that are located at VMs 
Hi1, Hi2, …, Hij, …, HiMi, respectively. The TLR of 
VM Hij for Relation Ri in query Q during t is 
computed as a weighted mean: 
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where TL(ij,kl) is the mean transmission latency 
between Hij and Hkl during t. If, for Hkl and Hij, 

relation Ri is the only relation they have that is 
involved in Q, Hkl should not be taken in computing 
TLRij. The reason for excluding such VMs from the 
calculation is that there will be no transmission 
between that VM and the VM used in the 
computation while executing the query; they 
compete to be the provider of Ri. ( , )ij klw is the weight 

assigned to Hij by comparing 2
),( klijs , the variance of 

transmission latencies between Hij and Hkl, with the 
maximum of variances of transmission latencies 
between Hij and other VMs, noted as maxij(s2):  

2
( , )

( , ) 2max ( )
ij kl

ij kl
ij

s
w

s
=

 
(2) 

Plugging Equation (2) into (1) simplifies the 
latter to: 
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(3) 

By introducing ( , )ij klw , the mean transmission 
latency of a VM is adjusted; the more outliers a VM 
has in its latency data and the larger values of 
outliers, the larger will be the value of TLR and thus 
the smaller its transmission capacity with respect to 
other VMs. The ranking function discussed in the 
following section uses TLR as an index of a VM’s 
transmission capacity when selecting resource 
providers. 

3.2.2 Resource Selection 

In the resource selection module, an AQT is 
recursively visited in order to find candidate VMs 
for each base relation in the AQT. This process is 
performed in a sub-module called resource locator. 
For each base relation, the resource locator contacts 
DIS which will return a list of candidate VMs 
containing the requested base relation. The returned 
list is passed to a sub-module called resource ranker. 
The resource ranker checks with DIS, TPS, and EIS, 
respectively, to obtain both static and dynamic 
statistics about all candidate VMs. A ranking 
function based on the cost function proposed by 
Mackert and Lohman (Mackert and Lohman, 1986) 
is used in the resource ranker to compute the rank of 
a given candidate VM Hij for a base relation Ri. The 
ranking function is a linear combination of weighted 
and standardized values of five factors: 
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where mipsij is MIPS (Million Instructions Per 
Second) of Hij; wmips  is weight of MIPS; ramij is 
RAM amount at Hij (MB); wram  is weight of RAM; 
countij  is number of relations that are involved in a 
query and maintained by Hij; wcount  is weight of 
count; wkij  is current workload of Hij (0 means idle 
and 1 means that Hij is fully utilized); wwk is weight 
of workload. 

The introduction of count into the ranking 
function increases the chances of VMs with multiple 
relations getting higher ranks. The higher rank a VM 
receives, the more likely it performs joins locally. 
For special running environments where certain 
factors become dominant or subordinate, 
corresponding weights can be adjusted accordingly. 

After computing the ranks of all candidate VMs 
for a base relation, the VM with the highest rank is 
chosen as the provider of the base relation and added 
to the AQT. Since the factors in the ranking function 
are those that will greatly impact the performance of 
a query execution, it can be argued that the rank a 
VM receives reflects the fitness of a VM as a 
candidate for a base relation in a given query. The 
higher the rank, the higher are the chances of a VM 
to be chosen as the provider of the relation. Once all 
relations are allocated to specific VMs, the AQT will 
be transformed into a Physical Query Tree (PQT) 
which in turn is passed to the parallelism processing 
module for further optimization. 

3.2.3 Parallelism Processing 

We have developed a strategy for parallelism 
processing which alleviates the burden of Message 
Passing Interface (MPI) development on geospatial 
developers. Before checking parallelism in a PQT, 
information about intermediate results (i.e., result of 
a join that is part of the input to another join) needs 
to be known since CQO needs to determine data 
transfers between operations. This information 
includes: number of records, record size, number of 
blocks, and number of distinct values and index 
height of the join field. These statistics are 
temporarily added on to the information repositories 
in DIS and are removed once an execution plan for a 
query is determined. 

After the resource providers are selected, CQO 
checks to see if it is possible to exploit parallelism 
during the execution of the query. Based on the 
dependency among the operations of a query, 
parallel processing in clouds can be achieved in 
different forms: single operation single data (SOSD), 
single operation replicated data (SORD), multiple 
operations single data (MOSD), and multiple 
operations multiple data (MOMD). 

Implementing SOSD or MOSD involves 
replicating a data set in one or more VMs. With 
large volumes of data in clouds (terabytes) and VMs 
connected via local and wide area networks, data 
replication could introduce an overhead that may 
reduce parallelism gains. Thus, SOSD and MOSD 
are not considered in CQO. As for SORD, it requires 
knowledge of domain-specific operations (e.g., how 
to partition a data set and how to combine results 
from parallel processes). For instance, in building a 
parallel routing algorithm to obtain a best path, 
Karimi and Hwang (1997) suggest to partition a 
network into equal sub-networks in order to 
maximize load balancing and improve performance. 
Such an algorithm can be implemented in an 
independent module and plugged into CQO. 

Input: PQT 
Output: an ordered set of sequential steps 
Variables: 
 Set N; Set S; 
 Node n; 
Begin 
 Name intermediate results; 
 Estimate statistics of intermediate results (using DB information 
service); 
 While there is a node in PQT do 
 Begin  
 Create new sequential step s; 
 N  all leaf nodes; 
 For i = 1 to #of nodes in N do 
 Begin 
  n  N[i]; 
  If n does not have dependency of any other node in N then 
   Add the operation at n into s; 
  Remove n from N; 
  Remove n from PQT; 
 End; 
 Add s to S; 
 End;  
 Return an ordered set of sequential steps; 
End. 

Figure 2: Algorithm to detect MOMD parallelism. 

The algorithm in Figure 2 is proposed to 
implement MOMD. Since MOMD exists when there 
is no data dependency between operations, it can 
only be found between operations in the leaf nodes 
of a PQT. The algorithm checks all operations in all 
leaf nodes in a PQT for data dependency. Operations 
with data independency are removed from the PQT 
and are added to a new sequential step. This process 
is repeated until all joins in the PQT are processed. 
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The outcome is an ordered set of sequential steps. 
After parallel executions are determined for 

each step, a structure called “parallelism-inside-of-
sequential-steps” (PSS) is used to represent the 
output of optimization (i.e., an execution plan). In 
PSS, an execution plan is formed by a series of 
sequential steps. Each sequential step includes a set 
of operations that is scheduled to run in parallel and 
hence the name is “parallelism-inside-of-sequential-
steps”. Operations in one sequential step have to 
wait for the operations in the previous steps to be 
completed so that all their input data become 
available. If no parallelism is possible in a query, for 
instance, a left-deep join, a sequential step only has 
one operation (e.g., a join). Upon determination of 
the execution order of operations in PSS and 
allocation of each operation with specific resources, 
PSS is ready to be submitted for execution.  

3.3 Geospatial Data Access 

In this module, we are developing novel techniques 
for geospatial data indexing and retrieval in cloud 
environments. Specifically, we focus on four major 
directions: (i) geospatial indexing, (ii) location-
aware data placement, (ii) network-aware indexing, 
and (iv) access-based data reindexing, replication, 
and migration. 

3.3.1 Geospatial Indexing  

Geospatial indexing has been an active research area 
for many years. In particular, several spatial 
indexing techniques have been developed for 
distributed systems. Substantial efforts focused on 
adapting well studied spatial indexing techniques 
such as kd-Trees (Robinson, 1981), Quadtrees 
(Finkel and Bentley, 1974, Samet, 1984), R-Trees 
(Guttman, 1984), and Octrees (Hunter, 1978, Reddy 
and Rubin, 1978) to the context of distributed 
systems. For example, Zimmermann et al. (2004) 
presented an architecture to efficiently route and 
execute spatial queries based on distributed R-tree 
and Quadtree structures. The architecture supports 
both spatial range and k nearest neighbor queries. 

With more data-intensive applications being 
hosted in clouds, research has recently shifted to 
developing spatial indexing techniques specifically 
designed for clouds (e.g., see Mouza et al. 2007, 
2009; Wang et al., 2010; Wu and Wu, 2009. Mouza 
et al. (2007, 2009) propose a new indexing structure, 
called SD-Tree (Scalable Distributed Rtree), with 
the objective of evenly balancing the utilization of 
the processing power and storage of a pool of 

distributed data servers. Wu and Wu (2009) 
presented an indexing framework for clouds where 
processing nodes are organized in a structured 
overlay network, and each processing node builds its 
local index to speed up data access. A global index 
is built by selecting and publishing a portion of the 
local index in the overlay network. The global index 
is distributed over the network, and each node is 
responsible for maintaining a subset of the global 
index. Wang et al. (2010) integrate a CAN-based 
routing protocol (Ratnasamy et al., 2001), called 
RT-CAN, and an R-tree based indexing scheme to 
support efficient multi-dimensional query processing 
in a cloud system. RT-CAN organizes storage and 
compute nodes into an overlay structure based on an 
extended CAN protocol and supports the processing 
of multi-dimensional range and KNN queries. 

A fundamental issue is how to store the spatial 
index on the cloud. For example, assume that a 
Quadtree index is used. Data is first partitioned until 
it becomes possible to store one or more quadrant(s) 
on a server of the cloud. A simple alternative is to 
store the entire index on a single node. Another 
alternative offering improved scalability and 
availability could be to distribute the index on an 
overlay formed by some or all of the cloud’s nodes. 

3.3.2 Location-Aware Data Placement  

Efficient data placement aims at two objectives: (i) 
reducing disk I/O cost needed for data retrieval and 
(ii) reducing communication cost associated with the 
retrieval operation. To illustrate, assume that 
Quadtree indexing is used. A simple approach to 
reduce disk I/Os is to partition data so that the 
maximum number of the most frequently accessed 
quadrants can be stored in the main memory of the 
cloud’s servers. Reducing communication cost 
requires that the data be stored where it is most often 
accessed. A natural way of achieving this in 
geospatial applications is to store geospatial data on 
servers located in the area referenced by the data 
itself. The intuition is that, in most geospatial 
(location-based) applications, users access geospatial 
data relevant to their current location. 

A possible approach for data placement is 
location-aware data placement (LDP). Intuitively, 
LDP consists of partitioning and distributing 
geospatial data on cloud’s nodes so that every data 
unit is stored on a server that is as close as possible 
to the area referenced by that data unit. On a given 
server, the memory constraints are also considered 
when determining the size of data units (e.g., 
quadrants). 
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3.3.3 Network-Aware Spatial Indexing  

It is well known that, in a distributed environment, 
the search complexity is dominated by the 
communication overhead between servers rather 
than by I/O operations at individual servers 
(Zimmermann et al., 2004). To achieve near real-
time latency, it is therefore crucial to take into 
account the network characteristics when deploying 
the distributed spatial index on the cloud’s nodes. 
We introduce the concept of network-aware spatial 
indexing. In this new indexing paradigm, the index’s 
partitions are stored on the nodes such that the 
average indexing latency, time to reach the relevant 
key in the index tree structure, is minimized. 

3.3.4 Access-based Data Reindexing, 
Replication and Migration 

In cloud computing, a substantial share in query 
processing time is the time to access the indexes and 
the time to retrieve the data. In location-based 
applications, performance may deteriorate 
significantly if a static index and data 
distribution/replication scheme is adopted. In 
addition to location, other temporal parameters can 
also have an impact on response time in many 
geospatial applications. Examples include: the time 
of the day (day vs. evening), day of the week 
(working day, week-end day), public events, 
weather, holidays, period in the year, etc. These 
spatial and temporal parameters directly determine 
the query load submitted to an application. For 
example, on a hot week-end summer day, a 
significantly higher than usual number of queries are 
likely to be submitted to a navigation application by 
users driving on a highway on their way to the 
beach. Because of the dynamic nature of queries, a 
static distribution/replication of data and indexes is 
likely to yield sub-optimal performance. 

4 CLOUD EVALUATION 

Since implementation of C2Geo on each cloud 
platform requires an understanding of some of its 
techniques and the availability of certain tools to 
utilize the cloud effectively, a comprehensive 
evaluation of C2Geo is beyond the scope of this 
paper. However, to illustrate some of the potential 
issues that may arise while implementing C2Geo on 
clouds, we evaluated the performance of an existing 
cloud computing for real-time geospatial 
applications. 

We have chosen navigation applications, one 
type of location-based services, as a representative 
real-time data-intensive geoprocessing. Navigation 
applications have a usage pattern that is ideal for 
cloud computing as it can adequately scale (down or 
up) to multiple simultaneous users (very small to 
very large numbers) with performance appropriate 
for the real-time response. The application we are 
focusing on is a real-time prediction module for 
quality of services for iGNSS (iGNSS QoS) with 
real-time processing constraints. iGNSS QoS 
prediction requires large-scale TINs for satellite 
visibility calculation, which is a real-time process. 
Thus, there is a need for an efficient strategy to 
retrieve large-scale TINs from a cloud.  

GAE was chosen due to its publicly available 
service at free (or low) cost and its full featured 
platform that allows developers to test their web 
applications on a cloud platform in a short time. 
However, the current GAE does not natively support 
geospatial data and processing. An open-source 
project, called GeoModel, for GAE was used to 
index geospatial data and perform basic spatial 
operations (i.e., proximity and bounding box) (Nurik 
and Shen, 2009).  

A TIN, covering the University of Pittsburgh’s 
main campus and the surrounding neighbourhoods 
with a 3.048 km by 3.048 km area, was created from 
LiDAR point cloud. The LiDAR point cloud has a 
point spacing of 1 m and the total number of LiDAR 
points is about 3.4 million. Since the GAE datastore 
is a schemaless or non-relational database, the 
created vertices and triangles were uploaded to GAE 
database as vertex (or point) and triangle entities. 
Point entities were uploaded through the use of 
GeoModel, which it defines a geocells property for 
spatial indexing, while triangles were uploaded as 
generic entities with no geocell attached.  

Each point and triangle entity has a unique key 
assigned by the GAE for expediting the search. Point 
entity also has a property that contains a list of 
triangle IDs that have the point as their vertex. Each 
triangle entity has a property that contains a list of 
point IDs used as its vertices. To retrieve a TIN from 
the GAE datastore for a querying area, we used a 
two-step approach: (1) retrieve point entities using 
geocells generated by GeoModel and (2) retrieve 
triangles associated with the retrieved point entities 
using triangle IDs. 

Due to GAE’s limited quota on the total storage 
space (1 GB), only a small part of the prepared TIN 
could be stored in the GAE datastore, which covers 
100 m x 3,048 m containing 225,369 vertices and 
226,120 triangles.  
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The performances of GAE with the use of 
GeoModel were measured for performing proximity 
and bounding box queries. Various sizes and 
locations of the two query types were used in this 
evaluation, which are reasonable sizes for visibility 
calculation of iGNSS QoS prediction. For proximity, 
queries with the proximity distance of 10, 20, 30, 
and 40 m at 10 different locations (within the 
boundary of the uploaded) were created. For 
bounding box, long narrow strips with the size of the 
100, 200, 300, 400, and 500 m length by the 1-m 
width were created at 5 different locations.  

5 RESULTS AND DISCUSSION 

For proximity search, only 32 of 40 defined queries 
could be completed due to the 30-second request 
limit imposed by GAE. A majority of elapsed times 
were caused by GeoModel. GeoModel determined 
relevant geocells, retrieved point entities of the 
computed geocells through the GAE datastore, and 
calculated and sorted the retrieved entities by 
distance, then returned a querying result. Searching 
entities from a string of geocells, which is an 
attribute not a key of entities, is not an optimal 
approach provided by GAE. In addition, the internal 
process of GeoModel of calculating and sorting 
distance is sequential for each query thread. Thus, 
increasing the proximity distance tends to decrease 
the performance. In addition, high variation of 
elapsed times can be observed due to the nature of 
sharing resources in the cloud. The circle symbols in 
Figure 3 show the elapsed time by the first-step of 
TIN query (point entities) for proximity queries.  
The second-step of TIN query (triangle entities) 
required relatively short time, about 1,3,5,9 seconds 
for the proximity distance of 10 to 40 m, 
respectively.  

For bounding box search, all the defined sizes 
were completed within the 30-second limit. The 
square symbols in Figure 3 show the elapsed time by 
the first-step of TIN query (point entities) for 
bounding box queries. Again, the second-step of 
TIN query (triangle entities) required relatively short 
time, about 1,2,3,4, and 5 seconds for the bounding 
boxes with length of 100 to 500 m, respectively. The 
performances varied greatly according to the sizes of 
the bounding boxes. The long latency was mainly 
caused by the process of retrieving points for the 
computed geocells that contain the bounding box.  

In summary, GAE is a general-purpose cloud 
computing platform that even though it provides a 
full set of features for easily developing web 

applications, it does not natively support storing, 
indexing, and retrieving geospatial data. This makes 
geoprocessing on an existing cloud, like GAE, more 
challenging and requiring more efforts than other 
Web applications with generic types of data. 
Therefore, techniques and tools like C2Geo are 
expected to facilitate development of geospatial 
applications in cloud and enhance the performances 
of real-time geoprocessing.  

 
Figure 3: Evaluation performance of GAE for retrieving 
TIN data. 

6 CONCLUSIONS & FUTURE 
RESEARCH 

This paper discusses the result of evaluation of the 
Google App Engine cloud for addressing the 
requirements of iGNSS QoS prediction, a real-time 
geospatial application.  

A large-scale TIN was used for testing the 
geospatial data retrieval performance of GAE with 
GeoModel. The result reveals that the current GAE 
platform and available tools are not ready yet to 
handle efficiently some of the data- and/or compute-
intensive problems in real-time geospatial 
applications. There are several reasons for this. One 
is that the current GAE platform offers limited 
techniques and tools for geoprocessing.  

Research in utilizing cloud computing for real-
time geoprocessing should address the following: 
development of geoprocessing techniques and tools 
specifically designed for cloud implementation and 
deployment, such as C2Geo; development of tools 
that allow developers flexibility in using cloud 
resources for geospatial applications. 
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