
A REFERENCE MODEL FOR DEVELOPING CLOUD
APPLICATIONS

Mohammad Hamdaqa, Tassos Livogiannis and Ladan Tahvildari
Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada

Keywords: Cloud computing, Reference model, Meta-model, Software architecture, Model-driven architecture.

Abstract: Cloud Computing is a paradigm shift that involves dynamic provisioning of shared computing resources on
demand. It is a pay-as-you-go model that offers computing resources as a service in an attempt to reduce
IT capital and operating expenditures. The problem is that current software architectures lack elements such
as those related to address elasticity, virtualization and billing. These elements are needed in the design of
cloud applications. Moreover, there is no generic cloud software architecture for designing and building cloud
applications. To further complicate the problem, each platform provider has different standards that influence
the way applications are written. This ties cloud users to a particular provider. This paper will focus on
defining a reference model for cloud computing; more particularly, it presents a meta-model that shows the
main cloud vocabulary and design elements, the set of configuration rules, and the semantic interpretation.
It is always important to understand the abstract architecture of a system, and then tackle platform-specific
issues. This separation of concerns allows for better maintainability, and facilitate applications portability.

1 INTRODUCTION

Cloud computing is paving its way into the enter-
prise. In its early years, the cloud computing research
was focused on building robust cloud infrastructure.
Mainly, it focused on improving cloud datacenters
and its related technologies that allow for scalability
and elasticity. After building the underlying cloud in-
frastructure, the hype was building platforms on top
of the cloud infrastructure. Today, a number of com-
panies (e.g., Microsoft, Google, and Amazon) pro-
vide platforms that allow for efficient development
of cloud applications and easy control of data. Of-
fering a pay-as-you-go billing policy ties the oper-
ating expenditure to the provider’s offer. Selecting
the best offer may dictate a shift from one provider
to another; the need to partially redevelop the appli-
cation makes this shift difficult and more costly. The
main concerns of cloud providers are how to deal with
these issues, in particular standardization and inter-
operability between different cloud platforms (Tsai
et al., 2010). Vendor Lock-in, or being tied to a spe-
cific vendor deployment environment is what hinders
the decision of many customers to move to the cloud.
This challenges cost reduction and portability across
multiple vendors. This paper addresses the above is-
sues by providing a reference model for developing

cloud applications. A good design requires having
the right elements and vocabulary, which match the
implementation elements. Our preliminary study of
two of the main cloud platform development environ-
ments, namely Windows Azure (Microsoft, 2010) and
Google App Engine (GAE) (Google, 2010), uncov-
ered the fact that both platforms share some common
components, despite the fact that they are built based
on different business and pricing models.

The work this paper presents is part of a larger
project. Its aim is to define a cloud software architec-
ture, a cloud modeling language, and its related de-
sign patterns. The goal is to allow cloud users (Arm-
brust et al., 2009) to design applications independent
of any platform and to build inexpensive elastic appli-
cations.

From a software engineering point of view, a
cloud application is a software provided as a service.
It consists of the following: a package of interrelated
services, that we later will calltasks, the definition of
these tasks, and the configuration files, which contain
dynamic information about tasks at run time. Cloud
tasks provide compute, storage, communication and
management capabilities. Tasks can be cloned into
multiple virtual machines, and are accessible through
application programmable interfaces. Cloud applica-
tions are a kind of utility computing that can scale out

98 Hamdaqa M., Livogiannis T. and Tahvildari L..
A REFERENCE MODEL FOR DEVELOPING CLOUD APPLICATIONS.
DOI: 10.5220/0003393800980103
In Proceedings of the 1st International Conference on Cloud Computing and Services Science (CLOSER-2011), pages 98-103
ISBN: 978-989-8425-52-2
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)



and in to match the workload demand. Cloud appli-
cations have a pricing model that is based on different
compute and storage usage, and tenancy metrics.

In the next section we present related work. Sec-
tion 3 justifies the need of a cloud application refer-
ence model. We define and explain the cloud appli-
cation reference model in Section 4, followed by a
conclusion and future directions in Section 5.

2 RELATED WORK

Perhaps the work done in (Tsai et al., 2010) is the
most related to our work. Tsai et al. proposed
a ”Service-Oriented Cloud Computing Architecture”
that allows cloud applications to work with each
other. The proposed architecture is a three layered ar-
chitecture that consists of acloud ontology mapping
layer, a cloud broker layer, and aSOA layer. The
work we are presenting in this paper falls under the
ontology mapping layer where we define a reference
model, providing the main vocabulary of cloud ap-
plications and the relations between them. The refer-
ence model takes into consideration the multi-tenancy
pattern (theSingle Application Instance and Multiple
Service Instances) presented by the authors.

A model-driven approach for building cloud so-
lutions is also presented in (Charlton, 2009). Three
design goals, which are similar to our goals, are pre-
sented. These goals are the following:the separation
of applications from infrastructure, the enablement of
computer-assisted modeling and control automation,
and the explicit collaboration to enact changes. In
the same publication, the authors denoted eight char-
acteristics that a cloud application should incorporate,
in order to achieve the above-mentioned goals. Fur-
thermore, this industrial paper introduced and briefly
described three Elastic Modeling Languages (EML)
for computing, deployment and management of elas-
tic applications. The reference model we are present-
ing in this paper acts as a meta-model for such lan-
guages and conforms with the goals presented in this
paper.

In (Frey and Hasselbring, 2010), CloudMIG, a
framework to facilitate the migration of legacy soft-
ware systems to the cloud is presented. Six actions
are proposed for this migration to address four short-
comings that the authors state as problems in the mi-
gration process. Both our approach and CloudMIG
are based on model driven engineering. While our ap-
proach starts from current cloud platforms to extract
common vocabulary and elements to create a cloud
meta-model, CloudMIG starts from existing legacy
systems, extracts the actual architecture, and then uses

the selected target cloud platform meta-model along
with a utilization model to generate a target model to-
ward system migration.

Variation analysis is the technique proposed in
(Zhang and Zhang, 2009) as a way of designing cloud
applications. The authors defined a set of Architec-
tural Building Blocks and ways to assemble a cloud-
SOA solution from them, using variation analysis.
This approach is specifically designed and checked
for Service Oriented Architecture software systems
built using the Service-Oriented Solution Stack, a
template layered architecture from IBM.

The need to detach the cloud application devel-
opment process from specific cloud platforms is ad-
dressed in (Maximilien et al., 2009). A platform-
agnostic middleware is proposed. This middleware
lies on top of the Platform-as-a-Service layer. It pro-
vides API and services to be used by cloud users, and
transparently deploys the application to a specific (but
initially unknown) cloud platform. Interestingly, this
approach relieves developers from the cloud vendor
lock-in problem, but ties the development of cloud ap-
plications to the proposed middleware.

A bottom-up approach for assembling cloud ap-
plications from simpler components, the MacroCom-
ponents is presented in (Matthews et al., 2009).
The proposed approach leverages a number of open
source technologies, in order to provide a compo-
nent model for building cloud applications. Open
source technologies involved, include the OSGi com-
ponent model, the P2 provisioning infrastructure for
OSGi component model, and the CloudClipse, which
is an eclipse plugin for managing the deployment and
installation of specific virtualization images used in
cloud platforms, such as Amazon EC2 or Eucalyptus.

From an IT management perspective, (CA Labs,
2009) proposed a cloud architecture to facilitate com-
patibility between ITIL and cloud computing, as well
as portability of cloud applications between different
cloud vendors. The goal is to maximize the return
of IT investment (ROI) in cloud computing. The ap-
proach’s foundation is the C3A paradigm. The ref-
erence architecture consists of specific components,
which enable provisioning of application’s agreement
on SLAs, and the migration of the application to dif-
ferent cloud vendors. The proposed architecture is
essential for migrating ITIL compatible applications
to the cloud, and managing existing cloud applica-
tions. Nevertheless, our paper presents a reference
model rather than a reference architecture. The pro-
posed reference model facilitates the cloud applica-
tion development, from the design to the implemen-
tation, in a transparent way, without depending on
specific Platform-as-a-Service or Infrastructure-as-a-

A REFERENCE MODEL FOR DEVELOPING CLOUD APPLICATIONS

99



Service components.
The problem of migrating legacy software sys-

tems is the main topic of (Zhang et al., 2009). The
authors provide a seven step methodology, inspired
from the SEI’s horseshoe model, to migrate legacy
software systems to cloud platforms. The methodol-
ogy involves re-engineering the original legacy archi-
tecture, refining it to a modern service oriented archi-
tecture, and porting it to the cloud using MDA trans-
formation techniques. Our cloud reference model can
add value to this methodology, by providing a unique
targeted model for the transformations, before the de-
ployment of the re-factored legacy application to the
cloud. This can improve the approach’s flexibility, es-
pecially that the original methodology forces develop-
ers to choose a cloud vendor before porting the legacy
application to the cloud.

3 THE NEED OF A CLOUD
APPLICATION REFERENCE
MODEL

Before listing the cloud application reference model
components and their relations, it is important to jus-
tify the need for this model and the difference be-
tween this model and SOA reference model.

SOA is an umbrella that describes any kind of ser-
vice. A cloud application is a service. A cloud ap-
plication meta-model is a SOA model that conforms
to the SOA meta-model. This makes cloud applica-
tions SOA applications. However, SOA applications
are not necessary cloud applications. A cloud appli-
cation is a SOA application that runs under a specific
environment, which is the cloud computing environ-
ment (platform). This environment is characterized
by horizontal scalability, rapid provisioning, ease of
access, and flexible prices. While SOA is a busi-
ness model that addresses the business process man-
agement, cloud architecture addresses many technical
details that are environment specific, which makes it
more a technical model.

Cloud platforms are complex environments,
which need to be refined at different levels of gran-
ularity. The cloud hierarchical view (i.e. SaaS, PaaS,
IaaS) is an example of a refinement that uses SOA
to describe the high level services provided over the
internet (the cloud). There is a need to create a model-
ing language that is tailored to build efficient, elastic
and autonomous applications from tasks and services
provided by the cloud environment, and to define pat-
terns that can result in the efficient optimization of
money and resources.

The modeling language should be platform inde-
pendent, with enough technical details that allow it to
tackle the platform specific environments. This will
facilitate the task of the design and implementation
of application in these environments. This will also
help in migrating applications between different cloud
providers, or deploy the same implementation on dif-
ferent platforms. This programming model should
also provide programmers with the best practices that
can help in the design and implementation of cloud
applications.

Any model consists of a vocabulary of design el-
ements, a set of configuration rules, and a semantic
interpretation. In the following section, we will de-
fine the cloud computing architecture by drawing a
meta-model that represents the main components of
cloud applications and the relations between them.

4 THE CLOUD APPLICATION
META-MODEL

Figure 1 is a meta-model of cloud applications. A
Cloud Applicationis neither pure service oriented nor
a standard web application. Cloud applications com-
bine traditional software with remote services to pro-
vide highly available, scalable and high performance
software, in addition to a fault tolerance, scalable stor-
age that can scale to petabytes. A cloud application
supports the Software plus Services (S+S) paradigm
(Sirtl, 2008), where each application consists of a
number ofTasks.

A Cloud Taskis a composable unit, which con-
sists of a set of actions that utilize services to pro-
vide a specific functionality to solve a problem. It is
a mutated unit that can be copied to other virtual ma-
chines in order to allow horizontal and vertical scal-
ability. Tasks should satisfy when composed the fol-
lowing principals: statelessness, low coupling, modu-
larity, and semantic interoperability.Tasks are seman-
tically connected to other tasks in the cloud through
the roles they play in order to satisfy a specific busi-
ness requirement, which is bounded by obligations
or responsibilities. Cloud tasks are uniquely identi-
fied by a global Dynamic Name Service (DDNS) that
can be assigned to a dynamic virtual IP address at run
time. This makes the task highly available and fault
tolerant, and allows the cloud application to be dy-
namically upgradable without any interrupts.

Like any other service or component, aCloud-
Taskhas a definition file. ATaskDefinitionstores in-
formation about tasks that the cloud application pro-
vides. A TaskDefinitioncontains information about
the cloud application tasks, which are determined at

CLOSER 2011 - International Conference on Cloud Computing and Services Science

100



-appID : Decimal

-appURI : String

-version : Decimal

CloudApplication

-name : String

-Virtual_IP : String

CloudTask

-VMSize : Integer

-numberOfInstances : Integer

-DBSize : Integer

-bandwidth : Integer

-locationProximity

ConfigurationData

TaskDefinition

CloudFrontTask CloudRotorTask Cloud PersistenceTask

Persistence

Page

Blob Table Queue

-provisioned by1

-provisions*

DataInjectionPort

-name : String

EndPoint

Internal External

Protocol

AccessMechanism

-belongs to

1

-has

*

-associated with

1

-use*

Semantic Interaction Patterns

-associated with1

-have*

One-Way MEP Two-Way MEP

-used by

1

-use*

Push Pull

SLA

BillingAgent

determines

Sync Async

Push-Pull Push-Push

-belongs to1

-has*

-depends on1

-specifies1

-defined by

1

-defines

1

-has

1

1

CloudCrossCuttingTask

-has

1

-change properties

1

-URI : String

Container

WebTask ServiceTask

Block

-use*

-used by

*

-created by

1

-creats*

-in1
-contains

*

Figure 1: Cloud Application Meta-Model.

design time. ATaskDefinitionprovides the struc-
ture of the cloud application, in terms of the provided
tasks, their types and relationships. It also provides
the set of task interfaces and their contracts.

What makes a cloud application different from
other applications is its elasticity. Cloud applications
have the ability to scale out and in. This can be
achieved by cloning tasks into multiple virtual ma-
chines at runtime to meet the changing work demand.
ConfigurationDatais where dynamic aspects of cloud
application are determined at runtime. There is no
need to stop the running application or redeploy it
in order to modify or change the information in this
file. ConfigurationDatacontains information such
as the size of the virtual machine (VMSize), number
of instances (numberOfInstances), database size (DB-
Size), bandwidth, even the location (locationProxim-
ity) where you want your task instances to run and
whether they belong to the same affinity group or
not. Different cloud platform providers have different
pricing models. The general umbrella is pay-as-you-
go. However, the way resources are allocated based
on the amount of money you pay is different. Some
cloud platform providers allow the cloud user (appli-

cation developer) to allocate resources explicitly. The
cloud user can set the values in theConfigurationData
file based on need and budget. Other cloud plat-
form providers provide algorithms(BillingAgent) to
dynamically allocate resources based on the amount
of money a cloud user is willing to pay. The user
can set the budget and general guidelines, and the
provider will modify the values in theConfigura-
tionDatafile automatically for the best configuration.
The cloud provider uses theConfigurationDataas a
contract with the cloud user. This can be represented
in a clear readable format as a Service Level Agree-
ment (SLA).

Task properties can also be modified at runtime.
This can be achieved through aDataInjectionPort. A
DataInjectionPortmodifies tasks crosscutting proper-
ties such as those related to quality of service (QoS).
Cloud platform providers vary in the way they support
data-injection. This is because data-injection tech-
niques are considered risky and can be a source of
many security threats.

CloudTaskcan be classified into:

a CloudFrontTask. An entry point to the cloud ap-
plication that handles user requests, which are dis-

A REFERENCE MODEL FOR DEVELOPING CLOUD APPLICATIONS

101



tributed by a load balancer. ACloudFrontTask
must support the interactive request-response pat-
tern. It is usually a web application (WebTask)
hosted on the cloud datacenter where a web-server
is always enabled. However, it can also be a web-
service (ServiceTask), which is provided by a third
party. A ServiceTaskuses the Enterprise Service
Bus (EBS) to discover and access remote or enter-
prise services.

b CloudRotorTask. This task runs in the background
of theCloudFrontTaskon the cloud datacenter. It is
not directly accessible from outside the cloud dat-
acenter. Mainly, it does some general development
work, or helps other tasks by performing a partic-
ular functionality. CloudRotorTaskmust support
event-driven communication patterns. Grid com-
puting tasks are common examples forCloudRo-
torTasks.

c CloudCrossCuttingTask. This task is responsible
for managing cross-cutting aspects such as those
related to monitoring cloud resources, which in-
cludes compute and storage instances and a load
balancer to ensure resource utilization and per-
formance. It is also responsible for logging,
maintaining quality of services of the cloud ap-
plication, deployments of application/tasks, dy-
namically add/remove instances based on metrics,
launching instances, log-in to instances, and task
properties change through theDataInjectionPort.
CloudCrossCuttingTasks can be accessed directly
through a web portal or a specific API (i.e. REST,
SOAP). Communication withCloudCrossCutting-
Tasks should be secure by applying, for example,
one of the public key algorithms and by using cer-
tificates (i.e. HTTPS EndPoint)

d CloudPersistenceTask. The main role ofCloud-
PersistenceTasks is to manage storage accounts.
CloudPersistenceTasks manage the access control
and login to cloud storages. A cloud storage (e.g.,
blob, table, queue) does not have any access control
mechanism; it is the responsibility of the persis-
tence task to provide the authorization and authen-
tication services. CloudPersistenceTasks create
containers, which are analogous to folders but with
no nesting. Containers are accessible through a
unique Uniform Resource Identifier (URI).Cloud-
PersistenceTasks assign persistency to containers
and give them a unique URI that is either privately
or publicly accessible. TheCloudPersistenceTask
supports three main types of cloud storages that
are reliable, can scale out, simple, inexpensive and
have better performance under the cloud environ-
ment. These types are: unstructured data (blobs),

structured data (tables) and asynchronous messag-
ing (queues).

i Blob. Blobs are unstructured large data files
and their meta-data. It can be stored as a se-
quence of blocks or pages. The blob is the
simplest and largest cloud storage unit. Cloud
drive storages are blobs.

ii Table. Tables are structured data files, that are
more complex than blobs, but different than re-
lational database (RDB) tables. Cloud tables
are much simpler. This makes them suitable
for massive scalability. They can scale out to
support any number of simultaneous tasks. A
cloud table is a set of entities and its associated
properties. It uses two types of keys: partition
keys and row keys. Cloud tables do not sup-
port SQL queries, have no schema and use op-
timistic concurrency for updates and deletions.
Cloud tables are more like datasheet tables.

iii Queue. A scalable messages storage, which
supports the polling-based model used in mes-
sage passing between tasks. A message can
be stored for long periods (i.e. days) before
it is read and then removed from the queue.
Cloud queues are different from conventional
queueing systems. Cloud queues must support
fault tolerance. Unlike conventional queues, a
message read does not delete the message from
the queue. The message is set into a hidden
mode until it is successfully processed. It is the
responsibility of the processing task to delete
the message. The queue is the main commu-
nication mechanism betweenCloudFrontTasks
andCloudRotorTasks. Which makes it one of
the most frequently used design patterns in the
cloud. This design pattern does not only relief
the end-user from waiting for a long time un-
til a task processes the message, but also makes
scalability easier.

Relationships between tasks can be determined
by EndPoints. EndPoints are ports through which a
CloudTaskcan connect to other tasks or to the envi-
ronment. Each Task has one or moreEndPoints. An
EndPointcan be classified based on several criteria.
Whether it is publicly visible (external) or only ac-
cessible within the Cloud Application (internal), load
balanced at the network level or not, or whether it
allows inbound or outbound communication. Each
EndPointuses an access mechanism, which uses a
semantic interaction pattern for the coordination of
message exchange. These patterns are based on spe-
cific protocols that determine the syntax and seman-
tics of the messages that are exchanged between the

CLOSER 2011 - International Conference on Cloud Computing and Services Science

102



two communication parties. Message Exchange Pat-
terns (MEP) can be classified into two main cate-
gories, one-way or two-way. The one-way MEP is
usually referred to as the event driven MEP, or pub-
lish subscribe (pub/sub), in which the participating
parties are not fully aware of each other. A tempo-
rary storage in the form of a queue is usually used
to accomplish this. One party will push a message,
and the second will pull it from the queue. This is
one of the common communication patterns between
CloudFrontTasks andCloudRotorTasks. On the other
hand, the two way MEP is usually referred to as re-
quest/response MEP. It can be either a synchronous
(blocking) or asynchronous (non-blocking). This is
an interactive communication that is usually needed
when you have direct interaction with the user.Cloud-
FrontTasks must support this type of interaction with
the application user.

5 CONCLUSIONS

This paper presented a meta-model for cloud applica-
tions. Cloud computing is a new paradigm for devel-
oping elastic and flexible applications with less time
to market. The promise is to reduce the overhead of
developing, configuring, deploying, and maintaining
cloud applications. Currently, there is no common
vocabulary, development methodologies, or best prac-
tices that distinguish the cloud development paradigm
from the existing ones. The lack of standardization
and common terminologies challenges portability and
migration between different cloud platforms. On the
other hand, the lack of software architectural models
and design patterns makes cloud application develop-
ment an ad-hock approach.

To address the previous problems, in this paper we
defined a cloud application meta-model that is capa-
ble of capturing the syntax and some of the semantics
of cloud applications. This meta-model can be used
by developers to better understand cloud applications
independent of any specific cloud development envi-
ronment. This meta-model will serve as a first step to-
ward a cloud modeling language that we are currently
working on.

Future directions include refining the syntax and
defining semantics of the proposed reference model,
mapping the reference model to different cloud plat-
forms, and creating a platform independent modeling-
language for cloud applications.

REFERENCES

Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R.,
Konwinski, A., Lee, G., Patterson, D., Rabkin, A.,
Stoica, I., et al. (2009). Above the clouds: A berkeley
view of cloud computing.EECS Department, Univer-
sity of California, Berkeley, Tech. Rep. UCB/EECS-
2009-28.

CA Labs (2009). Cloud computing Web-Services offering
and IT management aspects. InOOPSLA09, 14th con-
ference companion on Object Oriented Programming
Systems Languages and Applications, pages 27–39.

Charlton, S. (2009). Model driven design and operations for
the cloud. InOOPSLA09, 14th conference companion
on Object Oriented Programming Systems Languages
and Applications, pages 17–26.

Frey, S. and Hasselbring, W. (2010). Model-Based migra-
tion of legacy software systems into the cloud: The
CloudMIG approach. InWSR2010, 12th Workshop
Software-Reengineering, pages 1–2.

Google (2010). Google app engine. Retrieved: December
2010, from http://code.google.com/appengine/.

Matthews, C., Neville, S., Coady, Y., McAffer, J., and
Bull, I. (2009). Overcast: Eclipsing high profile open
source cloud initiatives. InOOPSLA09, 14th con-
ference companion on Object Oriented Programming
Systems Languages and Applications, pages 7–15.

Maximilien, E. M., Ranabahu, A., Engehausen, R., and An-
derson, L. C. (2009). Toward cloud-agnostic middle-
wares. InOOPSLA09, 14th conference companion
on Object Oriented Programming Systems Languages
and Applications, pages 619–626.

Microsoft (2010). Windows azure microsoft’s cloud ser-
vice platform. Retrieved: December 2010, from
http://www.microsoft.com/windowsazure/.

Sirtl, H. (2008). Software plus Services: New IT-and
Business Opportunities by Uniting SaaS, SOA and
Web 2.0. InIEEE EDOC’08, 12th International En-
terprise Distributed Object Computing Conference,
pages 1541–7719.

Tsai, W., Sun, X., and Balasooriya, J. (2010). Service-
Oriented Cloud Computing Architecture. InITNG10,
7th International Conference on Information Technol-
ogy: New Generations, pages 684–689.

Zhang, L. J. and Zhang, J. (2009). Architecture-Driven vari-
ation analysis for designing cloud applications. In
IEEE CLOUD09, 2nd International Conference on
Cloud Computing, pages 125–134.

Zhang, W., Berre, A. J., Roman, D., and Huru, H. A. (2009).
Migrating legacy applications to the service cloud. In
OOPSLA09, 14th conference companion on Object
Oriented Programming Systems Languages and Ap-
plications, pages 59–68.

A REFERENCE MODEL FOR DEVELOPING CLOUD APPLICATIONS

103


