
RESOURCE MANAGEMENT OF VIRTUAL INFRASTRUCTURE
FOR ON-DEMAND SAAS SERVICES

Rodrigue Chakode1, Blaise Omer Yenke1,2 and Jean-François Méhaut1

1INRIA, LIG Laboratory, University of Grenoble, Grenoble, France
2Dept. of Computer Science, University of Ngaoundere, Ngaoundere, Cameroon

Keywords: On-demand Software-as-a-Service, Cloud computing, Virtualization, Resource sharing, Scheduling.

Abstract: With the emerging of cloud computing, offering software as a Service appears to be an opportunity for soft-
ware vendors. Indeed, using an on-demand model of provisioning service can improve their competitiveness
through an invoicing tailored to customer needs. Virtualization has greatly assisted the emerging of on-demand
based cloud platforms. Up until now, despite the huge number of projects around cloud platforms such as
Infrastructure-as-a-Service, less open research activities around SaaS platforms have been carried on. This is
the reason why our contribution in this work is to design an open framework that enables the implementation
of on-demand SaaS clouds over a high-performance computing cluster. We have first focused on the frame-
work design and from that have proposed an architecture that relies on a virtual infrastructure manager named
OpenNebula. OpenNebula permits to deal with virtual machines life-cycle management, and is especially
useful on large scale infrastructures such as clusters and grids. The work being a part of an industrial project1,
we have then considered a case where the cluster is shared among several applications owned by distinct soft-
ware providers. After studying in a previous work how to implement the sharing of an infrastructure in such
a context, we now propose policies and algorithms for scheduling jobs. In order to evaluate the framework,
we have evaluated a prototype experimentally simulating various workload scenarios. Results have shown its
ability to achieve the expected goals, while being reliable, robust and efficient.

1 INTRODUCTION

Cloud computing has highlighted the suitability of
the on-demand model of invoicing against the sub-
scription model that has been applied until recently
by application service providers also know as ASP.
With cloud computing, Software-as-a-Service (SaaS)
appears to be a real opportunity for ASPs. Indeed,
they can improve their competitiveness by enabling
on-demand remote access to software (as service or
utility) in addition to traditional license and/or sub-
scription models. Virtualization has greatly assisted
the emerging of cloud computing that enabled the ef-
fective use of remote computing resources as utility.
Up until now, open research activities around cloud
computing are mostly focused on Infrastructure-as-a-
Service clouds leading to huge ecosystem of high-
quality resources. There are no real open research
projects around SaaS clouds.

Our contribution in this work is to design an open
framework that enables the implementation of on-
demand SaaS clouds over a high-performance com-
puting (HPC) cluster. We have first proposed an archi-

tecture that relies on virtual machines to execute the
jobs associated to service requests. We have built a re-
source manager that relies on OpenNebula, a virtual
infrastructure manager that allows to deal with vir-
tual machines life-cycle management on large scale
infrastructures such as clusters and grids. The re-
source manager provides core functionalities to han-
dle requests and schedule the associated jobs. Then,
guided by the requirements of the Ciloe project1, we
have considered that the resources of the underlying
cluster are shared among several applications owned
by distinct providers, which contribute to purchase
the infrastructure and keep it up. We have focused
on scheduling of service requests within such a con-
text and proposed policies and algorithms. We have
implemented a prototype which is evaluated by simu-
lating various workloads, that derive from a real pro-
duction system workload. Experimental results have

1This work is funded by Minalogic through the project Ciloe
(http://ciloe.minalogic.net). Located in France, Minalogic is a
global business competitive cluster that fosters research-led inno-
vation in intelligent miniaturized products and solutions for indus-
try.

352 Chakode R., Omer Yenke B. and Méhaut J..
RESOURCE MANAGEMENT OF VIRTUAL INFRASTRUCTURE FOR ON-DEMAND SAAS SERVICES.
DOI: 10.5220/0003387503520361
In Proceedings of the 1st International Conference on Cloud Computing and Services Science (CLOSER-2011), pages 352-361
ISBN: 978-989-8425-52-2
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)

shown its ability to achieve the expected goals, while
being reliable, robust and efficient.

We will first describe the SaaS cloud within the
Ciloe project context, and then show the different ob-
stacles that we have faced in order to achieve the
project (Section 2). We will then present the re-
lated work around SaaS clouds and the different ap-
proaches concerning those obstacles (Section 3). Af-
ter that, we will describe the design and the archi-
tecture of the proposed framework (Section 4), along
with the policies and the algorithms of scheduling
used by the resource manager (Section 5). After pre-
senting the implemented prototype, we will show the
results of its experimental evaluation (Section 6). Fi-
nally, we will present our conclusion and future work
(Section 7).

2 CONTEXT: THE CILOE
PROJECT

The Ciloe project aims at developing an open frame-
work to enable the implementation of software-as-a-
service (SaaS) (Gene K. Landy, 2008)(Turner et al.,
2003) cloud computing (Vaquero et al., 2009) plat-
forms. A SaaS cloud is illustrated on Figure 1. The
cloud relies on a HPC cluster, while the model of ac-
cessing service is on-demand. A customer submits a
request along data through Internet. The execution of
the job that will process the request is scheduled. Af-
ter processing the output is returned to the customer.
Both software and computing resources (computing
nodes, storage, etc.) are owned by the software ven-
dor, which is also the service provider.

In our previous work (Chakode et al., 2010), we
have mentioned the case of clusters that can be shared
among several businesses in order to minimize the im-
pact of an initial deployment on their budgets. This is
the reason why this particular project involves three
small and medium software vendors. We have also
shown that when using this model of service provid-
ing, we can face different obstacles concerning job
and resource management, such as:

• Schedule of on-Demand Request.Allocate re-
sources for executing requests would be transpar-
ent: It would be achieved internally without ex-
plicit constraints provided by customers. Addi-
tionally, the allocation would ensure some pri-
oritization among customers: the providers can
differentiate the end-to-end quality of service of-
fered to their customers, distinguishing for in-
stance partners or regular customers against punc-
tual customers. However, the delivered service

has to be well defined (for instance in term of rea-
sonably delivery time) to ensure customers satis-
faction.

• Fair-share of Resource. The underlying HPC
cluster is shared among several businesses collab-
orating to purchase the cluster and keep it in op-
erational condition. Therefore, the sharing has to
be fair: the application of each business has to be
guaranteed with a share or ratio of resource usage
according to its investment on the infrastructure.

• Efficient Use of Resource.When resources are
idle, the software providers can use them to run
internal jobs, such as regression testing. However,
the jobs associated to such tasks are less priori-
tized than the customer ones.

Figure 1: The model of the expected infrastructure for SaaS
on-demand.

3 RELATED WORK

Up until now, the implementation of on-demand SaaS
platforms was studied by industries, leading to many
platforms such as SalesForce (for,), Google (goo,
), Adobe (ado,), Intacct (int,), etc. Since these
platforms are closed, there are not open documenta-
tion about how they deal with resource management.
However, in the area of high performance computing
(HPC), the problems of sharing computing resources
and to use them efficiently have been studied.

3.1 Sharing of Computing Resources

Most batch job schedulers implement fair-share disci-
plines, from native operating systems (e.g. Linux), to
high level batch job schedulers such as Maui (Jackson
et al., 2001). In fair-sharing systems, resources are eq-
uitably allocated to run jobs or group of jobs accord-
ingly to shares assigned to them (Kay, J. and Lauder,
P., 1988)(Li and Franks, 2009). Fair-share schedul-
ing permits to avoid starvation, while allowing jobs to

RESOURCE MANAGEMENT OF VIRTUAL INFRASTRUCTURE FOR ON-DEMAND SAAS SERVICES

353

benefit from the aggregated power of processing re-
sources. Fair-share can be observed over long periods
of time (Jackson et al., 2001; Kay, J. and Lauder, P.,
1988; Jackson et al., 2001) or over few clock cycles
(Linux systems). In most of scheduling systems, it is
implemented through dynamic priority policies guar-
anteeing higher priorities to jobs or groups of jobs that
have used few resources.

This approach does not seem to be suitable in the
Ciloe case. Indeed, the execution of some tasks could
be significantly delay if all resources are used by long-
term jobs. Yet, even if the partners want to bene-
fit from the aggregated power of computing nodes,
they would expect a reasonable waiting time for their
tasks. For a given partner, this expectation could be
particularly high when the amount of resources he has
used is less than the ratio of resources for which he
has invested.

3.2 Efficient Use of Computing
Resources

The need of using computing resources efficiently
led to the emerging of advanced scheduling poli-
cies such as backfilling (Lawson and Smirni, 2002),
against the classical first-come first-serve (FCFS) pol-
icy adopted in earlier job schedulers. A backfilling-
applying scheduler allows newer jobs requiring less
resources to be executed than the former ones. De-
spite the fact that it may lead to starvation issues for
big jobs, the backfilling approach allows a more ef-
fective utilization of resources avoiding wasting idle
time.

Our approach is to carry out several novelties. The
design of the SaaS resource manager we have pro-
posed is opened from its architecture to internal poli-
cies and algorithms of scheduling jobs. It relies on
a generic model of resource management that con-
siders that the underlying computing infrastructure is
shared among several applications owned by distinct
SaaS providers. The policies and algorithms used to
enforce this sharing permit to guarantee shares of re-
source use to each application, even in period of high
load and/or high competition to accessing resources.
Since the effectiveness of the utilization of the whole
resources is a major point in our project, we also al-
low backfilling.

4 THE PROPOSED
FRAMEWORK

As previously mentioned (Chakode et al., 2010), it

has been shown that scheduling SaaS requests on-
demand upon such a shared cluster should enable flex-
ibility and easy reconfigurability in the management
of resources. A dynamic approach of allocating re-
sources has been proposed. This approach aimed at
guaranteeing fair-sharing statistically, while improv-
ing the utilization of whole system resources.

We think that using virtual machines would be a
suitable solution to implement this approach. The
suitability of virtual machines for sharing comput-
ing resources has been studied (Borja et al., 2007).
The authors have claimed and shown that using vir-
tual machines allows to overcome some scheduling
problems, such as schedule interactive applications,
real-time applications, or applications requiring co-
scheduling. Furthermore, virtual machines enable
safe partitioning of resources. Being easily allocable
and re-allocable, they also enable easy reconfigurabil-
ity of computing environments. While the main vir-
tual machines drawback has been performance over-
head, it has been shown that this overhead can be
significantly reduced with specific tuning, see for ex-
ample the works introduced in (Intel Corporation,
2006), (AMD, 2005), (Yu and Vetter, 2008), (Jone,
), (Mergen et al., 2006). Tuning being typically
implementation-dependent, we do not consider this
aspect in this work.

4.1 Global Architecture

In the model we have proposed, jobs would be run
within virtual machines to ensure safe node partition-
ing. The cluster is viewed as a reconfigurable virtu-
alized infrastructure (VI), upon which we build a re-
source manager component to deal with handling re-
quests, and scheduling the associated jobs on the un-
derlying resources pool. This system architecture is
shown on Figure 2. At the infrastructure level, the
scheduler relies on a VI Manager (VIM), to deal with
usual virtual machine live-cycle management capa-
bilities (creation, deployment, etc.), over large scale
infrastructures resources. Among the leading VIMs
which are OpenNebula (Sotomayor et al., 2009b),
Nimbus (Keahey et al., 2005), Eucalyptus (Nurmi
et al., 2009), Enomaly ECP (eno,), VMware vSphere
(vmw,), we have chosen OpenNebula considering
the following key-points, which are further detailed
in (Sotomayor et al., 2009a). OpenNebula is scal-
able (tested with up to 16,000 virtual machines), open
source and it uses open-standards. It enables the pro-
grammability of its core functionalities through appli-
cation programmable interface (API), and supports all
of popular Virtual Machine Monitor (VMM) includ-
ing Xen, KVM, VMware, and VirtualBox.

CLOSER 2011 - International Conference on Cloud Computing and Services Science

354

The proposed resource manager replaces the de-
fault OpenNebula scheduler (mmsched), and acts as
the entry-point for all requests submitted on the in-
frastructure. As mentioned above, it provides core
functionalities for handling requests, scheduling the
execution of the associated jobs, monitoring their ex-
ecution, etc. To be more precise, it is in charge of vari-
ous tasks: selecting jobs to run, preparing virtual ma-
chines template along with suitable software stacks
(virtual appliances), selecting nodes onto which the
virtual machines will be run, and to then request
OpenNebula to perform the deployment. The sched-
uler relies on the XML-RPC interface of OpenNebula
to communicate with it.

Figure 2: Model of the Software-as-a-Service platform.

4.2 Resource Manager for SaaS
Platform

Like classical bash schedulers such as PBS (H. Feng
and Rubenstein, 2007) and OAR (Capit et al.,
2005), the scheduling system is designed following
a client/server architecture. In this section, we will
present the design of the server part consisting of four
main modules: an admission module, a scheduling
module, an executive module, and a monitoring mod-
ule. Schematically, the modules work together fol-
lowing the flow described on Figure 3.

4.2.1 Admission Module

In charge of handling user requests, it processes the
following algorithm.

1: Listen for new request.
2: Once a request arrives, the module parses the re-

quest to check its validity (the syntax of valid re-
quests is well defined and known by the system).
If the request is not valid, it is rejected and the
user is notified while the processing returns to
step 1.

3: When the request is valid, the associated job is
created, masked as inpending, and added to suit-

Figure 3: Overview of the resource manager workflow.

able service queue.
4: A wake-up signal is emitted towards the schedul-

ing module while the processing returns to step
1.

4.2.2 Scheduling Module

In charge of selecting the job to execute it processes
the selection algorithms described in the subsection
5.4.1. Its processing workflow is described as follows.
1: Wait when there is no queued job.
2: Once waking up, check if there are idle resources.

If there are any, go to step 4; Otherwise, continue
to step 3.

3: If there are queued production jobs while there
are running best-effort jobs, it tries to preempt
some of the later to free sufficient resources to
run the former. Otherwise, it waits for resources
to become idle (a wake up signal is emitted when
a job completes). The processing returns to step
2 after the waking up.

4: Check whether or not there are queued produc-
tion jobs. If there are any, select a job to execute
using the algorithm of the subsection 5.4.1. Oth-
erwise, select a queued best-effort job using the
algorithm of the subsection 5.4.2.

RESOURCE MANAGEMENT OF VIRTUAL INFRASTRUCTURE FOR ON-DEMAND SAAS SERVICES

355

5: After selecting a job, it forwards the job to the ex-
ecutive module (that is responsible for launching
it), and it resumes the processing to step 2.

4.2.3 Executive Module

It is in charge of allocating resources and launching
the execution of jobs. Aware that in general case some
applications can be distributed, we have decided to
focus mainly on applications that required only one
virtual machine, while the virtual machine can have
several CPU/cores. Otherwise, we should have intro-
duced a synchronization so that the job starts at the
end of virtual machines startup. The executive mod-
ule processes as follows:

1: Wait when there is any task to carry out.
2: Once a job has to be launched, it generates the

configuration of the associated virtual machine.
The configuration data consist of a virtual ma-
chine template (indicating among other things,
memory, CPU, swap, location of image file, etc.).
The template and the image file contain contextu-
alization data that permit: (i) to automatically set
the execution environment and start the job at the
virtual machine startup; (ii) send back a notifica-
tion when the job is completed.

3: Select a host which free resources can match the
virtual machine requirements. The host selec-
tion is based on a greedy algorithm that iterates
through the host pool until reach a suitable host.

4: Request the underlying virtual infrastructure
manager to instantiate the virtual machine.

5: Request the underlying virtual infrastructure to
deploy the virtual machine onto the selected host.

6: Wait for the job to start and mark it as in ”run-
ning”, update pools, and resume the processing
to step 1.

4.2.4 Monitoring Module

This is a utility module. Among other things, it peri-
odically gathers statistics (concerning for instance re-
source usage, queues state, etc.), and logs them. Such
information can be used, for example, for analyzing
trends and making forecasts.

5 FAIR AND EFFICIENT
SCHEDULING

It can be deduced from the workflow introduced in
the subsection 4.2 that the guarantee of fairness and
efficiency highly depends on algorithms of scheduling
jobs.

5.1 Scheduling Assumptions

Two classes of jobs can be distinguished: production
jobs and best-effort jobs. Their scheduling obeys to
some assumptions that aim at making tradeoffs so to
be fair regarding the sharing, while being effective as
possible regarding resource utilization.

5.1.1 Production Jobs

They consist of jobs associated to the execution of
customer requests. For this reason, it is considered
that they can not be stopped or preempted so to guar-
antee end-to-end performance. Such jobs arehigher
prioritized to accessing resources than best-effort jobs
(introduced below). We also distinct two subclasses
of production jobs: long-term jobsand short-term
jobsaccording to a given threshold duration.

Concerning production jobs, the tradeoffs consists
in applying the fair-guaranteed only on long-term
jobs. This would permit to overlap the fragmentation
or the wasting of resources caused by static partition-
ing by short-term jobs (Chakode et al., 2010), which
can be executed regardless of the sharing constraint.
Therefore, resources can be assigned for executing
long-term jobs if the share-guaranteed is respected.
Furthermore, with this assumption we expect a cer-
tain flexibility in order to improve the utilization of
resources, while guaranteeing that a possible overuse
(that can occur after allocating resources to short-term
jobs) does not persist too long.

5.1.2 Best-effort Jobs

They consist of jobs associated to requests submitted
by the software providers. These jobs are less priori-
tized than production jobs. They should be preempted
when there aren’t any sufficient resources to run some
queued production jobs. The main idea behind al-
lowing best-effort is to improve resource utilization.
Since they can be preempted every time, best-effort
jobs are scheduled regardless the constraints on fair-
sharing. Thus, as long as there are sufficient free re-
sources, those resources can be used to execute the
jobs. In short, the policy used to select the jobs to
be preempted is based onnewer-job firstorder, which
means that newer jobs are preempted before the for-
mer ones. This policy aims at reducing the time
required to preempt jobs (a short-time running job
would take less time).

5.2 Scheduling Policies

The jobs scheduling is based on a multi-queues sys-
tem. Each application has two queues: one for pro-

CLOSER 2011 - International Conference on Cloud Computing and Services Science

356

duction jobs and the other one.

5.2.1 Queue Selection Policy

In order to avoid the starvation of some queues, the
selection of the service’s queue, in which a job will
be selected to execute, relies on a round-robin pol-
icy. All available queues are grouped in two lists of
queues (a list of production queues and a list of best-
effort queues). Each list is reordered after selecting
and planning a job to be executed. The reordering
moves the queue in which the job has been chosen to
the end of the related queue list.

5.2.2 Production Job Selection Policy

The selection of the queued production job to be ex-
ecuted is based on a priority policy. Indeed, each re-
quest is assigned with a priority according to a weight
assigned to the associated customer. The weights
are related to the customers importance to software
providers. Backfilling is allowed when selecting a job
from each queue.

5.2.3 Best-effort Job Selection Policy

The selection of the best-effort job to be executed is
based on a First-Come First-Served (FCFS) policy.
The queued jobs are planned onto resources accord-
ing the their arrival date, as long as there are sufficient
idle resources. The policy also allows backfilling.

5.3 Share Guaranteed and System
Utilization

The fair-sharing is enforced assigning a ratio of re-
source usage to each application. Before executing a
job, the scheduler should check if the associated ser-
vice’s resource usage is less or equal than the granted
ratio after allocating resources. Resource usage is
then evaluated through a weighting relation among
computational and I/O resources. The weighting is
similar to that of Mauijob priority factors.

usage= w1 ∗ memusage+ w2 ∗ cpu usage

+ w3 ∗ networkusage+ . . .

Each wi is a weight assigned to each kind of re-
sources. However, we have only considered memory
and CPU resources, and used a simple weighting rule
expressed as follows:

usage= Max(memusage, cpu usage)

5.4 Job Selection Algorithms

We will present the essential of the algorithm instead
of specific implementation details. We assume that
we know (or evaluate in a prior stage) the CPU and
memory requirements, and the job duration.

5.4.1 Production Jobs Selection

The selection of production jobs to execute takes into
account the available idle resources, priorities among
jobs, the assigned ratios of resource usage, job du-
ration, and submission dates. It allows backfilling,
and as noted in the subsection 5.1, the constraint of
share-guaranteed is only applied on long-term jobs.
An overview of the algorithm is shown on Figure 4,
and further described in the Algorithm 1

5.4.2 Best-effort Jobs Selection

The algorithm used for selecting the best-effort job to
be executed is similar to Algorithm 1. However, there
is one main difference. Indeed, resource selection is
not subjected to compliance with shares-guaranteed,
and then the associated usage of resources is not ac-
counted when checking it (steps 10 and next).

Figure 4: Overview of the job selection principle. Produc-
tion queues are sorted according to job priorities.

6 EVALUATION

In order to validate the proposed resource manager,
we have built a prototype named Smart Virtual Ma-
chines Scheduler (SVMSched). It is a multi-process
application, which processes represent the compo-
nents introduced in subsection 4.2.

6.1 Experimental Environment

The experimental platform has consisted of 8 multi-

RESOURCE MANAGEMENT OF VIRTUAL INFRASTRUCTURE FOR ON-DEMAND SAAS SERVICES

357

Algorithm 1 : Select the production job to execute.

Require: sorted job queues: Letj and j ′ be two jobs,
qp be a queue of production jobs, andQp the
set of all production queues. j 6= j ′ ∈ qp ∈ Qp;
priority(j) a function that returns the priority of
a given job j ; subTime(j) a function that returns
the submission time of a given jobj ; rank(j , q)
a function that returns the rank of a given jobj
in the queueq. Then, if priority(j) < priority(j ′)
or if priority(j) = priority(j ′) while subTime(j) <
subTime(j ′)⇒ rank(j , qp)< rank(j ′, qp).

Ensure: If the variablefound is true, then the variablese-
lectedJobcontains the job to be executed. Otherwise,
it means that no job can be executed while respecting
the scheduling assumptions. Whenfound is true, the
value of the variabletotalCompliance(which can be
true or false) allows to know whether the fair-sharing
compliance will be overridden after execution.

1: found← false
2: totalCompliance← false
3: q← getNextCandidateQueue (Qp)
4: while (totalCompliance =false)

and (q != endOfQueueset (Qp)) do
5: service← getService (q)
6: grantedUsage← getGrantedUsage (service)
7: job← getFirstJob (q)
8: while (job != endOfQueue (q))

and (totalCompliance =false)) do
9: if (sufficientResourcesToRun (job)) then

10: nextUsage← expectedUsage(job, service)
11: if (nextUsage≤ grantedUsage)

((nextUsage> grantedUsage)
and (hasShortDuration (job))) then

12: selectedQueue← q
13: selectedJob← job
14: found← true;
15: if (nextUsage≤ grantedUsage)then
16: totalCompliance← true
17: end if
18: end if
19: end if
20: job← getNextJob(q)
21: end while
22: q← getNextCandidateQueue (Qp)
23: end while
24: if (found= true) then
25: updateQueuesOrder (selectedQueue,Qp)
26: end if

core nodes of the Grid50002 Genepi cluster located
in Grenoble. Each one of the nodes consists of 2
chips (CPU) of 4 Xeon cores (2.27Ghz), 24GB RAM,
2 NICs (Ethernet 1Gbit/s, Infiniband 40Gbit/s). We
have used Xen version 3.4.2 as the backend VMM
for OpenNebula which has been deployed on six of
the nodes working as cluster nodes. OpenNebula ver-
sion 1.4 andSVMSchedhave been installed on the two
other nodes. We have used an NFS-based OpenNeb-

2https://www.grid5000.fr

ula deployment where the images of virtual machines
are stored in an NFS-attached repository. The NFS
and the OpenNebula server have been mutualized on
the same node. Each virtual machine has to have a
round not-nil number of CPU-cores dedicated, allow-
ing up to 48 virtual machines in the virtual infrastruc-
ture. The NFS system relies on the Infiniband net-
work through IP-over-Infiniband, while the Ethernet
network supports the infrastructure virtual network.

6.2 Workload

We have simulated the system workload using a fil-
tered workload from the SHARCNET log3. We have
extracted the last 96 jobs related to partitions 8, 4,
and 2 with a number of allocated CPU less or equal to
8. The resulting workload consists of 96 jobs among
which 65 of them are related to partition 8, 12 of them
to partition 4, and 19 of them to partition 2. In or-
der to transpose this workload in our context, we have
assumed that the requests related to partitions 8, 4,
2 are associated to three applications or services de-
notedApp1, App2, andApp3, respectively.

6.3 Ability of Enforcing
Share-guaranteed

In a first experiment, we have evaluated the behavior
of the resource manager when the constraint of share-
guaranteed is applied to all jobs, regardless of their
duration. Precisely, we have evaluated the ability to
enforce the policy denotedRigid Policy, and the level
of resource utilization (amount of CPU/cores used).
Intuitively and regardless of each application load de-
mand, we have considered that a same ratio of re-
sources usage is assigned to each one of them. Thus,
it can use up to 1 out 3 resources, equivalent to 16
cores.

On Figure 5, we have plotted the amount of CPU-
cores used by each one of the applications over time.
The graphs shows that the system manages to guaran-
tee that none of the applications uses more resources
than the amount allowed. For instance, even ifApp1
has high demand, it won’t use more than 16 cores. On
the contrary, we can observe that some applications,
namelyApp2 andApp3, use less resources than al-
lowed. In this situation, we can expect such a result
(Chakode et al., 2010). During the experiment, the
maximum of resources used by all the applications
is 27 cores, against an average of 15 cores used over
time, for a total duration of more than 35.000 seconds.

3http://www.cs.huji.ac.il/labs/parallel/workload/
l sharcnet/index.html

CLOSER 2011 - International Conference on Cloud Computing and Services Science

358

Figure 5: Plot of time versus the amount of CPU-cores used
when theRigid Policy is enforced. All of jobs related to a
given application can not use more than 16 cores.

6.4 Benefit of the Flexibility: Stay Fair
while Improving System Utilization

In a second experiment, we have evaluated the ben-
efit of theFlexible Policythat consisted in applying
the constraint of share-guaranteed only on long-term
jobs. In this experiment, jobs with a duration of more
than 30 minutes are considered as long-term jobs. For
information, the total duration of such jobs represents
more than 80% of the total duration of all jobs.

Figure 6 has shown that this policy permits to im-
prove the utilization of the whole system resources.
With a maximum of 40 and an average of 17.5 cores
against respectively 27 and 15 cores in the first exper-
iment, the gain is equivalent to about 2.5 cores during
the experiment, and thus permits to reduce the total
duration to around 32700 seconds against 3500 sec-
onds for the first experiment. Furthermore, execut-
ing short-term jobs related to a given application does
not significantly delay the starting of the jobs related
to other applications. For instance, in the first 10000
seconds, the delay that could have caused the overuse
of resources byApp1 is not perceptible on the starting
of jobs related toApp2 andApp3.

6.5 Utilization, Reliability,
Performance, Robustness

In the previous results, it has appeared that the equal
repartition does not reflect the demand of resources
by each application. This has led to a low utiliza-
tion of the available resources. Ideally, in the context
of sharing like the one we have considered (see sec-
tion 2), the software vendors sharing the infrastructure
would invest to get ratios of resource usage according

Figure 6: Plot of time versus the amount of CPU-cores used
when theFlexible Policyis enforced. The long-term jobs
related to an given application can not used more than 16
cores.

to their needs, which would be evaluated and dimen-
sioned suitably. Therefore, in the next two experi-
ments we have considered that each application has a
ratio of usage proportional to the number of jobs re-
lated to it. This corresponds to respectively assigning
the equivalent of 32.5, 9.5 and 6 cores toApp1,App2
andApp3. Additionally, in order to evaluate the be-
havior of the resource manager facing high loads, we
have also considered that all of the 96 jobs have been
submitted consecutively without any delay in the sys-
tem.

On Figure 7, the graphs have shown that the sys-
tem is still able to enforce the selected policy. We
also can abserve that with a suitable dimensioning of
ratios, the utilization of resource is significantly im-
proved with an average of 27 cores and another one
of 34.5 cores used during the experiments, against 15
and 17.5 cores in the first two experiments. Therefore,
this has led to reducing the time required to complete
all jobs.

We have observed that the resource manager has
successfully efficient upon high loads. Indeed, in both
experiments, all of jobs submitted have been success-
fully handled and the associated jobs have been added
in suitable queues. The system has required less than
three seconds to handle the 96 jobs and add them to
the queues.

7 CONCLUSIONS

In this paper, we have designed a resource manager to
deal with the implementation of software-as-a-service
platform over a HPC cluster. We have first studied the
design and proposed an architecture that relies on ex-

RESOURCE MANAGEMENT OF VIRTUAL INFRASTRUCTURE FOR ON-DEMAND SAAS SERVICES

359

Figure 7: Plot of time versus the amount of CPUs used when the ratio of resource usage granted to each application is related
to its demand.

ecuting the jobs related to service requests onto vir-
tual machines. The proposed system relies on Open-
Nebula to deal with virtual machines life-cycle man-
agement. We have then considered a case in which
the cluster is shared among a limited number of ap-
plications owned by distinct software providers. We
have proposed policies and algorithms to schedul-
ing jobs so to fairly allocate resources regarding the
applications, while improving the utilization of the
cluster resources. We have implemented a prototype
that has been evaluated. Experimental results have
shown the ability of the system to achieve the ex-
pected goals, while being reliable, robust and effi-
cient. We think that the proposed framework would
be useful for both industries and academics interested
in SaaS platforms. It can be also easily extended to
support the implementation of Platform-as-a-Service
(PaaS) clouds.

After the prototype stage, some features should
be either improved or added in the proposed re-
source manager before releasing a production-ready
version. For instance, since it currently only re-
lies on the OpenNebula’s XML-RPC authentifica-
tion mechanism, this resource manager would need
a strong credential mechanism in order to be more
secure. Furthermore, since it only supports single
virtual machine-based applications, it should be ex-
tended in order to support distributed applications.
We intend to deal with these issues in our future work.

REFERENCES

Adobe PDF Online. http://createpdf.adobe.com/.

Enomaly Home. http://www.enomaly.com.

Force.com. http://www.salesforce.com/platform/.

Google Apps. http://www.google.com/apps.

Intacct Home. http://www.intacct.com/.

VMware Home. http://www.vmware.com/.

AMD (2005). Amd64 virtualization codenamed asia pacific
technology: Secure virtual machine architecture refer-
ence manual. (Publication No. 33047, Revision 3.01).

Borja, S., Kate, K., Ian, F., and Tim, F. (2007). En-
abling cost-effective resource leases with virtual ma-
chines. InHot Topics session in ACM/IEEE Interna-
tional Symposium on High Performance Distributed
Computing.

Capit, N., Da Costa, G., Georgiou, Y., Huard, G., Martin,
C., Mounié, G., Neyron, P., and Richard, O. (2005). A
batch scheduler with high level components. InClus-
ter computing and Grid.

Chakode, R., Méhaut, J.-F., and Charlet, F. (2010). High
Performance Computing on Demand: Sharing and
Mutualization of Clusters. InProceedings of the 24th
IEEE International conference on Advanced Informa-
tion Networking and Applications, pages 126–133.

Gene K. Landy, A. J. M. (2008).The IT / Digital Le-
gal Companion: A Comprehensive Business Guide to
Software, IT, Internet, Media and IP Law, pages 351–
374. Burlington: Elsevier.

H. Feng, V. M. and Rubenstein, D. (2007). PBS: a uni-
fied priority-based scheduler. InSIGMETRICS, pages
203–214.

Intel Corporation (2006). Intel Virtualization Technology.
Intel Technology Journal, 10(3).

Jackson, D. B., Snell, Q., and Clement, M. J. (2001). Core
algorithms of the maui scheduler. InRevised Papers
from the 7th International Workshop on Job Schedul-
ing Strategies for Parallel Processing, pages 87–102.
Springer-Verlag.

Jone, T. Linux virtualization and pci passthrough.
http://www.ibm.com/developerworks/linux/library/l-
pci-passthrough/.

Kay, J. and Lauder, P. (1988). A fair share scheduler.Com-
mun. ACM, 31(1):44–55.

CLOSER 2011 - International Conference on Cloud Computing and Services Science

360

Keahey, K., Foster, I., Freeman, T., and Zhang, X. (2005).
Virtual workspaces: Achieving quality of service and
quality of life in the grid.Sci. Program., 13:265–275.

Lawson, B. G. and Smirni, E. (2002). Multiple-queue back-
filling scheduling with priorities and reservations for
parallel systems. InIn Job Scheduling Strategies for
Parallel Processing, pages 72–87. Springer-Verlag.

Li, L. and Franks, G. (2009). Performance modeling
of systems using fair share scheduling with layered
queueing networks. InModeling, Analysis Simulation
of Computer and Telecommunication Systems. MAS-
COTS ’09, IEEE International Symposium on, pages
1 –10.

Mergen, M. F., Uhlig, V., Krieger, O., and Xenidis, J.
(2006). Virtualization for high-performance comput-
ing. SIGOPS Oper. Syst. Rev., 40(2):8–11.

Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., So-
man, S., Youseff, L., and Zagorodnov, D. (2009). The
Eucalyptus open-source cloud-computing system. In
9th IEEE/ACM International Symposium on Cluster
Computing and the Grid, volume 0, pages 124–131.
IEEE.

Sotomayor, B., Montero, R. S., and Foster, I. (2009a).
An Open Source Solution for Virtual Infrastructure
Management in Private and Hybrid Clouds.Preprint
ANL/MCS-P1649-0709, 13.

Sotomayor, B., Montero, R. S., Llorente, I. M., and Foster,
I. (2009b). Virtual Infrastructure Management in Pri-
vate and Hybrid Clouds.IEEE Internet Computing,
13:14–22.

Turner, M., Budgen, D., and Brereton, P. (2003). Turning
Software into a Service.Computer, 36(10):38–44.

Vaquero, L. M., Rodero-M., L., Caceres, J., and Lindner, M.
(2009). A break in the clouds: towards a cloud defini-
tion. SIGCOMM Comput. Commun. Rev., 39(1):50–
55.

Yu, W. and Vetter, J. S. (2008). Xen-Based HPC: A Paral-
lel I/O Perspective.Cluster Computing and the Grid,
IEEE International Symposium on, 0:154–161.

RESOURCE MANAGEMENT OF VIRTUAL INFRASTRUCTURE FOR ON-DEMAND SAAS SERVICES

361

