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Abstract: Cloud security comprises access control and end-to-end security based on flow or message-level privacy. In
some applications, in which all processing takes place at the client side and the Cloud simply handles data
storage (e.g. Google Docs), on-line data encryption/decryption guarantees privacy. However, when a service
requires server processing (e.g. spreadsheets), privacy must necessarily rely on a dependable entity according
to local regulations. Summing up, full Cloud privacy has not been achieved so far. In this paper we take a
step towards that goal. We propose executing server side operations in the encrypted domain, so that both the
operands and the results are opaque to the server, yet clear to the user. We evaluate this concept with a real
Google Apps implementation of basic arithmetic operations.

1 INTRODUCTION

As in other service architectures, Cloud security com-
prises access control and end-to-end security based
on flow or message-level privacy. Access control is
extremely important in the Cloud, to protect its re-
sources against non-authorized access. This is not
a challenge, because many traditional solutions for
service-oriented architectures can be easily applied
to Cloud environments. Regarding privacy, current
schemas mainly focus on sending user information in
a secure way to Cloud servers. This approach is com-
pletely valid when the Cloud provider is reliable. Oth-
erwise, sensitive data must be completely protected
from the moment it leaves the client. In some ap-
plications, in which all processing takes place at the
client side and the Cloud simply handles data storage
(e.g. Google Docs), on-line data encryption guaran-
tees privacy. However, when a service requires server
processing (e.g. spreadsheets), privacy must neces-
sarily rely on a dependable entity according to local
regulations. Summing up, full Cloud privacy has not
been achieved so far.

In most countries there are institutions that regu-
late personal data processing. For example, the Euro-
pean Commission implemented the Data Protection

Directive in 1995. However, an international agree-
ment is extremely difficult to reach due to the deep
political differences. This is a complex context for
Cloud Computing security due to the need to dis-
tribute resources among different locations to max-
imize performance. There have been privacy prob-
lems with Google services in some countries in re-
cent years. For example, in Spain, the Data Protec-
tion Agency declared the business model of GMail
(inserting advertisements sensitive to e-mail content)
(Europasur, 2008) to be illegal, and in Italy, the Mi-
lano court accused three Google executives of ille-
gally accessing video postings (G. Sartor, 2010). We
conclude that a mechanism to keep user information
privacy at the server side without losing any of the ad-
vantages of the Cloud paradigm is of great interest.

In this paper we take a step towards that goal. We
propose executing server side operations in the en-
crypted domain, so that both the operands and the re-
sults are opaque to the server, yet clear to the user. We
evaluate this concept with a real Google Apps imple-
mentation of basic arithmetic operations.

The rest of this paper is organized as follows: in
section 2 we discuss the background to Cloud security
and other technologies related to our research. In sec-
tion 3 we present the design decisions to implement
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our concept and the architecture of a Cloud applica-
tion to test it. In section 4 we describe some numerical
results and, finally, section 5 concludes the paper.

2 BACKGROUND

2.1 Cloud Privacy

Despite the many advantages of Cloud Computing
such as scalability, flexibility and cost savings, there
are no guarantees that stored data will not be accessed
by unauthorized entities, such as the Cloud provider
itself or malicious attackers. Although the user can
deliberately assume the risks of placing information
on the Cloud, there exist activities in which law reg-
ulates data protection (F. Doelitzscher, 2010). This
is the case of government, banking, medical care or
accounting.

In addition to confidentiality, there are other bar-
riers that may dissuade users from migrating their
systems to the Cloud, such as the possibility of data
integrity threats or leaks (M. Jensen, 2009; CSA,
2010). There are proposals of additional security
layers to protect the user from data mishandling by
Cloud providers. Most solutions are based on a ci-
phering schema using private or public-key encryp-
tion algorithms, which are applied to the client side
or to the Cloud server. Client side solutions en-
crypt any data that leaves the client: encrypted stor-
age on the Cloud (S. Kamara, 2010); encrypted DaaS
(Databases as a Service) (T. Xiuxia, 2009); and en-
crypted SaaS (Software as a Service) (L. Adkinson-
Orellana, 2010). These solutions provide full privacy,
but are only valid when all data processing takes place
at the client side and the Cloud simply handles data
storage. To provide encryption, there are proposals
based on introducing new elements to the Cloud ar-
chitecture. An example is the PasS (Privacy as a Ser-
vice) model (W. Itani, 2009), in which cryptographic
processors perform ciphered operations (R. Ander-
son, 2006). PasS thus depends on the hypothetical
deployment of those processors by Cloud providers.

In this paper we propose a model that relies on en-
crypted domain processing in which the only depend-
able entity is the user. According to this paradigm,
both the operands and the results of the operations
are hidden to the servers that execute them. In or-
der to implement this model, Cloud providers must
collaborate by installing encrypted domain process-
ing libraries in their servers, but, unlike in PasS, it is
not relevant if they are reliable or not.

2.2 Commercial PaaS Environments

The Platform as a Service paradigm provides develop-
ers with a high-level managed software environment
for building particular classes of applications and ser-
vices. That environment includes mechanisms to ac-
cess underlying computing and network resources,
and offers additional services such as monitoring and
billing. Thus, the infrastructure is abstracted away
from the developer, who can create and manage Cloud
applications efficiently.

Google App Engine (Google, 2010) is one of
the most popular commercial PaaS environments. It
provides a single, pre-built solution for construct-
ing very-large-scale web-based applications hosted
by Google’s infrastructure, using standard Java tech-
nologies (and, by extension, other JVM languages),
or a dedicated Python runtime environment.

Microsoft Azure (microsoft.com/windowsazure)
is a group of Cloud development services that forms
a complete PaaS and provides a Windows-based envi-
ronment for running applications and storing data on
Microsoft servers. Software developers may use C#
or other .NET languages, along with traditional tools
such as Visual Studio 2008. Azure also provides a
portal to create, configure and monitor applications.

Another relevant platform is Force.com
(www.salesforce.com). It allows the develop-
ment of custom user interfaces using standard Web
technologies, which can be generated and customized
automatically with a layout editor. Force.com had the
disadvantage of a substantial learning curve, but the
VMForce Java development environment has solved
this problem.

We do not intend to provide an exhaustive descrip-
tion, since there are many more competitors in this
area: GigaSpaces XAP, Heroku, Bungee Connect...

In PaaS, security usually refers to controlling ac-
cess to resources with enforcement policies, and en-
crypting generated data once the processing is com-
plete. Therefore, it is assumed that the Cloud provider
is reliable. For this reason, we have focused our work
on the development of a security schema for PaaS that
allows encrypted data processing on Cloud servers us-
ing homomorphic encryption techniques.

2.3 Arithmetic Processing in the
Encrypted Domain

Informally, data privacy consists of the possibility
of hiding certain data from certain parties. Tradi-
tional cryptosystems provide only all-or-nothing se-
curity, in the sense that they do not allow any ac-
cess to encrypted data unless the deciphering key is
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available. Data Processing in the Encrypted Domain
(DPED) (Ahituv et al., 1987) was born to satisfy the
privacy needs for data that must be handled by third
parties. It allows the processing of certain operations
without the need to encrypt the data and consequently
without the need to access their clear-text version.
This concept has been a hot topic in processing theory
in the recent years.

The first proposals introduced the concept of Se-
cure Multiparty Computation (Yao, 1982), symbol-
ized by the so-called Millionaires Problem, in which
two millionaires wish to know who is the richest with-
out disclosing their respective wealths. That solution
employed the concept of garbled circuits, which al-
low the execution of a function, expressed as a com-
bination of binary gates, on certain data (also in a bi-
nary representation) that belong to two parties. After
the execution of the garbled circuit, both parties can
obtain the result of the computation, but neither has
access at any time to the data belonging to the other
party. In spite of the generality of that solution, its in-
efficient implementation was the biggest obstacle for
the development of arithmetic processing in the en-
crypted domain. Finding efficient solutions for the
secure execution of a generic function is still an open
problem. Recently, there have been numerous con-
tributions (Troncoso-Pastoriza et al., 2007; Troncoso-
Pastoriza et al., 2009). In particular, arithmetic oper-
ations can be performed efficiently in the encrypted
domain thanks to the concept of additive and multi-
plicative privacy homomorphisms (Brickell and Ya-
cobi, 1987), as later explained in Section 3.2.

2.4 Related Work

The idea of homomorphic encryption in Cloud envi-
ronments is quite novel. There has been some work
on this topic, but a complete solution for the Cloud is
still missing. In (Chow et al., 2009) some common
Cloud security problems are characterized, and the
proposed solutions include empowering data with in-
telligence to protect themselves using trusted comput-
ing or privacy-enhanced business intelligence based
on homomorphic encryption. In (Pearson et al., 2009)
a privacy manager for Cloud Computing, an appliance
for secure Cloud access, was presented. To achieve
this goal an obfuscation mechanism based on ho-
momorphic encryption is used. The paper describes
some application scenarios such as SQL queries or
photo tagging. The solution only encrypts part of the
information that is sent to the Cloud in order to keep
efficiency at reasonable levels. We conclude that pre-
vious related work focuses on particular applications
or assumes that the service provider is honest, since

server side appliances are necessary.
Our contribution consists of applying efficient

homomorphic encryption to basic operations in or-
der to provide a development platform for secure
Cloud applications, generalizing the concept of Cryp-
toDSPs, presented in (Troncoso-Pastoriza and Pérez-
González, 2010) for signal processing operations, and
providing a reference implementation as a proof of
concept.

3 ENCRYPTED PROCESSING ON
PAAS ENVIRONMENTS

3.1 Choosing a PaaS Platform

We have selected Google App Engine as the PaaS for
our research. It is free up to a certain resource us-
age level, so it is convenient for developing a realis-
tic proof-of-concept. Application development is well
documented. An active and experienced community
provides support in many fora. Availability of open
source IDEs as Eclipse or Netbeans saves costs since
commercial development tools are not necessary.

Google App Engine is more mature than Azure
and more open than Force.com. Platform perfor-
mance depends on development language, infrastruc-
ture load (which is related to server location) and
implemented functionality (caches, load balancing).
A deeper study (beyond the scope of our research)
would be required to compare existing providers. In
any case, in our tests, Google App Engine performed
satisfactorily. It is worth mentioning that Google of-
fers libraries to integrate the ubiquitous Google Apps
(Accounts, Docs, Gmail, IM etc) at zero cost.

The DPED solution we propose allows for a com-
pletely secure Cloud. Data privacy is automatically
provided, and Cloud services are not hindered by pri-
vacy restrictions. In order to show the potential of this
approach, we present a proof-of-concept of arithmetic
calculations in the encrypted domain, in the form of
encrypted processing libraries for a PaaS to be used in
the development of secure Cloud applications. To test
their performance we have built a simple application
consisting of a web calculator, which executes remote
calculations with encrypted operands, as described in
the following section.

3.2 Arithmetic in the Encrypted
Domain

At a conceptual level, arithmetic operations can be
performed in the encrypted domain using a privacy
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homomorphism (Brickell and Yacobi, 1987). This
consists of a group homomorphism between clear-text
data and encrypted data. A formal description is given
in (Rivest et al., 1978).

The practical and provably semantically secure
cryptosystems that present a privacy homomorphism
typically allow for the execution of one arithmetic op-
eration (either addition or multiplication) directly on
ciphertexts, without the need for decryption or inter-
action with a trusted decryption party. This presents
several decisive advantages over other privacy solu-
tions, such as the drastic reduction of overheads in
the communication required between parties and the
automatic provision of privacy while data are being
processed, as they never leave their encrypted state.

For our proof-of-concept, we have implemented
a client-server software library in Java that provides
transparent encryption and homomorphic operation
on data, conforming to the new secure paradigm of
secure remote data processing. This library is divided
into two modules with the following functionality:

� Client Module. It provides transparent encryp-
tion of the data prior to their transmission to the
server, and decryption of the data received from
the server prior to their presentation.

� Server Module. It provides access to the arith-
metic operations on the encrypted data received
from the client or stored on the server, applying
suitable privacy homomorphisms.

We have chosen Java to implement these libraries
due to its portability, compatibility with Google App
Engine APIs and easy integration in an applet. This
choice also has some drawbacks, mainly low compu-
tational efficiency, which we have overcome through
concurrent precomputation of key values at the client
side, and efficient modular arithmetic algorithms.

3.3 Proof-of-concept

In order to demonstrate our concept, we developed
an application that employs Web services hosted by
Google Cloud which rely on the encrypted domain
processing libraries described in the previous section.
The application has two parts: the server side, imple-
mented with Java servlets, and the client side, a Java
applet embedded in a JSP page. As a toy example,
the applet has a GUI that resembles a calculator writ-
ten with the Swing Java library and the NetBeans IDE
development environment by Oracle. The servlet was
created with the Google App Engine SDK for Java,
installed as an Eclipse SDK plugin. That SDK also
allows the integration of the Google Accounts service
into our application to manage user sessions. This

is important to store information from simultaneous
users and keep it separate. The application is cur-
rently deployed in Google App Engine and available
at http://calcgrad.appspot.com. The client encrypts
the data sent to the server and decrypts the results.
These procedures work as follows (Figure 1):

Once the operands are available, when the opera-
tion takes place for the first time, the client initializes
the object module EncryptedProcessClient for the ex-
ecution of that operation and subsequent ones (with
the initialize method). The returned code must be
passed to the server to initialize its module. Then,
the operands are ciphered (with the performOperation
method, which returns a wrapper) and the client uses
HTTP tunneling with POST requests to exchange ci-
phered data with the server. An operation may need
several client-server communication cycles to obtain
the final result. The client calls the isContinueOperat-
ing method to determine if it must communicate with
the server again. In the response, the client receives
a ciphered result. This result is needed to call the
continueOperation method, which modifies the wrap-
per returned by performOperation. Using this wrap-
per, the client checks if it must perform additional
communication cycles with the isContinueOperating
method. If not, the final result is available and the
client deciphers it (using the finalDecode method), to
display the solution locally.

The server operates with the ciphered data re-
ceived from the client. For the server, we have writ-
ten a Java servlet that processes client requests and
returns the results. When a petition arrives, the server
checks the requested action from the corresponding
object field and obtains the ciphered data. If the
client requests a server object module initialization
(EncryptedProcessServer), the server must call the
initialize method with the received data as an argu-
ment. On the contrary, if an operation is requested,
the server takes the ciphered operands and, with the
initialized module, calls the operate method to exe-
cute the operation. The resulting object is kept on the
server for further usage. Once operate is applied, the
result is sent to the client for it to check if the oper-
ation has finished or if additional communication cy-
cles are necessary. In any of these cases, the behavior
of the servlet is the same: it gets the received ciphered
data, calls the appropriate method according to the op-
eration the client requests, stores the resulting object
and returns the ciphered result to the client.
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Figure 1: Application workflow.

4 NUMERICAL RESULTS

We evaluated the performance of the encrypted do-
main libraries by measuring the elapsed times of
arithmetic operations that employ them in our Cloud
application. The test layout comprised a client com-
puter (Intel Pentium 4 @ 2.80GHz, 1 GB RAM with
Ubuntu 9.10), where the Cloud application applet
was executed through an Internet browser (Firefox
3.6); and a local server (Intel Core 2 Quad Q8400
@ 2.66GHz, 4GB RAM with Ubuntu 9.10), to per-
form the encrypted operations under Jetty remotely.
Jetty is the light Web server Google has chosen, which
supports Java servlets. However, we do not have de-
tailed information about the Google Cloud servers of
Google App Engine. All machines used the Java 6
runtime environment.

There were two test scenarios: local, in which we
executed the encrypted operations directly on the lo-
cal server, and remote, relying on Google App En-
gine. In both cases the client machine was the same.
Therefore we had a client-server architecture where
the client (the Java applet) issued several requests for
arithmetic operations (addition and multiplication).
In the tests we measured the time from the moment
at which an operation was requested by the user (by
clicking on the equal symbol) to the moment at which
the application displayed the result (i.e. communica-
tion time was taken into account).

We made 2000 runs for each operation in each
scenario, using the encrypted domain libraries or not.
The time to calculate ciphered operations does not
depend on the length of the original operands, since
their lengths coincide once encrypted. Table 1 shows
our results. Each pair of values represents the average
value of the elapsed execution time of a given oper-

Table 1: Tests results: mean and standard deviation (ms).

Test Addition Multiplic.

Local
(clear)

x = 8.02
s = 4.19

x = 7.73
s = 4.32

Local
(encrypted domain)

x = 80.66
s = 16.31

x = 207.88
s = 15.24

Google App Engine
(clear)

x = 225.40
s = 135.12

x = 225.99
s = 133.67

Google App Engine
(encrypted domain)

x = 381.24
s = 19.57

x = 795.14
s = 28.97

ation and its standard deviation in milliseconds. The
elapsed times of ciphered operations include encryp-
tion/decryption at the client side and encrypted pro-
cessing at the server side.

If the encrypted domain libraries are not used, the
standard deviation of the elapsed times is quite high,
because the influence of operating system background
processes and network communication times is rather
variable. The elapsed times with Google App Engine
are much higher than in the local case, mainly due to
Internet delays. Ciphered operations are slower than
clear ones, as expected. Indeed, although the aver-
age times for additions and multiplications are quite
similar for clear operations, they differ significantly if
ciphered (the multiplications are up to twice as long).
This is due to the complexity of encrypted multipli-
cations, which may require several cycles for a result
to be obtained, as described in the previous section.
However, although the elapsed times for ciphered op-

ENCRYPTED DOMAIN PROCESSING FOR CLOUD PRIVACY - Concept and Practical Experience

595



erations are quite long, they are still satisfactory for
user applications with light processing load, such as
spreadsheets, and encrypted domain processing tech-
nology is expected to evolve rapidly. Let us recall that
the encrypted domain libraries were developed with
Java, as requested by Google App Engine, so they are
executed on a Java virtual machine.

5 CONCLUSIONS

In this paper we have presented a new model for se-
cure Cloud Computing, without any reliable entity
but the client itself, based on encrypted domain pro-
cessing. We have also presented a real implementa-
tion as a proof-of-concept, relying on Google App
Engine. Our results with basic arithmetic operations
indicate that the model is valid for user applications
in the Cloud with light server processing. As future
work we will develop a more complete user appli-
cation such as a spreadsheet to perform more com-
plex encrypted operations including vectorial ones.
To improve performance, we will consider the use of
threads, and remote ciphered operations will be exe-
cuted with a C version of the libraries through a JNI
interface.
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