
A FLEXIBLE MIDDLEWARE COMPONENT FOR CONTEXT
AWARE APPLICATIONS

Cristina Barbero, Paola Dal Zovo and Barbara Gobbi
Concept Reply (a Business Unit of Santer Reply SPA), via Cardinal Massaia 83, 10147 Torino, Italy

Keywords: Context Aware Computing, Pervasive Computing, Service Oriented Architecture and Middleware, Semantic
Technologies, Automated Reasoning, Internet of Things.

Abstract: The ever-growing complexity of pervasive and Internet of Things enabled environments raises great
challenges to context-aware pervasive application development. In particular, context representation and
reasoning methods, as well as middleware and supporting infrastructures for context sensitive application
engineering, must have a high level of flexibility in order to cope with the increasing dynamicity and
heterogeneity of pervasive scenarios. This paper presents a solution devised to provide the foundations for
the development of context-adaptive applications with diverse requirements. The Context Awareness
component consists of an extensible and configurable framework that integrates a semantic reasoning
module and multiple processing agents providing specialized / optimized processing capabilities. Finally, a
case study shows how the adopted solution allows tackling the complexity of context-aware applications
development.

1 INTRODUCTION

The increasing complexity of pervasive computing
environments, and the Internet of Things (IoT)
vision of a world of everything connected, open
great market opportunities and raise many
challenges. Context-aware pervasive applications,
while potentially offering huge added values, still
suffer from limitations hindering their full
development and spreading.

The development of context-aware applications
for the IoT is complex as it requires considering
aspects related to distributed computing, discovery
of services, network connectivity, limited processing
resources of target devices, mobility. Moreover, the
domain of the IoT is so wide and the requirements of
context-aware applications may be so diverse that a
single automated reasoning methodology cannot
provide a satisfactory answer to all needs.

Context-adaptive application engineering must
be based on an efficient infrastructure and
middleware, in order to reduce engineering effort
and complexity and enhance the soundness of the
produced solutions. Some challenges are related to
the adequacy of context representation and
reasoning methods to cope with increasing complex,

dynamic and heterogeneous pervasive environments
and settings. An extensive review of such issues is
(Soylu, 2009).

This paper presents a Context-Awareness (CA)
solution based on a modular and flexible platform
supporting the creation and management of
pervasive, IoT-enabling applications. The CA
component is given by an extensible framework that
integrates a semantic representation and reasoning
module and multiple processing agents providing
additional, specialized and/or optimized processing
capabilities (e.g. raw data filtering and aggregation,
probabilistic and statistic data management, light
event processing for resource-constrained devices).
Case studies have shown the effectiveness of our CA
solution, which derives from both the strong
platform base and the flexibility of the reasoning
framework.

The paper is organized as follows. Section 2
presents the motivations of our approach and related
works. Section 3 gives an overview of the platform,
while section 4 describes in details the CA
framework. Section 5 presents a case study. Section
6 presents the conclusions and future work.

32
Barbero C., Dal Zovo P. and Gobbi B. (2011).
A FLEXIBLE MIDDLEWARE COMPONENT FOR CONTEXT AWARE APPLICATIONS.
In Proceedings of the 1st International Conference on Pervasive and Embedded Computing and Communication Systems, pages 32-41
DOI: 10.5220/0003363300320041
Copyright c SciTePress

2 MOTIVATIONS AND RELATED
WORKS

In the past few years a lot of work has been done in
areas that are key enablers for context-aware
computing, such as pervasive computing, service-
oriented architectures, automated reasoning, and
semantic modeling languages.

In the current state-of-the-art of context-aware
middleware different approaches have been
proposed to sense context and to adapt to changes,
often with a different focus. An overview is
provided by the survey (Kjær, 2007), which
classifies a set of existing context-aware middleware
according to a taxonomy including relevant aspects
such as adaption mechanisms, and concludes that no
single middleware system is appropriate for all
settings.

With respect to the semantic representation of
data we believe that an interesting initiative is the
W3C Semantic Web (W3C Semantic Web, 2001).
The semantic web is intended to allow semantic data
exchange and interoperability at the semantic level,
by relying on a stack of standard languages such as
XML, RDF, and OWL. In particular, OWL adds
more vocabulary for describing properties, classes,
and relations between classes. In addition, SPARQL
is a protocol and query language for semantic web
data sources, while SWRL is the proposed rules
language.

Semantic Web standards are being applied in an
increasingly large spectrum of applications in which
domain knowledge is conceptualized and formalized
usually by means of ontology in order to support
diversified and automated reasoning (Leger, 2008).
Some works choose to adopt the Semantic Web
concept in the Internet of Things field, for context-
aware applications over wireless sensor networks
(Huang, 2008), (Roman, 2002), (Kostelník, 2008),
and the survey in (Strang, 2004) indicates that
ontologies are a valid solution for context modeling.

So far, no standardized sensor ontology still
exists, although there is an initiative to define a
shared vocabulary for sensor networks based on
W3C semantic web languages. Adopting semantic
web languages, considering common concepts in
proposed ontology, means to be in the right direction
towards semantic interoperability. This choice
presents nonetheless some challenges. In fact, some
works highlight some issues in the adoption of
semantic technologies (Wolf, 2009), especially
attempting to exploit them in dynamic environments
and when dealing with data from hardware devices,
often mobiles.

The survey (Perttunen, 2009) shows that OWL is
conveniently used in many recent works to represent
context, while reasoning is seldom based only on
pure OWL inference. Usually, rules are used to
incorporate human knowledge to guide the system.
The survey indicates that some works make use of
other reasoning methods, such as cased based
reasoning, probabilistic reasoning, or hybrid
approaches.

The motivations behind the need of a
probabilistic approach are also well illustrated in
(Garofalakis, 2006). Sensor data is typically a noisy
and uncertain observation of the phenomenon it is
intended to capture, hard to “trust”, and often
conveyed in form of an unreliable stream. Spatial
and temporal correlation between data should be
exploited for better understanding the underlying
physical phenomena, other than for efficiency
reasons.

Another perspective worth notice is the one
brought by the survey (Kapitsaki, 2009), which
focuses on evaluation of the techniques that enable
the exploitation of contextual information (“context
handling” techniques), assessed from the viewpoint
of service developer. The authors don't focus much
on middleware, ontology-based or rules-based
solutions, as they prefer concentrating more on
approaches based on programming, message
interception, and model-driven approaches. We refer
to this analysis of state-of-the-art as in designing our
CA solution we considered criteria such as those that
they mentioned. Those criteria include:

 The flexibility that the context adaptation
mechanism provides to the developer. A
related criterion is about the possibility of
applying the specific context adaptation
mechanism to an existing system.

 The easiness of use for a developer, not very
familiar with the specific context adaptation
mechanism.

 The easiness of refactoring a service (if there
are modifications in either the business logic
or the context handling logic)

 Decoupling from business logic: the degree of
independence between context information
and service logic.

Another recent article addressing context-aware
web service is (Truong, 2009), which analyzes CA
techniques and related works in web service
systems. In the context reasoning techniques section,
it highlights that some systems rely only on XML-
based context information and have scarce reasoning
capabilities, and only few systems are based on

A FLEXIBLE MIDDLEWARE COMPONENT FOR CONTEXT AWARE APPLICATIONS

33

semantic reasoning due to difficulties to integrate
ontology into context-aware systems.

We choose to adopt semantic technologies for
the benefits in term of expressiveness of the
representation and for being in line with current
standardization directions. We also recognize the
need of being open to a probabilistic approach in
some scenarios, and to other automated knowledge
processing techniques that might be needed in some
scenarios.

 To summarize, the main goal we pursue in our
work is to provide our middleware with instruments
to facilitate the development of context-aware
services, in particular building an infrastructure to:

 Allow rapid development of a certain class of
rules-based context-aware services, based on
semantic models of devices and services.

 Reduce the development effort needed to
realize context-aware services able to answer
a variety of functional and non-functional
requirements, including the need to deal with
uncertain data and the need of processing on
resource-constrained devices.

3 ARCHITECTURAL OVERVIEW

Our CA solution is part of a platform supporting the
creation and deployment of pervasive, IoT-enabling
applications based on networks of connected
devices. The platform, designed to be modular,
flexible and scalable, is characterized by:

 A Service Oriented Architecture where each
network element can expose its functionalities
by means of a loosely-coupling Web Services
interface. This enhances the modularity of the
system and its interoperability (through the
adopted standards).

 Support for a diverse and changing set of
devices, communication protocols and
technologies (both wired and wireless, long
and short range), service exposure and
discovery (self-configuration) modalities.

 A flexible context reasoning framework that
can be tailored on the basis of the kind of
hosting nodes and of needed applications (e.g.
a resource-constrained device could only host
a lightweight processing agent, a complex
application could require a semantic reasoner
and an event-processing specialized agent).

Figure 1 shows different kinds of nodes (specified
below) managed by the platform. Even the simplest

devices can be part of the infrastructure, through the
support of virtualization nodes.

 Simple Nodes have short range connectivity
(e.g. Wifi, ZigBee, Bluetooth) and reduced
computational capabilities. They don’t support
TCP/IP and Web Services, so they are
connected to the network and expose their
services by means of the Virtualization Nodes.

 Intelligent Nodes have short range and
optionally long range (e.g. GSM, GPRS,
UMTS, Ethernet) connectivity, TCP/IP and
Web Services support, self-configuration
capabilities.

 Virtualization Nodes are similar to Intelligent
Nodes for capabilities and provide
virtualization services to sub-networks of
Simple Nodes (in particular TCP/IP and Web
Services support and self-configuration
capabilities).

 Aggregation Nodes have high processing
power and expose in a homogeneous way the
Web Services offered by the different nodes
and sub-networks to the back-end systems.

Figure 2 shows the layers and the main components
provided by the platform, in particular:

 Network Management component, dealing
with network configuration, performance,
fault and diagnostics.

 Web Services component, managing the
exposure of the services (described with
homogeneous XML logical models) through
different modalities, e.g. dual bindings in
HttpDual protocol, single bindings in Rest
protocol, DPWS

Figure 1: Network nodes managed by the platform.

PECCS 2011 - International Conference on Pervasive and Embedded Computing and Communication Systems

34

(Devices Profile for Web Services, 2009)
recommended bindings. It also manages
different service discovery modalities, e.g.
based on UDDI or WS-Discovery protocol.
Moreover, it manages the interaction with the
other platform components, and notifies the
registered clients about the updates on data
related to the exposed services.

 Context Awareness component, in charge of
processing contextual information and using
the recognized context to adapt application
behaviour. It will be described in details in the
next section.

 Security / Localization / UI Management
components, providing support for,
respectively, security and trust, location-based
services, UI of applications.

4 CONTEXT AWARENESS
FRAMEWORK

In this section we describe the CA module, in charge
of processing contextual information, recognizing
current context and making decisions about which
actions are needed. This module is designed to be
modular and flexible, and to allow easy extensions
by addition of needed processing agents in the form
of plug-ins. Figure 3 shows the CA framework.

A reasoner host is in charge of retrieving and
loading reasoning components for the system, and,
once loaded, to allow them to exchange information
with other reasoning services and with other nodes
in the system. Communication is based on a
publish/subscribe model.

The CA module is notified, from other
components in the system, of relevant changes it
may need for reasoning about, namely of:

 New entities, as they connect to the network.
Entities may be e.g. devices, software
components in our platform or external web
services, system nodes, people who get known
to the system.

 Disappeared entities, e.g. disconnected
devices.

 Occurred changes in entities, e.g. new sensor
reading, changed location, changed actuators
state, etc.

Our middleware relies on XML logical models to
represent system entities and to exchange and share
information about them between the platform
modules. Thus, the CA module receives information
about entities and handles context adaptation in a
uniform and abstract way, leaving to other

Figure 2: Platform layered view, main components.

middleware modules tasks related to low-level
communication and handling of devices.
For describing the structure and constraining the
contents of XML logical models we used the XML
Schema Definition (XSD) (XSD, 2004). The XML
Schema allows validating XML models as they are
being updated, ensuring that data remain conform to
the defined schema. The XML Schema describes
models and their elements, attributes, data types,
specializing type definitions by extending higher
level types in an entity hierarchy. Among the

Figure 3: Context awareness framework.

A FLEXIBLE MIDDLEWARE COMPONENT FOR CONTEXT AWARE APPLICATIONS

35

Figure 4: A snapshot of the ontology.

defined models there are entities classified as:
 Physical entities such as various sensors,

actuators, people;
 Virtual entities, such as external web services,

e.g. a weather forecast web service;
 Reasoning entities, including reasoner and CA

services.
The latter are used to convey information related to
reasoning and context-aware services from the CA
module to other modules. In fact, a reasoner module
presents itself to the system through its logical
models, which can be used for monitoring and
configuration purposes. The context awareness
module also instantiates another type of Reasoning
entities, to represent the context awareness services
it provides and to disseminate information about
their state and about recognized context. When a
context-aware service requests actuations for
adapting to the context, it requests an update of a
logical model, and the middleware validates the
request, and dispatch it to the appropriate module
(e.g. to the network layer to traduce the request in an
action on a device). The entity hierarchy adopted in
the XML schema is aligned to the class hierarchy in
the ontology model.

4.1 Semantic Reasoning

The Semantic Reasoner module implements a
semantic reasoning approach, takes care of

maintaining a semantic representation of the system
knowledge base (OWL-DL ontology), and perform
rules-based reasoning for context recognition and
adaptation. The semantic reasoner integrates Jena
Semantic Web (Jena, 2009), using it in Microsoft
.NET environment through IKVM.NET
(IKVM.NET, 2010). Jena’s APIs are exploited to
create and manage the ontology model, to execute
queries on it and to make inferences.

The XML schema and the ontology-based model
are very similar, XML types are mapped on OWL
classes, XML models are mapped on OWL classes,
and the subclass hierarchy in the OWL ontology
model is aligned to the complex types specialization
defined in XML schema.

The two representations are maintained aligned to
allow a seamless and automated update of the
ontology based on the information, provided by other
modules, about the current context. A snapshot of the
ontology is shown in Figure 4, as displayed in
Protégé (Protégé, 2010).

Context change events communicated to the
semantic reasoner are queued for processing. When
these events are handled, the knowledge base is
updated accordingly. Sensed context change may
require simply changing a property (e.g. currently
sensed value), or can require creating/deleting
individuals in the ontology. Prior to reasoning,
management of context-aware services may be
needed (in case new context-aware services are to be
instantiated, or existing services are no longer

PECCS 2011 - International Conference on Pervasive and Embedded Computing and Communication Systems

36

needed). Some basic context information
aggregations are typically performed too. For
instance, an average value is computed from values
measured from sensors of the same type in a certain
area. To these purposes, SPARQL queries are used.
Queries can be extended when new services are
added and when a different aggregation is needed.

When the ontology has been fully updated, the
rules engine is invoked to run the set of concerned
rules (Jena SWRL-like rules). Rules are organized in
two sets, Context Rules and Action Rules, for each
service.

First, context recognition rules are run to
recognize the current context of the system, in
relation to existing services. Then, Action Rules are
executed for decision making based on recognized
context. Decided actions are written in the ontology
along with justification to simplify understanding of
why they were required.

Requests of decided actions affecting actuators
are then handled and propagated to the involved
device. In other cases decisions may simply concern
providing recommendations suitable to the context.

Rules may also trigger internal events such as
delayed rules execution (e.g. to check whether a
certain context situation persists for longer than a
certain time span). Rules are based on an expressive
ontological model, which includes some information
that is not present in the XML models and that is
used only by the semantic reasoner. This knowledge
concerns the relations between the system entities,
e.g. between the context-aware services and the
devices (properties set by the module itself),
information related to rules and queries files and to
other aspects pertaining the semantic reasoner only.

In order to be able to meet requirements of
pervasive computing environments, the reasoning
framework has been designed to manage dynamic
changes in the knowledge base. The semantic
reasoner module allows retrieving needed models,
queries and rules from an external repository. The
ontology model consists of a base ontology and of
ontology models for specific entity classes. The
semantic reasoner supports a dynamic management
of the ontology and instantiates at run time in the
ontology only device/service classes really present
in the system at that moment. The set of classes
present in the ontology is not pre-defined, since
OWL classes are added at run time, only if needed,
and removed when no longer useful. The ontology
can be extended dynamically in terms of both
individuals and classes, without need of recompiling
the software module.

A remarkable aspect is that the semantic reasoner
is able to deal with types of devices not known at
system deployment time or with new context-aware
services, provided that their models are given. When
a new device appears in the system, if its ontology
class is not yet present, the proper OWL model is
downloaded from the model repository and added to
the knowledge base, and finally the individual
representing the device is created.

4.2 Event Processing

The semantic reasoning approach, though offering
many benefits (in terms of expressiveness, use of
formal and standard languages, clear separation of
reasoning logic from application code), also has
some notable limitations, e.g.:

 Significant memory requirements and
performance times, usually not suitable to
resource-constrained devices. For example, no
framework with Jena equivalent reasoning
capabilities is available to run on resource
constrained devices. We are aware of
prototypes like µJena (µJena, 2010) and
Enhanced Micro Jena (Enhanced Micro Jena,
2010), but they seem not mature enough for
commercial solutions and they lack some
needed functionalities.

 Limited support for retraction in ontology-
based reasoning. OWL-DL is mainly designed
for monotonic inference, but context
recognition is typically based on dynamic
sensor measurements: as new measurements
replace previous ones, previous measurements
and derived information need to be retracted.
Jena rules engine was originally designed for
monotonic inference, non-monotonic
inference is supported, but with some
limitations (Jena-dev, 2008).

 No suitable support for uncertain and fuzzy
data management and for managing data
stream and temporal reasoning.

These considerations led us to design a flexible,
plug-in-based architecture able to integrate, besides
the pure ontology-based reasoner, other processing
methodologies. Through the plug-in architecture and
a late binding and reflection mechanism, multiple
Processing Agents can be integrated to the reasoning
framework (retrieving them either locally or from a
remote repository).

Processing Agents have some capabilities of the
semantic reasoner, namely the ability to
communicate with the other modules through XML

A FLEXIBLE MIDDLEWARE COMPONENT FOR CONTEXT AWARE APPLICATIONS

37

logical models and related events (they also presents
themselves to the network through a logical model),
and to filter events of interest.

In case of stateful processing, the Agents are
able to keep in memory the data needed for their
processing, e.g. a collection of XML logical models
or derived structures. Moreover, Processing Agents
can also raise “local events”, providing their
processing results to other reasoning modules
running on the same node, without propagating this
information to other nodes.

Compared to the semantic reasoning approach,
the Processing Agents can provide additional
processing capabilities and perform efficiently a
variety of complex tasks, if needed by integrating
and exploiting specialized libraries or engines. We
summarize below some processing tasks that could
be performed by Processing Agents:

 A Processing Agent can be used as a light
reasoning module on nodes where the
semantic reasoner could not be hosted due to
resource constraints. In this case, it provides
standalone CA services, which could
potentially be used by semantic reasoners on
more powerful nodes for providing higher-
level services.

 Another task that could be performed by a
Processing Agent is the pre-processing
(filtering, aggregating, checking, enriching,
etc) on data which will then be used by the
semantic reasoner. The Agent can provide
simple data transformations, such as
measurement unit conversions (especially in
non-linear transformations), or can add
reconfigurable capabilities that are difficult or
impossible to implement in the semantic
reasoner. For instance, the semantic reasoner
doesn’t address sensor data uncertainty. In
fact, in many cases, data coming from sensor
networks are unreliable and affected by noise
and errors and need some processing as a
preliminary step to use them as context
information.

 Specialized tasks for a Processing Agent could
be given by the application of probabilistic
and statistic methods, e.g. for managing
uncertain and fuzzy data, making predictive
evaluations on the basis of historical values,
analysing user habits and preferences.

With the data centric communication style
adopted in our platform and with the simple defined
interfaces it is possible to build composite services,
sharing basic computations blocks and their results,

and exploiting the different capabilities of the agents
and of the semantic reasoner.

The more recurrent tasks that will be needed in
the system will be accommodated conveniently in
ready-made reasoning blocks, but it will be possible
to add other reasoning blocks when required, after
the deployment.

5 CONTEXT-AWARE
APPLICATION SCENARIOS

We briefly illustrate in this section how the
reasoning modules have been exploited for building
context-aware applications.

As a case study we developed a set of services
for smart buildings, for monitoring of large facilities
and public areas. As shown in Figure 5, we
developed some services for a conference room, in
particular for temperature management, for light
management, for managing projection screen and
lights in case of meeting, for fire prevention. We
also developed some services for an exposition area,
in particular to count the people present in the area
itself, and to estimate waiting time for people in
queue for accessing to the area.

Most of the services have been developed using
the semantic module. As long as there are no strict
response time constraints and computation needs are
limited, in fact, the semantic reasoner can allow
engineering context-aware applications easily,
without coding. Therefore these rules-based
applications can be developed by technical
personnel such as technical matter experts of the
domain without programming skills.
The queue waiting time service, on the contrary, was
developed by using a more convenient, specialized
processing agent.

Figure 5: Services developed on a smart building.

PECCS 2011 - International Conference on Pervasive and Embedded Computing and Communication Systems

38

The following paragraphs describe the development
of the above applications and present related
evaluation remarks.

5.1 Context-aware Application
Development

The services realized for the conference room (as
well as the people counter service for the exposition
area) have been developed through the semantic
reasoner. Devices involved in these services are
lamps, brightness sensors, thermometers, air
conditioners, projectors, curtains, white screens, and
people counters devices. People presence and
regulations directly requested by user were
considered for regulating room conditions.

The middleware provided a convenient support,
and allowed the context-aware application developer
to focus on the application logic, without need of
caring of communications, localization, networking,
and so forth. Involved entities are handled easily
thanks to the abstracted logical models.

To add a CA service based on already connected
devices it is needed to (see Figure 6):

 Add an OWL model of the service.
 Provide the pair of rules sets for context

recognition and action selection.
 Extend queries related to aggregation of

sensor values, and to conditions for
considering the service ‘available’.

If the location area includes more than one
sensor of the same model, e.g. more than one
brightness sensor, the system aggregates through
SPARQL queries the measures coming from the
sensors, providing an aggregate value, e.g. an
average.

Figure 6: Adding a new CA service.

In case devices to be used by the CA service
being developed are not yet ‘known’ to the system it
is needed to add also their models (XML and OWL)
into the model repository, so that the middleware
will be able to handle them. At run time, entities are
dynamically instantiated when present, and also CA
services are instantiated when instantiation
conditions for the type of service are met. The
relationships between a service and devices and
entities it reasons about are described in the
ontology models. When a CA service of a new type
is instantiated, related rules and queries are loaded
and made available for processing.

The applications above described benefit from
the ontology-based models supporting the context
recognition, which required considering the state of
different devices and entities. Rules expressed
context conditions and adaptation and not many
computations were needed.

The CA service for deriving the average time
that people spend in a certain waiting area, and for
estimating waiting time for incoming people, was on
the contrary developed through the processing
agent’s framework. The sensed data is given
uniquely by a single entity, which provides tracks of
portable Bluetooth enabled devices held by visitors,
but some correlations, computations and statistics
are needed, especially for waiting time estimation.
Thus, we deemed more appropriate to develop it in
form of a processing agent. It required some
programming, but more complex aspects are already
provided by the middleware and by the reasoner
host. It meant specifying filtering condition and
coding the ad-hoc processing, and was quite
straightforward thanks to the provided processing
agent’s framework.

5.2 Evaluation and Remarks

As we could observe by the case study indicated in
section 0, the semantic reasoner demonstrated to be
able to support development of context-aware
application based on models and rules. It allows
dealing with complex domain models.

In particular the following points are worth
noticing:

 The extended syntax provided by ARQ, Jena’s
SPARQL processor, has been used in some
cases for querying the knowledge base instead
of the standard W3C SPARQL syntax, to
exploit some operators not included in
SPARQL 1.0 but supported in ARQ. For
instance, aggregation through ‘GROUP BY’
and negation were used, while they are still in

A FLEXIBLE MIDDLEWARE COMPONENT FOR CONTEXT AWARE APPLICATIONS

39

Figure 7: Comparative test results.

Figure 8: Comparative 5 hrs test results.

working phase in SPARQL W3C working
group for the 1.1 version.

 The extendibility of Jena has been used to add
a few procedural primitives which can be used
in the rules. These built-ins were needed as the
set of Jena primitives is limited and some
required operators, e.g. for certain operations
with dates and time, were not provided in the
framework.

 We had no issue concerning the usage of Jena
in .NET environment through the IKVM
virtual machine, even in introducing
extensions. We used a library we assembled
from the Java version of Jena, not the recently
published Jena .NET library version (Jena
.NET Framework, 2010).

The applications developed on the semantic
reasoning module were used to show information on
a dynamic graphic user interface, tested both in a
simulated environment and in a smart ambient
equipped with real devices, and function properly.

Even if the semantic reasoner worked well with
the required CA services we noticed that other kinds
of data processing would be very complex to
develop in form of rules-based applications. For
example, the implementation of the queue waiting
time estimation service in a rule-based application is
not straightforward. Even with the support of Jena
framework, we would need to develop specialized
built-ins for statistical computation and to use a
persistence system for keeping track of visitors’
movements.

The processing agent infrastructure resulted
beneficial in dealing with complex data processing.
The pluggable processing modules can integrate
reasoning framework capabilities, if needed by also
including specialized libraries. Moreover, the
processing agents and the semantic reasoner can co-
exists and their processing can be staged in multiple
ways, and allow CA service composition based on
hybrid methods.

In the case study described in section 0, we
performed some comparative tests over the
following scenarios:

 Scenario 1: conference room management
services and people counting service in the
queue for the exposition area. A rule-based
approach is adopted (semantic reasoner only).

 Scenario2: all services of scenario 1, plus the
queue waiting time service. A hybrid approach
is adopted (semantic reasoner plus the
processing agent for waiting time estimation).

Figure 7 shows, for both scenarios, the minimum,
maximum and average reasoning times, related to
the semantic reasoner only, the processing agent
only, both the semantic reasoner and the processing
agent (total reasoning times). The tests were
conducted in a simulated environment, on a PC with
Windows XP, 1.99 GB of RAM, 2 GHz CPU.

We can observe that the processing agent has
very good reasoning time performances, and does
not increase significantly the total reasoning times.
We also considered the semantic reasoner
performances as a good result, for the need of the
application developed.

Figure 8 shows the results of the same kind of
tests, performed over a time period of 5 hours. We
can observe that the longer test period did not
significantly affect the reasoning time performances
(the average reasoning time of the processing agent
even decreased).

Another benefit given by the processing agents
approach is that a processing agent can also be
ported to other platforms, including embedded
platforms, thus overcoming a limitation given by
using a resource demanding semantic framework.

Finally, we claim that the criteria related to
flexibility, simplicity and maintainability, defined in
(Kapitsaki, 2009) and referenced in Section 2, are
well satisfied by our solution.

PECCS 2011 - International Conference on Pervasive and Embedded Computing and Communication Systems

40

6 CONCLUSIONS
AND FUTURE WORK

The paper presented a flexible solution for the
creation and management of context aware
pervasive and IoT-enabling applications. The
solution is based on a modular and extensible
platform, providing an effective support for context-
aware application deployment, from hardware to
network and middleware layers. The CA component
is given by a flexible framework that allows
integrating different reasoning methods (from the
semantic approach to event-processing techniques),
according to application needs.

A case study analysis highlighted the advantages
offered by the solution, which allows reducing the
context-aware application engineering effort and
complexity through the various provided methods
and instruments, which can be flexibly combined
according to application needs.

As a future work, we plan to further investigate
methods and tools for complex event processing
(e.g. for data streams, temporal reasoning, and
uncertain data management) and statistical analysis,
evaluating possible tools integration, e.g. complex
event processing engines (Esper, 2010)
(StreamInsight, 2009), and/or new techniques
development in our system.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge partial funding
of this work by Regione Piemonte within the frame
of the research project “Piattaforma Tecnologica
Innovativa per l’Internet of Things”.

REFERENCES

Devices Profile for Web Services (DPWS), 2009. http://
docs.oasis-open.org/ws-dd/ns/dpws/2009/01.

Enhanced Micro Jena, 2010. http://www.nembes.org/.
Esper, 2010. http://esper.codehaus.org/.
Garofalakis, M., Brown K. P., Franklin M. J., Hellerstein

J. M., Zhe Wang D., 2006. Probabilistic Data
Management for Pervasive Computing: The Data
Furnace Project. Bulletin of IEEE Computer Society
Tech Committee on Data Engineering, 29(1), 2006.

Huang V., Javed M. K., 2008. Semantic Sensor
Information Description and Processing. In
SENSORCOMM'08, 2nd International Conference on
Sensor Technologies and Applications.

IKVM.NET, 2010. http://www.ikvm.net/.
Jena, 2009. http://jena.sourceforge.net.

Jena-dev, 2008. http://tech.groups.yahoo.com/group/jena-
dev/message/32818;http://tech.groups.yahoo.com/gro
up/jena-dev/message/43618.

Jena .NET Framework, 2010. http://www.linkeddatatools.
com/downloads/jena-net.

Kapitsaki G., Prezerakos G., Tselikas N., and Venieris I.,
2009. Context-aware service engineering: A survey. In
Journal of Systems and Software, Vol. 82(8), 2009.

Kjær, K. E., 2007. A survey of context-aware middleware.
In SE'07, Proceedings of the 25th IASTED Conference
on Software Engineering. ACTA Press.

Kostelník P., Sabol T., Mach M., 2008. Applications of
Semantic Technologies in AmI. In Ambient
Intelligence Forum 2008 Conference Proceedings.

Leger A., Heinecke J., Nixon L., Shvaiko P., Charlet J.,
Hobson P., Goasdoue F., 2008. Semantic web take-off
in a european industry perspective. In Semantic Web
for Business: Cases and Applications. IGI Global.

µJena, Context-ADDICT, 2010. http://poseidon.ws.
dei.polimi.it/ca/?page_id=59.

Perttunen M., Riekki J., Lassila O., 2009. Context
representation and reasoning in pervasive computing:
a review. In International Journal of Multimedia and
Ubiquitous Engineering, Vol. 4(4), 2009.

Protégé, 2010. http://protege.stanford.edu/.
Roman M., Hess C., Cerqueira R., Ranganathan A.,

Campbell R., Nahrstedt K., 2002. Gaia: A middleware
infrastructure to enable active spaces. In IEEE
Pervasive Computing, 2002: 74-83.

Soylu A., De Causmaecker P., Desmet P., 2009. Context
and Adaptivity in Pervasive Computing Environments:
Links with Software Engineering and Ontological
Engineering. In Journal of Software, Vol. 4(9), 2009.

Strang T., Linnhoff-Popien C., 2004. A Context Modeling
Survey. In 1st International Workshop on Advanced
Context Modelling, Reasoning and Management.

StreamInsight, 2009. http://www.microsoft.com/sqlserver/
2008/en/us/r2-complex-event.aspx.

Truong H., Dustdar S., 2009. A Survey on Context-aware
Web Service Systems. In International Journal of Web
Information Systems, Vol. 5(1), 2009.

W3C Semantic Web, 2001. http://www.w3.org/2001/sw/.
Wolf P., Schmidt A., Klein M., 2009. Applying semantic

technologies for context-aware AAL services: What
we can learn from SOPRANO. In INFORMATIK
2009, Lectures Notes in Informatics, Vol. P-153.

XSD, 2004. http://www.w3.org/TR/2004/REC-xmlschema-
0-20041028/.

A FLEXIBLE MIDDLEWARE COMPONENT FOR CONTEXT AWARE APPLICATIONS

41

