
WEB SERVICE WRAPPING, DISCOVERY AND CONSUMPTION
More Power to the End-user

Ismael Rivera, Knud Hinnerk Möller, Siegfried Handschuh
DERI, National University of Ireland, Galway, Ireland

Albert Zündorf
University of Kassel, Kassel, Germany

Keywords: Web services, End-users, Discovery, Consumption, Linked data.

Abstract: In B2B systems integration and web services, many companies see the advantage of increased operational
efficiencies and a reduction of costs. In this scenario, highly qualified software developers are responsible
for the integration of services with other systems. However, this model fails when targeting the long tail of
enterprise software demand, the end-users. Discovery and consumption of web services are difficult tasks for
end-users. This means that potential long tail of end-users creating task-specific applications from existing
services is as of yet completely untapped. This paper presents an approach to facilitate the discovery and
consumption of business web services by end-users, closing the gap between the two. The approach includes:
(a) a catalogue which users can browse to search for web services fitting their needs, and (b) a method to
generate ready-to-use web service wrappers to use in the catalogue.

1 INTRODUCTION

Business-to-business (B2B) integration is still a sig-
nificant challenge, often requiring extensive efforts in
terms of different aspects and technologies for pro-
tocols, architectures or security. While the adoption
of open standards such as RosettaNet, ebXML, the
Web Service Description Language (WSDL), Univer-
sal Description, Discovery and Integration (UDDI)
or the Simple Object Access Protocol (SOAP) have
reduced the complexity of integrating business ap-
plications between different companies and partners,
and offered some advantages in business-to-consumer
(B2C) integration as well, the interaction and con-
sumption of web services still requires programming
skills and a deep understanding of the technology,
which poses an obstacle for an end-user with lim-
ited knowledge of the matter. Regarding the selec-
tion of the right service for the right task — a cru-
cial requirement for the dynamic use of web services
— most publishing platforms are syntax-based, mak-
ing it difficult to navigate through a large number of
web services (Pilioura and Tsalgatidou, 2009), pre-
venting end-users from performing these tasks. Solu-
tions such as Semantic Web Services (SWS) promised
many advantages in this respect. However, as of yet

they have not been widely adopted, possibly because
the perceived potential benefits did not justify the ad-
ditional investments (Shi, 2007).

The motivation of our work has been strongly
influenced by the end-users’ needs. We are tar-
geting users which are non-skilled in programming
and software development, empowering them with
a platform to select and consume web services in
a straight-forward manner. Rather than publishing
services directly in our platform, we leave existing
third-party services untouched and instead integrate
them through service wrappers. The products result-
ing from the wrapping process are two artifacts: a spe-
cific definition of the web service to be used by this
tool, and a ready-to-use piece of code with the proper
functions to invoke the web service.

2 RELATED WORK

Web services have been around for a long time. One
of the most important claims about their benefits has
been (syntactic) interoperability between third-party
systems and applications based on different platforms
/ programming languages. System integration, within

334 Rivera I., Hinnerk Möller K., Handschuh S. and Zündorf A..
WEB SERVICE WRAPPING, DISCOVERY AND CONSUMPTION - More Power to the End-user.
DOI: 10.5220/0003348003340339
In Proceedings of the 7th International Conference on Web Information Systems and Technologies (WEBIST-2011), pages 334-339
ISBN: 978-989-8425-51-5
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)



a company or between systems from different enter-
prises, became easier with the adoption of web service
standard technologies such as WSDL. While many in-
tegrated development environments (IDEs) can deal
with WSDL to facilitate the integration task, trained
developers are still required for this. As a step for-
ward, there are several tools which facilitate the in-
teraction with data sources and services on the Web.
Yahoo! Pipes, Apatar, JackBe Presto and NetVibes,
among others provide a set of modules to access dif-
ferent kind of data sources, such as RSS feeds, a given
web page (HTML code), Flickr images, databases,
and even powerful enterprise systems such as Sales-
force CRM or Goldmine CRM. However, none of
these solutions facilitate end-users to build their own
applications allowing the interaction with web ser-
vices created by third-party providers. The solutions
found are mainly data-oriented (RSS feeds, databases,
raw text). Several tools permits some sort of (web)
service integration, but are meant to be used within
an enterprise level by savvy business users or devel-
opers. The solution presented in this paper leverages
the possibility of integrating RESTful or SOAP-based
web services inside browser-based applications (i.e.,
widgets or gadgets) by providing a platform to create,
publish and select web services wrappers.

In the context of publishing and discovering Web
services, service providers have well-known and
widely used technologies to accomplish the task of
publication, such as the Universal Description, Dis-
covery and Integration (UDDI) (Clement et al., 2004).
UDDI serves as a centralised repository of WSDL
documents. A similar concept is iServe (Pedrinaci
et al., 2010). This platform aims to publish web ser-
vices as what they called Linked Services — linked
data describing services —, storing web service defi-
nitions as semantic annotations, so that other seman-
tically aware applications may take advantage of it.
However, the platform does not handle the step from
definition to consumption of the services.

3 CONTEXT: THE FAST
PLATFORM

The intention of this paper is to demonstrate the ad-
vances made regarding web service discovery and
consumption through two artifacts developed as part
of our research: the publishing and discovery plat-
form and the service wrapper tool. While these arti-
facts may be deployed and used separately by third-
party applications, they were originally developed
to form the backbone of the FAST platform (Hoyer
et al., 2009). FAST constitutes a novel approach to

application composition from a user-centric perspec-
tive. It is aimed at allowing users without previ-
ous programming experience to create their own sit-
uational applications by visually combining different
building blocks, such as graphical forms and back-end
services, based on their inputs and outputs (or pre-
and post-conditions). The work covered in this paper
are the components highlighted in Fig. 1 by a dashed
line. Communication within the platform is mostly
done via a RESTful API, using JSON as an exchange
syntax.

Publishing/Discovery
Platform (Catalogue)

Service
Wrapper

Inference
Engine RDF Store

Widget Designer Service
Wrapper Tool

Other 
applications

FAST GVS (Gadget Visual Storyboard)

FAST Server

Persistent
Manager

User
Profiles

SPARQL
endpoint

BB
code

Figure 1: Overview of the FAST architecture.

In order to provide a better understanding of these
components, we describe a number of concepts re-
lated to FAST in this section. A gadget is the end
product of the platform, ready to be run in any or-
dinary web browser, usually through a mashup plat-
form. An undeployed gadget is also called screenflow,
which comprises a set of screens connected through
their pre- and post-conditions. A screen is the most
complex building block fully functional by itself, vi-
sually similar to a tab in a tabbed application. It is
composed by a form conveying the graphical inter-
face, and a set of operators and back-end services,
wrapped into so-called service resources.

The publishing platform, also called catalogue,
covers several important purposes, such as storage,
indexing, publication and search of gadgets, gadget
building blocks and user profiles. The service wrap-
per tool is used to create wrappers for third-party web
services, transforming them into building blocks to be
stored and reused within the FAST platform.

4 PUBLISHING AND DISCOVERY
PLATFORM

As explained in previous sections, current solutions
and strategies for web service publication and dis-
covery suffer from limited syntax-based descriptions

WEB SERVICE WRAPPING, DISCOVERY AND CONSUMPTION - More Power to the End-user

335



and simple keyword-based search, while other more
complex approach failed because the added complex-
ity did not offer sufficient benefits. This paper there-
fore presents a novel publishing platform (the cata-
logue), permitting any enterprise or individual to pub-
lish their public web services, providing enhanced se-
mantic search service wrappers for easy consumption
in web applications.

4.1 Overview

One of the main difference of this platform with re-
gards to the state of the art is that it is targeting a dif-
ferent kind of user. As a brief overview, the platform
being presented:

� allows functional discovery through web service
pre- and post-conditions;

� serves web services wrappers ready to consume in
web applications;

� provides advanced search capabilities, based on
the formal service definition and inferences ex-
tracted from it;

� supports managing its resources via its RESTful
API;

� offers a SPARQL endpoint, giving direct access to
the data through complex queries;

� offers web service descriptions as linked data;

� follows well-known best practices for publishing
data on the web;

� supports content negotiation so that different
clients may retrieve information in their preferred
format, choosing from JSON, RDF/XML, RD-
F/N3 or a human-readable HTML version.

The enriched search capabilities are supported by
the definition of pre- and post-conditions. They al-
low to define the inputs and outputs of the services
and other building blocks using concepts from any on-
tology, and in this way to find web services or other
building blocks which can be integrated. The con-
cepts of pre-/post-conditions were strongly influenced
by WSMO (Roman et al., 2005), simplified and im-
plemented in RDFS for better live performance.

The catalogue architecture comprises an RDF
store used for persistence, a business layer dealing
with the model and reasoning, and a public facade
providing the core functionality as a RESTful API, as
well as a SPARQL endpoint accessing the RDF store
directly. This presentation layer is aimed to interact
with the FAST Gadget Visual Storyboard (see Fig. 1),
or any other third-party application.

4.2 Conceptual Model

The conceptual model used to define the web ser-
vice wrappers within this application has been influ-
enced by both WSDL and semantic approaches such
as WSMO and OWL-S. It is part of a more com-
plex conceptual model for FAST (Möller et al., 2010),
which can be grouped into three levels: the gadget
and screenflow level at the top, the level of individual
screens in the middle, and the level of web services at
the bottom. All these building blocks and their sub-
parts share the same structure: a set of actions (like
operations in WSDL), each of which needs a set of
pre-conditions (inputs) to be fulfilled in order to be
executed, and provides a set of post-conditions (out-
puts) to other building blocks. These pre- and post-
conditions are defined as RDF graph patterns. E.g.,
the post-condition of a login service such as “there
exists a user” will be expressed as a simple pattern
such as “?user a sioc:User”1. Using this mech-
anism, extended by RDFS entailment rules, services
and other building blocks can be matched automati-
cally. The publishing and discovery platform can em-
ploy this functionality to support the internal discov-
ery of web services based on the current user needs
(expressed in the same way as pre-conditions).

4.3 Discovery Mechanisms

The main goal of the discovery process is to aid the
user in finding suitable building blocks to comple-
ment the ones they are already using. E.g., on the
screen-flow level, this would mean to suggest ad-
ditional screens to make existing screens within a
screen-flow reachable, and the screen-flow therefore
executable. The platform offers two mechanisms
to find and recommend screens (or other building
blocks) stored in the catalogue: a simple discovery
based on pre- and postconditions, and a multi-step
discovery or planning algorithm. Before being pre-
sented to the user, the results are being ranked, as dis-
cussed in Sect. 4.3.3.

4.3.1 Simple Discovery based on Pre- and
Post-conditions

In this simple approach, the platform will assist the
process by recommending all building blocks which
will satisfy currently unfulfilled pre-conditions. The
pre-conditions of all the unreachable building blocks
are collected as a graph pattern, which is then

1We use Trig (http://www4.wiwiss.fu-berlin.de/bizer/
TriG/) and SPARQL (http://www.w3.org/TR/rdf-sparql-
query/) notation for RDF graphs throughout this paper.

WEBIST 2011 - 7th International Conference on Web Information Systems and Technologies

336



matched against the post-conditions of all available
building blocks. In the following scenario, there
are two screens: s1 and s2. s1 has as a pre-
condition: “there exists a search criteria”, and as a
post-condition: “there exists a item”. s2 has just a
pre-condition stating: “there exists a search criteria”.

:G1 { :s1 a fgo:Screen .

:s1 fgo:hasPrecondition c1 .

:s1 fgo:hasPostcondition c2 .

:c1 fgo:hasPattern GC1 .

:c2 fgo:hasPattern GC2 .

:s2 a fgo:Screen .

:s2 fgo:hasPrecondition c3 .

:c3 fgo:hasPattern GC3 }

:GC1 { _:x a amazon:SearchCriteria }

:GC2 { _:x a amazon:Item }

:GC3 { _:x a amazon:SearchCriteria }

The algorithm will construct a SPARQL query to
retrieve building blocks satisfying the pre-conditions
c1 and c3. The query, although simplified for the sake
of clarity, would look something like:

SELECT DISTINCT ?bb

WHERE {

?bb a fgo:Screen .

{ { ?bb fgo:hasPostCondition ?c .

?c fgo:hasPattern ?p .

GRAPH ?p { ?x a amazon:SearchCriteria }

} UNION {

?bb fgo:hasPostCondition ?c .

?c fgo:hasPattern ?p .

GRAPH ?p { ?x a amazon:Item } } }

FILTER (?bb != <http://fast.org/screens/S1>)

FILTER (?bb != <http://fast.org/screens/S2>) }

4.3.2 Enhanced Discovery: Search Tree
Planning

In artificial intelligence, the term planning originally
meant to search for a sequence of logical operators
or actions that transform an initial state into a desired
goal state.

In contrast to the simple approach, the planning
approach finds sets of building blocks to fulfil the pre-
conditions of a given building block (e.g., a screen).
For a certain state, i.e., the initial state which con-
tains the pre-condition to fulfil, a large search tree of
possible continuations is considered. Those building
blocks cannot satisfy the unsatisfied pre-conditions
are discarded, reducing the branches of the tree. A
branch stops growing when a building block is reach-
able (i.e., it has no unfulfilled pre-conditions). Once
there are no screens added in a certain step, the algo-
rithm stops and discards all incomplete branches.

It should be pointed out that some of the tree struc-
ture is pre-computed to speed up the querying pro-
cess at runtime. Any time a building block is inserted

into the catalogue, the algorithm is executed follow-
ing two approaches: forward search and backward
search. The forward search approach finds the build-
ing blocks whose pre-conditions will be satisfied by
the post-conditions of the new building block while
the backward search finds the building blocks whose
post-conditions will satisfy the pre-conditions of the
recently created building block.

4.3.3 Results Ranking

This section explains the ranking techniques applied
for the different discovery mechanisms.

The ranking algorithm for the simple approach ap-
plies the following rules: (1) it gives a higher posi-
tion to those building blocks which satisfy the high-
est number of pre-conditions; (2) it prioritises build-
ing blocks created by the same user who is querying;
(3) it adjusts the rank by using the ratings given to the
building blocks, and their popularity in terms of usage
statistics; (4) it weights the results according to non-
functional features such as availability. This is only
applied for what we call “web service wrapper”, and
it is calculated periodically by invoking the wrapped
web services.

For the planning case, the objective is not only to
produce a plan but also to satisfy user-specified pref-
erences, or what is known as preference-based plan-
ning. The ranking algorithm: (1) minimises the size
of the plans, after removing the elements of the plan
which are already in the canvas, so it gives priority to
the elements the user has already inserted, (2) adjust
the rank by using the rules 2, 3 and 4 used from the
ranking algorithm of simple discovery based on pre-
and post-conditions.

4.4 Serving Linked Data

The idea of a Web of data has recently seen a re-
markable uptake, e.g. highlighted by large players
such as the New York Times, the BBC or an increas-
ing number of national governments (most notably
the US and UK governments). We apply this con-
cept in order to provide metadata about the web ser-
vices as linked data, following the principles as de-
fined in (Bizer et al., 2009), in order to make them
available to arbitrary third-party applications. Each
web service is identified by an HTTP URI and hosted
in the publishing platform so that it can be derefer-
enced through the same URI. For each building block,
data is available in representations in different stan-
dard formats such as JSON (for communication with
the applications such as the widget designer shown
in Fig. 1), RDF/XML, Turtle, or even HTML+RDFa
as a human-readable version. To do this, we employ

WEB SERVICE WRAPPING, DISCOVERY AND CONSUMPTION - More Power to the End-user

337



content-negotiation, such as proposed as a best prac-
tice in (Sauermann et al., 2008).

5 WRAPPING WEB SERVICES

Before third-party services can be used by our plat-
form, they need to be provided with a service wrap-
per. In our approach, this is done in two steps:
(i) constructing an exemplary service request, and
(ii) analysing the response received from the execu-
tion of the service, allowing the mapping of the re-
sponse data to domain-specific concepts to be used
as pre- and post-conditions. From this input, the tool
then generates the actual wrapper — JavaScript code
to be embedded into web gadgets.

5.1 Constructing Service Requests

We now illustrate the interaction with RESTful ser-
vices on simple GET requests2. In this case, a ser-
vice request is assembled using its URL and a set
of parameters. As an example, we will look at the
eBay Shopping web service. To define the desired
pre-condition and the type of post-condition of a new
service wrapper, the service wrapper tool provides
a form (not shown here). For the current example,
we assume that the user has defined a pre-condition
search key. We are invoking the service to retrieve
a list of items corresponding to the search keyword
“USB”:

http://open.api.sandbox.ebay.com/shopping?

appid=KasselUn -efea -xxx&version=517&

callname=FindItems&ItemSort=EndTime&

QueryKeywords=USB&ResponseEncoding=XML

The various parameters in the example are defined
by the service provider. However, the most relevant
one for our example is QueryKeywords, which com-
municates to the services what we are looking for. An
example of service request construction is shown in
the Fig. 2. In the “Request” input field the user en-
ters an example HTTP request, e.g. the one above.
The tool analyses the request and provides a form for
editing the request parameters. In our example, the
user has connected the service’s QueryKeywords pa-
rameter with the wrapper’s search key pre-condition.
Requests constructed in this way can then be sent off
to the service, whose response is shown in the bottom
text area.

2Other methods such as POST or SOAP-based services
are also supported.

Figure 2: Constructing the service request.

5.2 Interpreting Service Responses

Once the service response has been retrieved, the
transformation tab of the wrapper tool shows it as an
interactive object tree, as seen in Fig. 3.

Figure 3: Rule-based transformation of service response.

A transformation rule is used to analyse the
response data and generate the wrapper’s post-
conditions. Such a rule is composed of three ele-
ments, as seen in the middle part of Fig. 3. The from
field indicates the source elements to be translated by
the rule. The second part defines the type of rule (see
below). Thirdly, the target of the rule specifies a cer-
tain concept or attribute, to be created or filled. Rules
can be chained together in a rule tree. A detailed ex-
planation of the different rule types is as follows:

createObject specifies the creation of a new post-
condition of the type specified in the third part of the
rule. In the example in Fig. 2, the root rule could
search for source elements with name FindItemsRe-
sponse and create a post-condition of type List for
each such element. The resulting objects are shown
in a facts tree in the right of the figure.

WEBIST 2011 - 7th International Conference on Web Information Systems and Technologies

338



fillAttributes only ever appear as sub-rules in the
rule tree. They match source elements defined in the
first part of the rule. The third part defines the attribute
of the super-rule that will be filled (e.g., fullName in
Fig. 3).

dummy does not create or modify any objects but
instead narrows the search space for their sub-rules,
by selecting certain elements in the source tree and
ignoring others.

Our tool follows an interactive paradigm. Any
time a change to a transformation rule is done, the
transformation process is triggered and the resulting
facts tree is shown. This aids the user to deal with the
complexity of the transformation rules, preventing er-
rors or mistakes. In addition, the tool is ontology-
driven, meaning that possible post-condition types
and their attributes are selected from domain ontolo-
gies loaded in the system.

5.3 Generating the Service Wrapper

Once the wrapping of a service has been defined
and tested in the tool, we generate an implementa-
tion of the desired specification in XML, HTML, and
JavaScript, ready to be deployed and executed inside
a web gadget.

6 CONCLUSIONS AND FUTURE
WORK

It has been argued that adopting web services stan-
dards helps enterprises to increase operational effi-
ciency, reduce costs and strengthen the relations with
partners. A range of WS standards help in this re-
gard. However, when dealing with end-users, the
process for publication and consumption is not well
supported. In a move towards improving this situa-
tion, the work presented in this paper empowers the
end-user with a platform (the catalogue) to easily se-
lect services based on functional behaviour (pre-/post-
conditions) and other metadata, being able to down-
load a so-called resource adapter allowing the con-
sumption of web services using standard languages
to execute within a web browser, and a tool to trans-
form, in an interactive manner, formal definitions of
web services into these resource adapters, ready for
being published into the catalogue.

As potential future work, we consider to in-
clude semantically enriched WSDL documents us-
ing SAWSDL, and to support other SWS approaches
such as WSMO-lite services, making the web service

wrapping a semi-automatic (or automatic) process.
As regards to the discovery, once the catalogue begins
to be populated, applying techniques such as frequent
itemset mining or collaborative filtering could be an
interesting way to offer better recommendations to the
users.

ACKNOWLEDGEMENTS

This work is supported in part by the European Com-
mission under the first call of its Seventh Framework
Program (FAST, ICT-216048, and digital.me, ICT-
257787) and in part by Science Foundation Ireland
under Grant No. SFI/08/CE/I1380 (Lı́on-2).

REFERENCES

Bizer, C., Heath, T., and Berners-Lee, T. (2009). Linked
data - the story so far. International Journal on Se-
mantic Web and Information Systems (IJSWIS).

Clement, L., Hately, A., von Riegen, C., and Rogers,
T. (2004). UDDI version 3.0.2 specification.
http://uddi.org/pubs/uddi v3.htm.

Hoyer, V., Janner, T., Delchev, I., López, J., Ortega, S.,
Fernández, R., Möller, K. H., Rivera, I., Reyes, M.,
and Fradinho, M. (2009). The FAST platform: An
open and semantically-enriched platform for design-
ing multi-channel and enterprise-class gadgets. In The
7th International Joint Conference on Service Ori-
ented Computing (ICSOC2009), Stockholm, Sweden.

Möller, K., Rivera, I., Ureña, M. R., and Palaghita, C. A.
(2010). Ontology and conceptual model for the se-
mantic characterisation of complex gadgets. Deliver-
able 2.2.2, FAST Project (FP7-ICT-2007-1-216048).

Pedrinaci, C., Liu, D., Maleshkova, M., Lambert, D.,
Kopecký, J., and Domingue, J. (2010). iServe: a
linked services publishing platform. In Workshop:
Ontology Repositories and Editors for the Semantic
Web at 7th Extended Semantic Web Conference.

Pilioura, T. and Tsalgatidou, A. (2009). Unified publication
and discovery of semantic web services. ACM Trans.
Web, 3(3):1–44.

Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R.,
Stollberg, M., Polleres, A., Feier, C., Bussler, C., and
Fensel, D. (2005). Web service modeling ontology.
Applied Ontology, 1(1):77–106.

Sauermann, L., Cyganiak, R., Ayers, D., and Völkel, M.
(2008). Cool URIs for the Semantic Web. Inter-
est group note, W3C. http://www.w3.org/TR/cooluris/
05/05/2009.

Shi, X. (2007). Semantic web services: An unfulfilled
promise. IT Professional, 9:42–45.

WEB SERVICE WRAPPING, DISCOVERY AND CONSUMPTION - More Power to the End-user

339


