
ONTOCOMPO
An Ontology-based Interactive System to Compose Applications

Christian Brel, Anne-Marie Dery-Pinna, Catherine Faron-Zucker
Philippe Renevier-Gonin and Michel Riveill

I3S Lab, Université Nice-Sophia Antipolis / CNRS, 930 route des Colles, BP 145, 06903 Sophia Antipolis Cedex, France

Keywords: UI Composition, Application composition, UI semantic description.

Abstract: In this paper, we present an ontology-based approach and a semantic web system to compose applications
while preserving their ergonomic properties. Our composition process relies on the manipulation of User
Interfaces (UI) and is intended to assist by a knowledge based system which exploits semantic annotations
of applications on their users' aims, UIs and functionalities through semantic queries and inference rules.

1 INTRODUCTION

User-Centred Software Engineering aims at
producing useful and usable applications. To catch
users' needs and to integrate them inside the
software development, there are different steps to
follow: analyzing requirements, designing User
Interfaces (UI), specifying software architecture,
performing software tests, testing with final users,
etc. This is a long and costly process.

At the same time, there are more and more
specialized applications, such as web services or
Smartphone applications. Sometimes, users swap
from one application to another. In such cases, they
memorize and type again data or use copy-past in
order to exchange information between applications.
To avoid mistakes during "application swapping",
composing applications seems to be a solution.

What is at stake here is to compose existing UI
and functionalities by preserving results of user-
centred methodologies. Composing functionalities is
quite a well-known process, but composing at the
same time the UI is still an on-going work.

We propose a composition process based on the
selection, extraction and positioning of existing
application's UI as elementary composition actions
to impact underlying users' aims and links to the
functionalities (business part). The choice of UI as
primary artefacts manipulated by the composition
process is justified by the fact that UI are the visual
part of an application. They can be directly
manipulated with an immediate visual feedback. We

aim at enabling the developers to reuse existing UI
for creating new applications while preserving final
user requirements.

We propose a composition process driven by the
developer that enables to avoid redundancies by
selecting preferred UI parts, to preserve the initial
layouts of these UI parts and to associate them with
some new layout knowledge to constraint their
composition. The process is based on two iterative
steps: the selection of UI parts and the organization
of their layouts.

In this paper we focus on the management of
selection of the different parts of UI from existing
applications and on the management of the layouts
chosen by the developer. Our solution relies on
ontologies we built to provide a usable description
of an application, i.e. the abstraction of usual layouts
used in programming languages graphical libraries,
the description of tasks being able to perform by
users and the description of the different links
between UI, functionalities and tasks. We use these
ontologies, inference rules and constraints in our UI
composition process to assist the developer.

The paper is structured into 5 sections. In section
2, we summarize related works. In section 3, we
describe our three ontologies and links between
them. Before the conclusion, in section 4, we present
how we use these ontologies to represent the
interests of three ontologies, to define inference
rules to converge to a pivot representation of relative
layouts, and finally to define constraints to control
positioning chosen by the developer.

322 Brel C., Dery-Pinna A., Faron-Zucker C., Renevier-Gonin P. and Riveill M..
ONTOCOMPO - An Ontology-based Interactive System to Compose Applications.
DOI: 10.5220/0003342803220327
In Proceedings of the 7th International Conference on Web Information Systems and Technologies (WEBIST-2011), pages 322-327
ISBN: 978-989-8425-51-5
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)

2 RELATED WORK

As we aim at composing applications by
manipulating their UI, we have to decompose UI,
i.e. describe UI in order to deal with sub-parts of
former UI. The description of an UI both involves
(1) the description of its structure, i.e. the listing of
the different components used in the interface and
the inclusion relationship, like UIML (Abrams,
1999), ALIAS (Occello, 2010), UsiXML (Limbourg,
2004) or MARIA (Paternò, 2009)

(2) the spatial positioning of these components. By
analysing the different layouts used in the UI
toolkits, we identified three ways to position the
components in an interface: the AbsoluteLayout
with X and Y coordinates, the TableLayout to place
a component in a grid and the RelativeLayout to
express the positioning of two UI components
relatively to each other.
There are currently three main approaches to
application composition depending on the
composition entry point: (i) the functional (i.e.
business) part, (ii) the users' goals (i.e. tasks to be
performed by users) and (iii) the UI. Each entry
point addresses a specific problem of composition:
presentation and layout considerations at the UI
level, behavior of the application at the functional
level (F in Table 1), user needs at the task level (T in
Table 1). We group and classify the works related to
UI composition in Table 1. We notice a lack in
underlying composition processes. Either the
original design of application UI with man-crafted
properties such as ergonomic or usability is lost, or
both functional and UI parts are no longer connected
together in the resulting application, or there is no
UI reuse. In the context of fast development
processes, reusing UI without keeping ergonomic
and usability criteria is useless. Loosing links
between the UI and the functional parts engenders
human interventions to connect the two parts which
is error prone and fastidious for large applications.
So in order to obtain a functional application at the
end of the composition, we need to keep links
between the different levels to guide the developer
during the selection and positioning steps.

In next sections, we introduce how we represent
an application and how we use this representation to
help the developer in her selection of UI pieces and
to help in their positioning in the new UI.

Table 1: Classification of composition approaches.

Category F UI T

only considering UI
composition

Developing adaptable user
interfaces (Grundy, 2002) X

Amusing (Pinna-Déry,
2003),
ComposiXML (Lepreux,
2007)

 X

C3W (Fujima, 2004) X

only considering
tasks composition

Task Models Merging
(Lewandowski, 2007)

 X

deriving Tasks in
functional
composition and
later in UI
composition

Servface (Paternò, 2009) X X
Compose (Gabillon, 2008) X X
Scenarios (Elkoutbi, 1999)

 X X

both functionalities
and UI composition

SOAUI (Tsai, 2008),
ALIAS (Occello,2010),
Transparent Interface
(Ginzburg, 2007)

X X

3 APPLICATION
REPRESENTATION

To represent an application, we propose a model
relying on three ontologies: UIOnto, LayOnto and
TaskOnto. UIOnto gathers the concepts necessary to
represent knowledge about UI structures, i.e. their
components and hierarchical organization. LayOnto
gathers those necessary to represent knowledge
about the layout of UI components. The third
ontology TaskOnto gathers the concepts necessary
to represent the task tree describing the available
actions in the application and the unfolding between
the different tasks.

3.1 UI Representation

Our modeling of UIOnto relies upon the MARIA
model. UIOnto is represented in the OWL Lite
standard (W3C Working Group, 2004) and
comprises 26 classes and 4 properties. Figure 1
presents its main classes and properties. Under
OnlyOutput, there are classes like Text, List, Link,
etc. Under Interaction, there are classes like Edit
(and then TextEdit, NumericalEdit, etc.), Selection,
etc.

Our aim is to help designers building their new
applications keeping constraints of existing
applications. What is interesting in layout is the
meaning of spatial proximity: two close UI elements
may be perceived and analysed together as explained
in the ICS model (Barnard, 1991). So keeping such
proximity may preserve ergonomics. We let the

ONTOCOMPO - An Ontology-based Interactive System to Compose Applications

323

developer decide whether to keep such proximity.
As a result, we chose to express the meaning of UI
elements spatial proximity by RelativeLayout, a
universal way to express all traditional layouts by
highlighting their proximity properties.

Figure 1: UIOnto.

3.1.1 An Abstract Layout Description
for Composition

This is what has guided our modelling of LayOnto.
LayOnto is represented in the OWL Lite standard
and comprises 2 classes and 42 properties. Figure 2
presents its main classes and properties. The main
property of LayOnto is isPositionnedRelativelyTo
that represents a relation between two Interactors
and describes the position of one of them relatively
to the other. Its three subproperties of correspond to
the three layouts discussed above:

 isGridPositionnedIn corresponds to TableLayout,
specialized into subproperties representing the
different possible positioning (and combinaison) by
considering a 3x3 grid inside the first interactor,

 isAbsolutePositionnedIn corresponds to
AbsoluteLayout with a Point Properties with X and
Y Values,

 isGridPositionnedRelativelyTo corresponds to
RelativeLayout, specialized into subproperties
representing the different possible relative
positioning (and combinaison) by considering a 3x3
grid centered around the first interactor.

3.1.2 From Final UI to Semantic
Representation of UI

UIOnto and LayOnto enable to represent the layout
of interfaces at an abstract level shared by all the
usual layouts in graphical libraries. For instance, all
the layout managers described in the Java API (Sun,
2008) can be represented.

Figure 2: LayOnto.

Let us consider a part of an UI. Its simplified Java
code is as follows:

1. JPanel insurSearch = new JPanel();
2. insurSearch.setLayout(new
BoxLayout(insurSearch, BoxLayout.X_AXIS));
3. insurSearch.add(new JLabel("Insurance Card
Id:"));
4. JTextField insurSearchInput =
 new JTextField("123456", 20);
5. insuraSearchInput.setMaximumSize(
 insurSearchInput.getPreferredSize());
6. insurSearch.add(insurSearchInput);
7. JButton insurSearchSubmitButton =new
JButton("show insurance information");
8. insurSearch.add(insurSearchSubmitButton);
9. insurSearch.add(Box.createHorizontalGlue());

Figure 3: Java code of a form.

In this Java code, variable insurSearch

represents the container of the whole form. A
BoxLayout is set to this container. With this layout,
elements are put in a row (line 2). Components
added in the container (lines 3-6-8-9) are then
aligned in the form. From this Java code, a semantic
annotation of the UI can be constructed with UIOnto
in RDF model (W3C Working Group, 2004) as
follows:

<#insurSearch> a :Container.
<#insurSearchLabel> a :Text.
<#insurSearchInput> a :TextEdit.
<#insurSearchSubmitButton> a :Activator.
<#insurSearchGlue> a :Glue.
<#insurSearch> <#containsInteractor>
<#insurSearchLabel>, <#insurSearchInput>,
<#insurSearchSubmitButton>, <#insurSearchGlue>.

It expresses that Container insurSearch contains four
interactors: a Text corresponding to the JLabel in the
Java code, a TextEdit corresponding to the
JTextField, an Activator corresponding to the
JButton and a Glue corresponding to the
createHorizontalGlue in the Java code. This RDF

WEBIST 2011 - 7th International Conference on Web Information Systems and Technologies

324

description can be further enriched with knowledge
about layouts with LayOnto concepts:

<#insurSearchInput> <#isOnTheRightOf>
<#insurSearchLabel>.

<#insurSearchSubmitButton> <#isOnTheRightOf>
<#insurSearchInput>.

<#insurSearchGlue> <#isOnTheRightOf>
<#insurSearchSubmitButton>.

The association of a BoxLayout with X_AXIS
(respectively Y_AXIS) attribute to container
insurSearch is represented by instances of a
subproperty of GridPositionnedRelativelyTo
corresponding to BoxLayout in the Java code -
isOnTheRightOf (respectively isBelowOf) - with
insurSearch as their subject and interactors
contained in it as their values. In a similar vein, we
can associate each position of the Java BorderLayout
with a position of our TableLayout: "West" with
isInLeft, "North" with isInAllTop, "East" with
isInRight, "South" with isInAllBottom and "Center"
with isInCentre. With the high degree of abstraction
of UIOnto and LayOnto, similar translations hold for
almost all Java Layout Managers but also for layouts
of other interface description languages like XAML.

3.2 Linking UI, Tasks and
Functionalities

Our modelling of TaskOnto relies on the
ConcurTaskTree (CTT) (Mori, 2002) model.
TaskOnto is represented in the OWL Lite standard
and comprises 5 classes and 3 properties. In a
nutshell, the main class of TaskOnto is Task that
represents an action possible to perform in the
application. There are 4 types of Task, appearing as
4 subclasses of class Task.

 InteractionTask describing an action performed
through the UI,

 SystemTask representing an action performed by
the functional part,

 UserTask representing an action performed by the
final user (without inputs for the application) and

 AbstractTask that represents a task composed of
subtasks (of all type – InteractionTask, SystemTask
or UserTask).

The properties hasSubtask and hasParentTask
enable to describe the tree by dividing the different
tasks into an unfolding of tasks. To construct this
tree, property hasTemporalOperator applies to a
task and enable to describe how a subtask is
executed, sequentially or competitively, etc…

To obtain a functional application resulting of an
application composition, we relate UIOnto and

LayOnto to TaskOnto by associating to any task: (i)
the functionalities used to perform the corresponding
system actions and (ii) the UI parts used to interact
with the application during the task.

We define two RDF properties
linkedWithUIEntity and linkedWithFunctionality
which apply to a task and relate it to a UI entity in
UIOnto and to functionality. By relating the three
ontologies UIOnto, LayOnto and TaskOnto, we can
entirely describe any application. In next section, we
explain how we use all annotations to build the
application’s UI resulting of the composition.

4 INTERESTS OF UIONTO,
LAYONTO, TASKONTO FOR UI
COMPOSITION

Once the RDF representations of applications are
extracted by analysing selected parts of existing UI,
these representations need to be unified for their
manipulation by our algorithm for computer-
supported composition.

4.1 Deduction of Relative Layouts

To complete our models UIOnto and LayOnto we
have built a base of 14 inference rules enabling to
deduce relative layout of UI components from any
layout description. 4 rules state that from two
positions in the RelativeLayout, we may obtain a
third one, e.g. if an interactor S1 is above a S2 and
S1 is on the left of S2, then we can deduce that S1 is
above left of S2. We formalize it in the SPARQL
(W3C Working Group, 2008) language:

CONSTRUCT { ?s isAboveLeftOf ?s2 }
WHERE {
 ?s1 isCenteredAboveOf ?s2.
 ?s1 isOnTheLeftOf ?s2
}

In a similar vein, 4 rules enable to deduce relative
positions from absolute positions and 6 rules enable
to deduce relative positions from grid positions.
With these rules we can deduce relative positions of
any component in the new composed UI. These
results are necessary because we use the
RelativeLayout to represent the constraints of the
developer expressed during the composition process
(positioning of selected parts of former UI).

The developer is helped by these rules in
maintaining the consistency of the new UI. For
example, it will enable the developer to extend her
selection of UI parts to fix the position of a larger
and more appropriate or coherent group of already-

ONTOCOMPO - An Ontology-based Interactive System to Compose Applications

325

placed UI parts. It will also enable the developer to
perform specific selections like "all interactors in the
left of…". Rules are useful for the detection of
conflicts, like when the developer positions two
different UI parts at the same place, as two
Activators sequentially placed on the left of the
same Interactor. Where must be placed the second
Activator? On the left of the first one? Between the
first Activator and the Interactor? etc.

4.2 Consistency of UI Composition

During the composition process, when the developer
places selected parts of existing UI, she is helped in
these actions to guaranty the consistency of the new
interface. This help is done thanks to 3 categories of
semantic queries built upon our ontologies. These
categories of queries are dedicated to complete the
selection of the developer.

4.2.1 Help from Layout

The first category of queries uses layout information
to help the developer to complete her selection. For
example, the query below retrieves all components
in the container of the selected component.

SELECT ?o WHERE {
 ?container containsInteractor ?selectedComponent.
 ?container containsInteractor ?o
}

With this first category, we are able to ask the
developer if she wants to select the container and its
components, only the selected component, selected
component and some other components in the same
container etc. With such interaction, we can help her
to select difficult parts to point out (like a Container
"hidden" by its contained Interactors).

4.2.2 Help from Tasks

This second category of queries uses task
information to help the developer to complete her
selection. There are two steps of queries. The first
retrieves the tasks attached to the selected
component with the query below:

SELECT ?t WHERE { ?t linkedToUIElement
?selectedComponent }

After getting the attached tasks, the second step
retrieves the parent task of the retrieved tasks and
from that parent task all the UI elements attached to
its subtasks. Here, the idea of this help is to consider
a semantic proximity of the UI elements when they
perform a global common task. The query bellow
retrieves all UI elements achieving a common task:

SELECT ?uielement WHERE {

 ?retrieveTask hasParentTask ?parentTask .
 ?parentTask hasSubtask ?subtask .
 ?subtask linkedToUIElement ?uielement
}

Initially, this query retrieves the parent task of the
retrieved task (obtained by the first step). Then, it
reaches the different subtasks of the parent task and
finally UI element attached to these subtasks. All UI
elements may be submitted to the developer for
validation in order to be added to the selection.

4.2.3 Help from Functionalities

This third category of queries uses functionalities
information to help the developer to complete her
selection. These queries retrieve pieces of UI
manipulating the same functionalities. So, this
enables to avoid forgetting some UI part potentially
doing the same type of task or at least performing a
task using the same functionality. We need to
retrieve the tasks associated to a selected UI
component, then to the parent task of these retrieved
tasks. Among these subtasks, we can search a task
linked with functionalities:

SELECT ?funct WHERE {
 ?retrievedtask linkedToUIElement
?selectedComponent .
 ?retrievedtask hasParentTask ?parentTask .
 ?parentTask hasSubtask ?subtask .
 ?subtask linkedToFunctionality ?funct
}

If such functionalities exist, then we can execute the
second step of our help i.e. obtain the different tasks
linked with the retrieved functionalities and reach
the UI elements attached to their parent task:

SELECT ?uielement WHERE {
 ?retrievedtask linkedToFunctionality ?funct .
 ?retrievedtask hasParentTask ?parentTask .
 ?parentTask hasSubtask ?subtask .
 ?subtask linkedToUIElement ?uielement
}

With these three categories of queries, we are able to
help the developer during the selection of the
different UI parts she wants to reuse in the new UI.

5 CONCLUSIONS

With the semantic representation of applications, we
propose in this article to automate the composition
of applications. The developer is the initiator of the
composition of a new interface by selecting the
components she wants to keep. The developer
controls consistency of the composition along the
selection (she is helped thanks to layout description,
task description and functionalities description) but
also after this selection, during the composition by
expressing constraints about the layout of the new

WEBIST 2011 - 7th International Conference on Web Information Systems and Technologies

326

interface. In our approach, the composition is semi-
automatic because a feedback is done to the
developer by requiring precisions about selections
and about the constraints on the new interface.

In this work, there is an enrichment of the
semantic descriptions by associating knowledge
about functional features to current knowledge about
the layout of interface components. The functional
descriptions allow us to do the fusion of some
interactors. It allows providing feedback to the
developer about how to lead the UI composition.

ACKNOWLEDGEMENTS

Our work is funded by the DGE M-Pub 08 2 93 702
project.

REFERENCES

Abrams M., Phanouriou C., Batongbacal A., Williams S.,
Shuster J. 1999 UIML: An appliance-independent
XML user interface language. In proceedings of the 8th
World Wide Web Conference (WWW), pages 617-630,
Elseiver.

Barnard P. J., 1991. Teasdale J. D. Interacting cognitive
subsystems: A systemic approach to cognitive-
affective interaction and change. Cognition &
Emotion, 5, 1, 1-39.

Elkoutbi M., Khriss I., Keller R. K., 1999. Generating
User Interface Prototypes from Scenarios, In RE'99,
Fourth IEEE International Symposium on
Requirements Engineering, pages 150-158, Limerick,
Ireland.

Fujima J., Lunzer A., Hornbæk K., Tanaka Y., 2004. Clip,
Connect, Clone: Combining Application Elements to
Build Custom Interfaces for Information Access, In
Proceedings of UIST 2004, pages 175-184, Santa Fe,
NM.

Gabillon Y., Calvary G., Fiorino H., 2008. Composing
interactive systems by planning. In UbiMob’08, pages
37–40, Saint Malo, France.

Ginzburg J., Rossi G., Urbieta M., Distante D., 2007.
Transparent interface composition in Web
Applications, In proceedings of Web Engineering,
Volume 4607, pages 152-166, Heidelberg, LNCS ,
Springer.

Grundy J. C., Hosking J. G., 2002. Developing Adaptable
User Interfaces for Component-based Systems. In
Interacting with Computers, Volume 14, 2, pages 175-
194., Elsevier Science Publishers.

Lepreux S., Hariri A., Rouillard J., Tabary D., Tarby J.-C.,
and Kolski C., 2007. Towards multimodal user
interfaces composition based on usixml and mbd
principles. Lecture Notes in Computer Science,
4552(134):134–143.

Lewandowski A., Lepreux S., Bourguin G., 2007. Tasks
models merging for high-level component
composition. Human-Computer Interaction, Part I,
HCII 2007, Lecture Notes in Computer Science
(LNCS), 4550:1129–1138.

Limbourg Q., Vanderdonckt J., Michotte B., Bouillon L.,
Florins M., and Trevisan D., 2004. Usixml: A user
interface description language for context-sensitive
user interfaces. AVI’2004 Workshop ”Developing
User Interfaces with XML: Advances on User
Interface Description Languages” UIXML’04, pages
55–62.

Mori G., Paternò F., Santoro C., 2002. Ctte: Support for
developing and analyzing task models for interactive
system design. IEEE Transactions on Software
Engineering, pages 797–813.

Occello A., Joffroy C., Pinna-Déry A.-M., Renevier P. and
Riveill M., 2010. Experiments in Model Driven
Composition of User Interfaces. In 10th IFIP
International Conference on Distributed Applications
and Interoperable Systems (DAIS'10), volume LNCS
6115, pages 98-111, Amsterdam, Netherlands.
Springer-Verlag.

Paternò F., Santoro C., and Spano L. D., 2009. Maria: A
universal, declarative, multiple abstraction level
language for service-oriented applications in
ubiquitous environments. In Computer-Human
Interaction (TOCHI), volume 16.

Pinna-Déry A.-M., Fierstone J., 2003. Component model
and programming: a first step to manage Human
Computer Interaction Adaptation. In Mobile HCI’03,
volume LNCS 2795, pages 456–460, Udine, Italy. L.
Chittaro (Ed.), Springer Verlag.

Tsai W.-T., Huang Q., Elston J., Chen Y., 2008. Service-
oriented user interface modeling and composition. In
ICEBE ’08, pages 21–28, Washington, DC, USA,
IEEE Computer Society.

W3C Working Group. OWL Web Ontology Language
http://www.w3.org/TR/owl-features/, 2004.

W3C Working Group. Resource Description
Framework(RDF). http://www.w3.org/RDF/, 2004.

W3C Working Group. SPARQL Query Language for
RDF. http://www.w3.org/TR/rdf-sparql-query/, 2008.

ONTOCOMPO - An Ontology-based Interactive System to Compose Applications

327

