
ILLUMINATION CORRECTION FOR IMAGE STITCHING

Sascha Klement, Fabian Timm and Erhardt Barth
Institute for Neuro- and Bioinformatics, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
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Abstract: Inhomogeneous illumination occurs in nearly every image acquisition system and can hardly be avoided sim-
ply by improving the quality of the hardware and the optics. Therefore, software solutions are needed to
correct for inhomogeneities, which are particularly visible when combining single images to larger mosaics,
e.g. when wrapping textures onto surfaces. Various methods to remove smoothly varying image gradients
are available, but often produce artifacts at the image boundary. We present a novel correction method for
compensating these artifacts based on the Gaussian pyramid and an appropriate extrapolation of the image
boundary. Our framework provides various extrapolation methods and reduces the illumination correction
error significantly. Moreover, the correction is done in real-time for high-resolution images and is part of an
application for virtual material design.

1 INTRODUCTION

Digital images in many ways suffer from deficiencies
of the hardware that was used for capturing the image,
including sensor, lenses, and illumination. Even with
a perfect sensor, a lens without aberrations and a per-
fectly homogeneous illumination, the image may still
show an intensity falloff towards the corners of the
image due to natural vignetting. In general, the illu-
mination inhomogeneity is much more complex (Ag-
garwal et al., 2001) and cannot be described with a
simple model.

In various applications, such as 3D-texture map-
ping, aerial photography or astronomy, illumination
gradients need to be removed when creating image
mosaics. Without correction, transitions between sin-
gle images would clearly be visible. These artifacts
might mislead further image processing or pattern
recognition systems, and therefore need to be reduced
to a minimum.

The problem of illumination correction has been
addressed by many authors, often with respect to a
specific illumination artifact. Vignetting correction
methods have been proposed e.g. in (Zheng et al.,
2009) and (Kim and Pollefeys, 2008). In mag-
netic resonance imaging a method as been proposed
based on information minimisation where the cor-
rection components are modelled as combinations of
smoothly varying basis functions (Likar et al., 2001).

In face recognition, methods for illumination com-
pensation have been proposed as a preprocessing step
(Adini et al., 1997; Levine et al., 2004), primarily to
find a more invariant face representation. Recently, a
non-parametric shading correction method has been
proposed in (Reyes-Aldasoro, 2009). An overview
of stitching and blending methods can be found in
(Levin et al., 2004).

We aim for an illumination correction method that
not only removes inhomogeneities correctly without
boundary artifacts, but which is also qualified for
real-time applications such as virtual material design.
Thus, we focus on a simple method based on lowpass
filtering using Gaussian pyramids and appropriate im-
age extrapolation to avoid boundary artifacts. First,
we give a short introduction to Gaussian pyramids
to show why boundary artifacts may occur. Then,
we propose a framework that covers various standard
boundary conditions for filtering and mention suitable
extrapolation functions. Finally, we show the perfor-
mance of our method with some practical examples.

2 THE GAUSSIAN PYRAMID

For more than two decades, pyramid methods have
been used for image processing tasks such as image
enhancement, compression, interpolation and extrap-

81
Klement S., Timm F. and Barth E..
ILLUMINATION CORRECTION FOR IMAGE STITCHING.
DOI: 10.5220/0003323300810086
In Proceedings of the International Conference on Imaging Theory and Applications and International Conference on Information Visualization Theory
and Applications (IMAGAPP-2011), pages 81-86
ISBN: 978-989-8425-46-1
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)



olation of missing image data and numerous others
(Ogden et al., 1985).

Given a gray-valued input image with intensity
values G0(x;y) at discrete locations x 2 [0;m�1] and
y 2 [0;n�1] the Gaussian pyramid is an efficient data
structure for spectral decomposition as follows. For
each level i the image Gi(x;y) is lowpass filtered and
downsampled by a factor of two to produce the im-
age Gi+1(x;y). This is commonly referred to as the
Reduce operation.

Gi+1 = Reduce(Gi) = (# 2)(h�Gi) with
(# 2) f (x;y) = f (2x;2y) :

This is done successively up to a certain level l. Then,
the Expand operation is applied successively to get an
image with the same size as G0, but containing only
the frequency components of Gl :

G0i�1 = Expand(Gi) = 4h� ((" 2)Gi) :

The weighting function h is often called the gener-
ating kernel and is commonly chosen to be a 5-by-
5 binomial filter to approximate the Gaussian. This
method for computing the low frequency components
of the input image is obviously more efficient than
direct convolution with a large filter but also more ef-
ficient than using standard FFT (Adelson et al., 1984).

Finally, we need to decide how the image data is
extended when filtering boundary pixels. This is the
critical step where boundary artifacts occur. In the
following, we present a general framework that cov-
ers not only the extrapolation conditions for rectangu-
lar images, but also arbitrary image shapes that occur,
e.g., during image segmentation.

3 BOUNDARY EXTRAPOLATION

Since the filtering operation is defined as

( f �h)(x;y) =
+¥

å
i=�¥

+¥

å
j=�¥

h(i; j) f (x� i;y� j)

the image needs to be extended by two pixels — ei-
ther virtually or explicitly — in each direction when
using 5-by-5 filters. Commonly, the pixels outside
the image are set to a constant value or to the value
of the nearest boundary pixel (replicate boundary) or
are computed by assuming a periodic image (circular
boundary).

Given the input image f (x;y) with x 2 [0;m� 1]
and y 2 [0;n� 1] we seek an extended image f 0(x;y)
with x 2 [�2;m+ 1] and y 2 [�2;n+ 1]. Next, we
define for each pixel (x;y) a set of pixels

Px;y =
��

px
i ; py

i
�	jPx;yj

i=1

that have an influence on the intensity at (x;y) in the
extended image. Finally, the function gPx;y(x;y) de-
fines how to calculate the intensity at (x;y) from the
intensities of the set of pixels Px;y. Thus, we get

f 0(x;y) =

8<: f (x;y) if x 2 [0;m�1]
and y 2 [0;n�1]

gPx;y(x;y) otherwise.
(1)

For convenience, we use g(x;y) instead of gPx;y(x;y).
Next, we show how the standard boundary conditions
— replicate and circular — as well as different ex-
trapolation methods fit into this framework.

3.1 Replicate Boundary

Assuming a replicate boundary, the intensity values of
pixels outside of the image equal those of the nearest
boundary pixel:

P rep
x;y =

(�
px

0 ; py
0

������ px
0 = min(max(x;0);m�1)

py
0 = min(max(y;0);n�1)

)
:

Thus,
��P rep

x;y
�� = 1 for all x and y, and g rep(x;y) =

f (px
0 ; py

0). Analogously, a circular boundary condi-
tion can be defined:

P circ
x;y =

(�
px

0 ; py
0

������ px
0 = x mod m

py
0 = y mod n

)
:

Again, jP circ
x;y j= 1 for all x and y and

gcirc(x;y) = f (px
0 ; py

0) :

3.2 Simple Linear Extrapolation

Both replicate and circular boundary assumptions, are
no valid assumptions when modelling illumination
gradients. In almost all cases of natural illumina-
tion inhomogeneity the intensity gradient will con-
tinue smoothly outside of the image bounds. When
compensating for vignetting, the application of repli-
cate or circular boundary assumptions will overesti-
mate the intensity gradient at the boundary.

A first step towards more realistic boundary as-
sumptions involves simple linear extrapolation of the
intensity values at the boundary. The gradient is
the difference between a boundary pixel and its next
neighbour towards the centre of the image. Mathe-
matically, this can be expressed in the following way:

P lin
x;y =

��
px

0 ; py
0

�
;
�

px
1 ; py

1

�	
with

px
0 = min(max(x;0);m�1)

py
0 = min(max(y;0);n�1)

px
1 = min(max(x;1);m�2)

py
1 = min(max(y;1);n�2) and
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(a) Synthetic input image (natural vignetting).
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(c) Linear extrapolation.
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(d) Polynomial extrapolation.

Figure 1: Illumination correction without texture. The in-
tensity levels of the corrected images (left) are emphasised
with contours. Additionally, an image transition (middle
column, 128 pixels from each side, intensity stretched to
full range) and the intensity across the middle row (right)
are shown. Note the different scales on the y-axis and that
the boundary artifacts are reduced.
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where k � k1 denotes the Manhattan distance. This
modification improves the illumination compensa-
tion significantly and can be extended, e.g., to least-
squares regression with two-dimensional second or-
der polynomials as shown below.

3.3 Least Squares Regression

We define the set Px;y =
��

px
i ; py

i
�	

to contain a 5-by-
5 block of pixels within the image bounds that min-
imises the mean distance to the point (x;y). Then, we

can formulate the following minimisation problem

minb kAb�bk2 with

A =

0B@ px
0 py

0 (px
0)

2 (py
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2 px
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...
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24 py
24 (px

24)
2 (py

24)
2 px

24 py
24 1

1CA
b =
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...

f (px
24; py

24)

1CA :

This optimisation problem is solved by:

b =
�
ATA

��1ATb :

The intensity at (x;y) is approximated by

g(x;y) =
�
x y x2 y2 xy 1

�
�b :

Note that other regression approaches may also be
used. However, the complexity of a regression model,
i.e. the number of parameters to be estimated, should
be low, as illumination gradients are by definition
smooth functions. The choice of the neighbourhood
size is a trade-off between stability and runtime, but,
as our experiments show, 5-by-5 blocks are sufficient
to remove almost all visible boundary artifacts. The
computational complexity of the regression method
is no crucial factor, as extrapolation is done only for
a low number of boundary pixels. So, other opera-
tions such as filtering of the whole image dominate
the complexity of the illumination correction method.

3.4 Arbitrary Boundary Shapes

In some cases, it might be necessary to remove illumi-
nation gradients from images that contain more than
one texture. Here, the different textures should be seg-
mented and then individually corrected. In general,
these regions are non-rectangular, so the above meth-
ods have to be adapted for arbitrary shaped images.
Now, the input image f (x;y) is defined only in certain
regions, i.e. the image contains valid intensities for a
set of pixels I � [0;m�1]� [n�1]. Then, (1) simply
needs to be modified to

f 0(x;y) =
�

f (x;y) if (x;y) 2 I
gPx;y(x;y) otherwise. (2)

In this more general case, it is not feasible to pick Px;y
from a fixed-size neighbourhood of a certain shape,
e.g. when I is very sparse or has a fractal-like bound-
ary. Px;y should rather contain a fixed number of ad-
jacent pixels from within I.
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3.5 The Final Algorithm

So far, we focused on the boundary extrapolation dur-
ing filtering, but the aim is to correct illumination in-
homogeneities in texture images. In the overall algo-
rithm (see Alg. 1), extrapolation of boundary pixels is
used in steps (4) and (13).

Algorithm 1: Illumination correction algorithm.
input : Intensity image f (x;y), pyramid depth l
output: Corrected image f 0(x;y)

1 G0 f ;
2 for i 0 to l do
3 Extend Gi;
4 Extrapolate image Gi; store results in Gi;
5 Filter image, i.e. Gi h�Gi;
6 Crop image Gi to original size;
7 Downsample, i.e. Gi+1 (# 2)(Gi);
8 end
9 G0l  Gl ;

10 for i l down to 1 do
11 Upsample, i.e. G0i�1 (" 2)G0i;
12 Filter image, i.e. G0i�1 h�G0i�1;
13 Extrapolate boundary; store results in G0i�1;
14 Scale image, i.e. Gi�1 4 �Gi�1;
15 end
16 Calculate mean intensity, i.e. f = åx åy f (x;y)

nm ;
17 f 0 f �G00 + f ;

In the downsampling loop, the image is first ex-
tended by two rows and columns in each direction
and then the intensity values of these pixels are deter-
mined by extrapolation. After filtering, the image is
cropped to the original size. In the upsampling loop,
the image is first filtered and then the intensity values
of the first and last two rows and columns are recalcu-
lated from the inner image by extrapolation. Finally,
the low-frequency image is subtracted from the orig-
inal image and the mean intensity of the input image
is added to obtain the final image with the proper in-
tensity level.

4 EXPERIMENTS

The performance of our method is demonstrated in a
series of experiments. We used gray-valued images
with intensity values ranging from 0 to 255. All op-
erations where done in double-precision arithmetic to
avoid discretisation artifacts.

We started with artificial images that contained no
texture but only smooth intensity gradients as they oc-

cur with natural vignetting (see Fig. 1). Perfect illumi-
nation correction would result in a completely homo-
geneous image. Obviously, the choice of the bound-
ary condition does not affect the centre of the image,
which shows a slight gradient even after correction.
At the image boundary the replicate condition is out-
performed by linear and polynomial extrapolation, the
latter yielding an image intensity range of less than 1
at the boundary. Thus, the correction is perfect at the
boundary for typical 8-bit images.

In a second experiment, we measured how bound-
ary artifacts affect the histogram of the intensity val-
ues. Therefore, we calculated the difference be-
tween the histograms of the image boundary (64 pix-
els wide) and the image centre (see Fig. 2). Here,
the replicate condition causes the corrected image to
be too dark at the boundary, i.e. the histogram of the
boundary pixels is shifted towards zero and the his-
togram difference has a maximum for small values.
With linear extrapolation, this effect is dramatically
reduced. Polynomial extrapolation gives only small
additional improvement.

In Fig. 3 some typical textures are depicted as they
occur in virtual material design. The images were ac-
quired with an industrial colour camera (1392�1040
pixels) and show clearly visible intensity falloffs to-
wards the image corners. We applied the above de-
scribed method for each colour channel individually
and compared it to the repetitive boundary condition.
After correction the intensity gradients are no longer
visible, however, other inhomogeneities and artifacts
are still obvious. These range from clearly visible
repetitive structure (see rows 2 and 3), to very subtle
blurring towards the image corners due to lens defi-
ciencies.

5 CONCLUSIONS

We presented a novel method for removing illumina-
tion inhomogeneities from texture images based on
the Gaussian pyramid. With standard filtering using
the replicate or circular boundary condition, the re-
sulting images will show artifacts at the image bor-
ders — mostly visible when stitching images together.
These artifacts can be avoided by different types of
boundary extrapolation. The framework is not lim-
ited to linear or polynomial extrapolation, however, it
seems unnecessary to use more complex functions.

The Gaussian pyramid provides a fast way to
model arbitrary illumination gradients. All calcula-
tions can be done in real-time — the proposed bound-
ary extrapolation techniques do not cause a significant
performance drop due to their simplicity and the low
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(a) Texture. (b) Gradient. (c) Combined.
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(d) Replicate condition. (e) Linear extrapolation. (f) Polynomial extrapolation.

Figure 2: Boundary artifacts in image mosaics. The top row shows a texture (a), a simulated illumination gradient (b)
and the combination of both (c). The middle row shows the correction results for three methods as 2-by-2 image mosaics.
The replicate condition (d) produces dark areas at the image transitions. With linear (e) or polynomial extrapolation (f) the
transitions are almost invisible. The difference between the histograms of centre and boundary pixel intensities (bottom)
verifies this observation.

number of image boundary pixels. For colour images,
we apply the illumination correction for each channel
separately. On current PCs, we reach 20 frames per
second for SXGA colour images (1280�1024 px).

Finally, we shall discuss the role of illumination
correction in texture synthesis as it is used in virtual
material design. Besides intensity gradients, other im-
age acquisition artifacts, such as blurred image re-
gions, reflexions, or saturation may occur. All of
them will cause the results of naı̈ve image stitching
to look repetitive and unrealistic, especially at the im-
age borders where the textures are non-continuous.
One solution would be to enhance the original image
and remove as many artifacts as possible. However, a
texture synthesis approach as proposed by Efros and
Freeman (Efros and Freeman, 2001) could avoid all
the above image acquisition artifacts by synthesising
larger textures from smaller blocks from the origi-

nal image. Each new block is chosen to optimise
an overlapping region and, finally, the blockiness of
the boundary is reduced by finding the minimum cost
path within the overlapping region. In this scenario,
illumination correction is again a fundamental prepro-
cessing step to avoid intensity gradients. Thus, our
method, in connection with the above texture synthe-
sis, results in natural looking textures of arbitrary size
and shape.
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Figure 3: Real world colour textures. The performance of the illumination correction is shown for some real-world textured
materials (from top to bottom: paper towel, green linoleum, wood) in 3-by-3 image mosaics. Without illumination correction
(left column) vignetting is most obvious. The middle column shows image mosaics after correction with a replicate boundary
condition. Obviously, the correction using polynomial boundary extrapolation (right column) gives the best results.
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