
A Grammatical View of Language Evolution

Gemma Bel-Enguix1, Henning Christiansen2 and M. Dolores Jiménez-López1

1Research Group on Mathematical Linguistics, Universitat Rovira i Virgili
Avd. Catalunya 35, 43002 Tarragona, Spain

2Research Group on Programming, Logic and Intelligent Systems
Roskilde University, P.O.Box 260, DK-4000 Roskilde, Denmark

Abstract. Language evolves gradually through its use: over time, new forms
come into fashion and others become obsolete. While traditionally a grammar
provides a snapshot of an individual’s or a society’s linguistic competence at a
given point in time, our aim is to extend grammars to incorporate competences
related to evolution. This paper shows how language evolution can be modeled
using Adaptable Grammars, which may be defined as logically based transfor-
mational grammars in which the grammar itself may be affected in a derivation
step.

1 Introduction

During the last decade, approaches to natural language have undergone a deep transfor-
mation thanks to a new interdisciplinary paradigm that integrates artificial intelligence,
physics, evolutionary biology and computer science [1, 2]. Under such influences, a new
interest has arisen for diachronic change of natural language, based on the understand-
ing of language as a complex adaptive system [3] and evolutionary system [4]. This
interest is supported by computational models that provide simulations to understand
the dynamics of human language and its adaptation to the environment [5]. However,
grammatical and formal approaches, as we suggest in the present paper, are still to be
applied. The main problems approached in language evolution are the origins and emer-
gence of language [6], language acquisition [2], and language change [7]. Moreover, in
the broad area of formal languages, there exists from the sixties a growing interest in
grammatical inference or grammar induction [8, 9]. This is a specialized subfield of
machine learning that deals with the learning of formal languages from a set of data.
Grammar induction refers, therefore, to the process of learning grammars and languages
from a given corpora. In order to solve a grammar induction problem we require, on one
hand, a teacher that provides data to a learner, and on the other hand, a learner that from
that data must identify the underlying language. In the field of grammatical inference,
it is worth noting the contribution of [10], who introduces algorithms for inferring re-
versible languages from positive data, [11] who developed a grammar induction method
that produces stochastic context-free grammars, and [12] presenting an algorithm that
generates grammars from positive and negative examples in an incremental way; the
relation between this and our work is discussed in more details below.

Bel-Enguix G., Christiansen H. and Dolores Jiménez-López M..
A Grammatical View of Language Evolution.
DOI: 10.5220/0003309200570066
In Proceedings of the 1st International Workshop on AI Methods for Interdisciplinary Research in Language and Biology (BILC-2011), pages 57-66
ISBN: 978-989-8425-42-3
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)

Our approach is related to both natural language evolution and grammatical infer-
ence. Roughly speaking, we search for a mechanism able to infer the grammar of a
system that is constantly changing. We apply a logically based transformational gram-
mar formalism in which the grammar itself may be affected in aderivation step. We
intend to model the linguistic competences of a silent listener having the reflective ca-
pability of being able to inspect and revise its competencesaccording to current usages.
In contrast to some of the models mentioned above, it is not based on neither artificial
intelligence nor simulation of communicating agents. Instead we propose a strictly for-
mal approach to the problem of language evolution, showing how a grammar can adapt
to new words and ways of building phrases without any external means.

In order to reach this objective, we apply a formalism calledAdaptable Grammars,
based on an earlier proposal of [13–15]. This grammar formalism was invented in the
1980ies, originally for describing phenomena in software systems and programming
languages. Later, it has been known under the name Christiansen grammars in work
by [16, 17]. It has been applied to formal linguistics only recently [18]. The work of [16]
have applied these grammars for grammatical, evolutionaryprogramming; the authors
motivate their approach by the observation that with such grammars they can do with
shorter derivations of target programs.

In [18], such grammars are demonstrated to capture standardnon-context-free lan-
guages used in the literature, that represent the central natural language properties of
reduplication, crossed dependencies, andmultiple agreements. In the present work, we
take this a step further considering language evolution. A surprisingly simple imple-
mentation of Adaptable Grammars in Prolog was shown in [18],which, with a few
extensions, have been used for the experiments shown in the present paper.

The Adaptive Grammars of the present paper, explained as extensions to Definite
Clause Grammars (DCGs) [19], are inherently related to Abductive Logic Program-
ming (ALP); see, e.g., [21] for an overview. Normally, the process of finding new rules
(logical, grammatical, ...) is associated with induction and, in our context, Inductive
Logic Programming (ILP); see, e.g., [22] for overview. ILP differs from ALP by con-
sidering a larger set of observations, and use powerful machine learning techniques,
including generalization steps and statistics to produce rules that cover as many cases
as possible. The work by [12] can be seen as an algorithmic counterpart to our work.
They describe an algorithm for induction of context free grammars which is incremen-
tal in the sense that it takes one sample of a time and presentsa well-defined grammar
after each step. It is explained as an extension of the classical CYK parsing algorithm
that it works bottom-up in a breadth-first way. In case it gives up, an induction step
inspects the store of unreduced items to suggest reductionswhich then are collected
to new grammar rules. Obviously such methods must be tested out for any practical
application of Adaptable Grammars for larger corpora, although they have not, to our
knowledge, been tested for natural language corpora.

In section 2 we give an introduction to adaptable grammars and indicate the fun-
damental principles for how they may be used for describing language evolution. Sec-
tion 3 introduces additional notation, which is applied in section 4 that demonstrates
grammars for evolution in simplified natural language setting. Finally, section 5 gives
some concluding remarks and ideas for future work.

58

2 Adaptable Grammars or Christiansen Grammars

A grammar formalism isadaptablewhen it allows a grammar to mutate dynamically ac-
cording to context. Thus, the selection of available grammar rules may change through-
out a discourse and that the formalism must provide a way to specify these grammar
changes. Intuitively, the notion of discourse may refer also to linguistic samples col-
lected over centuries, or even longer when language development is seen in a biological
evolution perspective.We may compare with DCGswhich encode context in dynami-
cally changing attributes that determine the set of available context-free instances of a
fixed set of parameterized rules. Adaptable grammars go one step further, treating the
current grammar itself as an attribute that can be elaborated in arbitrary ways.

We have developed an adaptable version of the Prolog based DCGs, which give sev-
eral advantages: they provide a direct representation of grammar rules as data and an-
ticipate straightforward implementations based on well-understood meta-interpretation
techniques (see, e.g., [20]). The terminology of logic programs and first-order logic is
assumed, includinglogical variables, termsand their(ground) instances. We use the
notion of adenotation function[[−]], which is a partial mapping from ground terms into
grammars. At this level, we do not need to specify the actual denotation function. The
formalism includes also a reification of syntactic derivation; this is merely a practical
device which is not essential for grammar adaptation.

Definition 1. An adaptable grammaris a quintuple〈Σ, N, Π, [[−]], R〉 whereΣ is a
finitealphabetof terminals, N a set ofnonterminalswhich are function symbols of arity
at least1, Π a logic program,[[−]] thedenotation function, andR is a set of grammar
rules (below). As a convenient usage, the notion of a nonterminal applies also for a
term whose top symbol belongs toN .

A nonterminal has a distinguished argument called itsgrammar argument. We dis-
tinguishreflexive predicatesof the formsderiv(N, S) andnderiv(N, S), whereN is a
nonterminal andS a term. Agrammar ruleis of the form lhs → rhs, where lhs is a
nonterminal and rhs a finite sequence of terminal and nonterminal symbols, reflexive
predicates, and first-order predicates ofΠ .

The meaning ofderiv(N, S) (definition 2 below) is that a stringS is derivable from
the nonterminalN ; nderiv(N, S) represents the opposite, namely that no derivation is
possible. The use of an explicit denotation function eliminates any potential confusion
of variables at the different levels [20]. The program componentΠ is included for con-
venience only, as it can be embedded as a set of grammar rules producing the empty
string. For clarity, the grammar argument is moved outside the standard parentheses
and attach by a hyphen, e.g., instead ofn(x, y, G), we write n(x, y)-G whenn is a
nonterminal of arity 3 with grammar argumentG. The reflexive predicates represent
a version of the general derivation relation, limited to a non-adaptable fragment. To
this end, we define astatic ruleas one without reflexive predicates and in which all
grammar arguments coincide with the same logical variable e.g.,p-G → q-G, but not
p-G1 → {t(G1, G2)}, q-G2. Thestatic restrictionof a grammarG, writtenσ(G), co-
incides withG except that any non-static rule is removed. The following simultaneous
definition of derivation and meaning of reflexive predicatesis sound as the latter are

59

characterized by derivation in statically restricted grammars that do not it turn contain
reflexive predicates.

Definition 2. A production instanceof ruler of 〈Σ, N, Π, [[−]], R〉 is found by

1. selecting a ground instancer′ of r in which any reflexive predicate is satisfied
(def. below) andΠ ⊢ A for any other logical predicateA in r′,

2. removing any such predicates fromr′, so that only grammar symbols remain.

Wheneverα(N -G)γ is a sequence of ground grammar symbols andN -G → β a pro-
duction instance of a rule in[[G]], the followingderivation stepapplies,

α(N -G)γ ⇒ αβγ.

Thederivation relation⇒∗ refers to the reflexive, transitive closure of⇒.
A ground reflexive predicatederiv(A-G, S) is satisfiedwheneverσ[[G]] ⇒∗ S;

nderiv(A-G, S) is satisfied whenderiv(A-G, S) is not satisfied. Thelanguagegiven
by a ground nonterminalN-G is the set of terminal stringsS with N -G ⇒∗ S.

The available implementation in Prolog can analyze text in terms of queries posed as
follows, whereG represents a grammar,

?- parse(N(Atts)-G,text).

The obtained answer may be either 1) a substitution for variables inAtts under which
the derivation succeeds, or 2) “no” if parsing is not possible.

Example 1.General grammar induction is not the main focus of the present paper, but
we can use it to illustrate the power of adaptable grammars. Grammar induction is the
problem of finding a good grammar that can recognize a given discourse. This can be
specified in terms of an adaptable grammar as shown in figure 1.The predicate good-
grammar specifies a class of grammars in which the induced grammar is to be found.
Thus the rule specifies that variableGnew should be instantiated to a grammar that
makes it possible to parse the given input as discourse.

〈Σ, N0, Π0, [[−]], R0〉, where

N0 = {induce/2}

Π0 = {good-grammar(G):- . . . , . . .}

R0 = {induce(Gnew)-G →

{good-grammar(Gnew)},

discourse-Gnew}

Fig. 1. Grammar induction formulated as an adaptable grammar.

We do not intend to present an implementation capable of handling example 1; this
would require more advanced techniques (e.g., of InductiveLogic Programming) that
those we introduce below for an incremental adaptation. Forgrammars with explicit
synthesis of new grammar rules, it is straightforward to extend a general DCG parser
written in Prolog for adaptable grammars, cf. [18]; the following “constructive” gram-
mar represents the essence of our approach to characterize language evolution.

60

Example 2.Consider sequences of letters in which the lettera is the only one known
by the initial grammar. Instead of failing for an unknown letter, a new rule should
be added. LetGram1 = 〈Σ1, N1, ∅, [[−]]1, R1〉 be a grammar withΣ = {a, b, . . .},
N1 = {d/2, s/2} (for discourse andsentence) andR1 the rules shown in figure 2; the
denotation function[[−]]1 represents a grammar as a list of terms for each rule; each
symbol stands for itself except variables whereX̂ denotes variableX . The reflexive
predicate in the last rule ensures that new rules are only considered when necessary.
The answer to a query?- parse(d(G)-Gram1, [a, b, c]) should provide a value for
G that denotes a grammar whose static restriction is isomorphic to a CFG for sequences
of exactly the lettersa, b andc.

d(G)-G → []

d(G2)-G → s(G1)-G, d(G2)-G1

s(G)-G → [a]

s(G1)-G → [X], nderiv(s()-G, [X]), {G1 = [(s(Ĝ))-Ĝ → [X])|G]}

Fig. 2. The rules of an adaptable grammar for a single letter sentence language.

3 Adaptable Grammars for Language Evolution

A specialized notation for Adaptable Grammars has been implemented in Prolog for
experiments with language evolution; the implementation is a straightforward extension
of the 10 line Prolog program given in [18] and is not described further.

Grammars are given a more conventional appearance, having the grammars argu-
ments implicit, so that language changes appear as side-effect on a “current” grammar.
A weighting of each rule is introduced for measuring how recently it has been applied.
With this we can model both how new forms come into fashion andobsolete forms dis-
appear from the language user’s memory. Furthermore, the grammar notation allows to
indicate which syntactic categories can be changed and which can be used in the right
hand side of new rules. The new notation is introduced by the following example.

(structural categories --d) //
(lexical categories ++s) //
[(d --> []):null,
(d --> s, *forget, d):null,
(s --> [a]):1,
(s --> [X], d \=> [X], +(s-->[X]):1):null]

Fig. 3. Adaptable grammar for a single letter sentence with rule weights.

Example 3.The grammar of figure 3 is identical to the one of example 2, with the dif-
ference that some rules that have not been used, may be removed. A grammar has three
parts, structural and lexical nonterminals and the set of rules. The distinction between
structural and lexical categories (or nonterminals) may beutilized in more advanced
patterns for creation of new rules and has no influence for this grammar. The pluses and
minuses in front of a nonterminal determine how it may be usedin when forming new

61

rules. The first sign determines whether it can appear in the left-hand side of new rules,
i.e., whether or not this category can be extended with new rules; the second whether
the nonterminal can be applied in right-hand sides in new rules. The “:n” is the current
weight assigned to each rule; the special valuenull indicates that the given rule is not
degraded by not being used. The*forget operation degrades each rule (with non null
weight) multiplying its weight by0.99, and deleting those with a weight< 0.5.3 New
rules are added to the current grammar using the prefix plus operator as shown in the
last rule. Finally, reflexive predicatesderivandnderivare represented by the operators
=> and\=>, referring to (non-) derivation in the current grammar.

When the grammar of example 3 is applied for the discourse[a,b], the final grammar
has rules for sentences ‘a’ and ‘b’; for [a,b,c,b,c,. . .,b,c] with ‘b,c’ repeated
sufficiently many times, there will be rules ‘b’ and ‘c’ for but not for ‘a’ .

For the examples below, the distinction between lexical andstructural categories is
made as follows. A lexical categoryC allows only rules of the formC-->[Terminal]
that we refer to as lexical rules. Structural categories canhave rules whose right-hand
side is composed of one or more nonterminals.

4 Modeling Language Evolution by Adaptable Grammars

Example 3 above demonstrated the overall principles of how agrammar may adapt
to current usages. Here we show two linguistically inspiredexamples. The grammar
shown in figure 4 shows how new rules can created be by a naive oracle to cope with
new usages in very simple Catalan sentences. The period symbol serves here as a unique
demarkation of where a sentence can end, and thus reduces thesearch space drastically.
We allow, for simplicity of writing, that structural rules of the initial grammar may
contain terminals (such as “.”), although this is not allowed in automatically generated
rules. Nonterminald stands for discourse,p for periods for sentence andto period
for arbitrary sequences until and including the period symbol. The device*new rules
generates rules in a nondeterministic fashion according tothe following heuristics.4

– A first attempt is made adding lexical rules only.
– If this is not sufficient, combinations of structural and (perhaps) lexical rules are

tried out.
– Only a limited number of rules can be introduced in one go and only a limited

number of nonterminals are allowed in the right-hand side ofa structural rule; here
both are arbitrarily limited to a maximum of two.

– Grammar extensions are not allowed to introduce left-recursion.5

– A rule already in the grammar will not be created again.
– Any word belongs to at most one lexical category (admittedlytoo simple for real-

istic applications).

3 The indicated degradation factor and threshold are arbitrary and should of course be refined
for any practical applications.

4 At the level of implementation, our Prolog implementation works in a generate-and-test man-
ner,*new rules generating candidates until one is accepted byp=>Tokens.

5 Due the inherent top-down parsing strategy, a left recursive grammar will lead to infinite loops.

62

(structural categories --d, +-s, ++np, ++vp) //
(lexical categories ++a, ++pr, ++n, ++v) //
[(np --> pr):1,
(np --> a, n):1,
(pr --> [ella]):1,
(a --> [una]):1,
(n --> [poma]):1,
(v --> [menja]):1,
(vp --> v):1,
(vp --> v, np):1,
(s --> np, vp):1,
(d --> p,d):null,
(d --> []):null,
(p --> s,[’.’],*forget):null,
(p --> to_period(Tokens), period \=> Tokens,

*new_rules(Tokens,R), +R, p => Tokens):null,
(to_period([T|Ts]) --> [T], {T \= ’.’}, to_period(Ts)):null,
(to_period([’.’]) --> [’.’]):null]

Fig. 4. An adaptable grammar for a simple language evolution problem.

Sentence(s) New rule(s)

(1) ella menja una poma. (no new rules)
(2) blabla menja una poma. pr-->[blabla]
(3) la blabla menja una poma. a-->[la]

n-->[blabla]
(4) menja una poma. s-->vp
(5) ella una poma menja. vp-->np,vp
(6) menja. s-->vp
(7) beu. s-->a

a-->[beu]
(8) menja. beu. s-->vp

v-->[beu]

Fig. 5. Sample sentences and discourse plus the rules created to accommodation.

In the section for future work below, we discuss possible improvements of this strategy.
Figure 5 shows the new rules that are created for sample sentences that contain new
words and usages. Example (1) illustrates that no rules are generated when the existing
ones are sufficient; (2–4) shows examples of new usages that are accommodated by
means of the rules that we might expect; in (5), a new structural rule is created, which
may or may not be the desired one; in (6), the perfect rule for anew type of sentences
is created, whereas in (7), a new sort of sentence consistingof one new word gener-
ates some unnatural rules. We may relate the problem in (7) tothe observation that any
competent and reflexive language user may have difficulties when too many novelties
are introduced at the same time; here both a new word and new sentence form is intro-
duced in a one word sentence. Sample (8) is perhaps the most interesting: it analyzes a
discourse consisting of two sentences, the first one shows a new sentence form that is
accommodated by the rules-->vp, which is feasible asmenja is known to be a verb;

63

in the next sentence this rule is applied when accommodatingthe new wordbeu which
is now classified in an intuitively correct way.

For investigating the long-term behavior of the suggested adaptation mechanism,
an artificial corpus of 300 sentences has been generated in a probabilistic way from
two grammars, one (a) for simplistic English sentences and another (b) for a kind
of Yoda-like German. In the beginning of the corpus, only rules from grammar (a)
can be used, and gradually rules of (b) sneaks and replaces (a) via changing proba-
bilities so that only rules of (b) are used at the end. For example, grammar (a) al-
lows sentences such as[peter,and, mary,likes,pluto], grammar (b) for
example[peter,und,mary,pluto,liebst].6 Midway, we find hybrids such as
[peter,und,mary,liebst,pluto,and,mary]and[pluto,peter,and,
mary,liebst]Grammar (a) is then given as Adaptable Grammar; figure 6 showsthe
language specific rules, and the those for periods,p, andto period are as in figure 4;
the lexical category of proper namespn are defined to be fixed throughout the discourse.
The final grammar resulting from the successive adaptationsis shown in figure 7.

s --> np,vp vp --> v,np pn --> [mary]
np --> pn vp --> v pn --> [pluto]
np --> pn,more_np con --> [and] v --> [eats]
more_np --> con,np pn --> [peter] v --> [likes]

Fig. 6. Simplistic English grammar prior to adaptation.

s --> np,vp vp --> np,vp pn --> [mary]
np --> pn vp --> v pn --> [pluto]
np --> pn,more_np con --> [und] v --> [liebst]
more_np --> con,np pn --> [peter] v --> [isst]

Fig. 7. The result of adapting the grammar of fig. 6 via 300 sentences to Simplistic Yoda-like
German.

The verbs and the conjunctions have been replaced by German ones as expected,
and the change of order of object and verb is accommodated by the replacement of
vp-->v,np byvp-->np,vp. The last one of these rules is intuitively not the desired
one as it is too general; the best rule would, of course, bevp-->np,v.

5 Conclusions and Future Work

Language evolution is an aspect of natural language that is especially difficult to model
by means of formal grammars. We have approached it by adaptable grammars, that can
evolve during the processing and modify their own rules, changing gradually in order
to adapt themselves to the evolving language.

If the main ideas collected here are shown to be expressive enough to be developed,
then a new system should be designed taking into account manyaspects that have been
dismissed up to now, in order to approach language evolutionin a more realistic way.
We characterize language evolution from the viewpoint of a passive listener, but it seems

6 As it appears, we ignore inflection for singular and plural; this is, however, trivial to add.

64

possible to apply these ideas also in the setting of communicating agents. An agent
may test a proposed grammar extension by generating sentences that are presented to
other agents for evaluation (a pattern often observed between children and parents). The
multi-agent perspective may also be used to model how different languages develop and
influence each other over time.

Summing up, the principle of having the grammar dynamicallymodifying or adapt-
ing itself along a discourse may be seen as a universal mechanism that may be incorpo-
rated in other grammatical frameworks as well. The advantage is that original and novel
language constructs are represented in an equal manner so that, at any stage, the current
grammar may be read out. In most traditional grammar formalisms, that are capable of
expressing some context-dependencies, this need to be modeled by highly over-general
rules whose application is controlled by an encoding of the linguistic context.

We are considering to improve the adapt-to-one-sentence-at-a-timeprinciple by giv-
ing preference to least general rules when adapting to a single sentence, complemented
by a generalization step that groups often used rules into a more general rule when pos-
sible and judged suitable. It will also be interesting to apply the principle of Adaptable
Grammars to see if it can reveal new bits of knowledge of how different languages may
descent from each other or influence each other. There may be other and much faster
evolution processes that also may be interesting to characterize, for example to trace the
spreading of topics in electronic and social networks.

Acknowledgements

This work is supported by the Spanish Ministry of Science andEducation, project
MTM2007-63422, and the NABIIT committee under the Danish Strategic Research
Council, project “Logic-statistic modelling and analysisof biological sequence data”.

References

1. Christiansen, M. H., Kirby, S., eds.: Language Evolution: The States of the Art. Oxford
University Press (2003)

2. Briscoe, E. J., ed.: Linguistic Evolution through Language Acquisition: Formal and Compu-
tational Models. Cambridge University Press (2002)

3. Steels, L.: Language as a complex adaptive system. Volume1917 of Lecture Notes in
Computer Science., Springer (2000) 17–26

4. Brighton, H., Smith, K., Kirby, S.: Language as an evolutionary system. Physics of Life
Reviews 2 (2005) 177–226

5. Cangelosi, A., Parisi, D., eds.: Simulating the evolution of language. Springer-Verlag (2002)
6. Knight, C., Hurford, J., Studdert-Kennedy, M., eds.: TheEvolutionary Emergence of Lan-

guage: Social Function and the Origins of Linguistic Form. Cambridge University Press
(2000)

7. Baxter, G. J., Blythe, R. A., Croft, W., McKane, A. J.: Utterance selection model of language
change. Physical Review E 73 (2006) 046118

8. Gold, M.: Language identification in the limit. Information and Control 10 (1967) 447–474
9. Clark, A., Coste, F., Miclet, L., eds.: Grammatical Inference: Algorithms and Applications,

Volume 5278 of Lecture Notes in Computer Science, Springer (2008)

65

10. Angluin, D.: Inference of reversible languages. Journal of the Association for computing
Machinery 29 (1982) 741–765

11. Kurihara, K., Sato, T.: Variational bayesian grammar induction for natural language. In
Sakakibara, Y., Kobayashi, S., Sato, K., Nishino, T., Tomita, E., eds.: ICGI. Volume 4201 of
Lecture Notes in Computer Science., Springer (2006) 84–96

12. Nakamura, K., Matsumoto, M.: Incremental learning of context free grammars bsed on
bottom-up parsing and search. Pattern Recognition 38 (2005) 1384–1392

13. Christiansen, H.: Syntax, semantics, and implementation strategies for programming lan-
guages with powerful abstraction mechanisms. In: 18th Hawaii International Conference on
System Sciences. Volume 2. (1985) 57–66

14. Christiansen, H.: The syntax and semantics of extensible languages.Datalogiske skrifter14
(Tech. rep). Computer Science Section, Roskilde University, Denmark (1988)

15. Christiansen, H.: A survey of adaptable grammars. SIGPLAN Notices 25 (1990) 35–44
16. Ortega, A., de la Cruz, M., Alfonseca, M.: Christiansen grammar evolution: Grammatical

evolution with semantics. IEEE Trans. Evolutionary Computation 11 (2007) 77–90
17. de la Cruz Echeandı́a, M., de la Puente, A.O.: A christiansen grammar for universal splicing

systems. Volume 5601 of Lecture Notes in Computer Science.,Springer (2009) 336–345
18. Christiansen, H.: Adaptable grammars for non-context-free languages. In Cabestany, J.,

Hernández, F.S., Prieto, A., Corchado, J.M., eds.: IWANN (1). Volume 5517 of Lecture
Notes in Computer Science., Springer (2009) 488–495

19. Pereira, F. C. N., Warren, D. H. D.: Definite clause grammars for language analysis—A
survey of the formalism and a comparison with augmented transition networks. Artificial
Intelligence 13 (1980) 231–278

20. Hill, P. M., Gallagher, J.: Meta-programming in logic programming. In: Handbook of Logic
in Artificial Intelligence and Logic Programming, Oxford Science Publications, Oxford Uni-
versity Press (1994) 421–497

21. Kakas, A., Kowalski, R., Toni, F.: The role of abduction in logic programming. Handbook of
Logic in Artificial Intelligence and Logic Programming, vol. 5, Gabbay, D.M, Hogger, C.J.,
Robinson, J.A., (eds.), Oxford University Press (1998) 235–324

22. Lavrac, N., Dzeroski, S.: Inductive Logic Programming:Techniques and Applications. Ellis
Horwood, New York (1994)

66

