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Abstract. Agent-based Modeling (ABM), a novel computational modeling pa-
radigm, is the modeling of phenomena as dynamical systems of interacting 
agents. Here, we apply this methodology for designing cognitive agents that are 
allowed to perform categorization process of input training items. The internal 
agent structure, as in presented previously brainstorming algorithm, and it is 
equipped with the set of basic machine learning, or clustering algorithms, 
which allow it for constructing prototypes of categories. Agent links prototypi-
cal categories with the subsets of training objects (so called prototypes for a 
category) during the simulation time. The equilibration process is described 
here using the mean-field theory, and fully connected cellular automata net-
work of different categories. The individual outcomes of clustering, or machine 
learning algorithms are combined in order to determine the most effective parti-
tioning of a given training data into the set of distinct categories. The dynamics 
of cellular automata network simulates the higher level of information integra-
tion acquired from repetitive learning trials. The final categorization of training 
objects is therefore consistent with equilibrium state of the complex system of 
linked and interacting machine learning methods, each representing different 
category. The proposed cognitive agent is the first autonomous cognitive sys-
tem that is able to build the classification system for given perceptual informa-
tion using ensemble of machine learning algorithms. 

1 Introduction 

The one of main challenges in cognitive sciences is the symbol-grounding problem. It 
is originating in long term discussions how to build the cognitive representation of the 
environment (so called world) using some internal states of intelligent individual. The 
relation between a symbol, a real-world object, and a concept applicable to the object 
is typically implemented using semiotic triad, which links a subset of objects, the 
concept for a category, and a symbol that represents this category. The underlying 
mapping between the concept and the object is performed using a method, i.e. a pro-
cedure to decide whether the concept applies to an object or not. The idea of semiotic 
triad was first introduced by Peirce (1839-1914) as a method for linking things and 
symbols used to describe them. Further work by Searle [1] supported idea that semio-
tics is not only theory of language, but also a theory of production of meaning. The 
main driving force behind the development of semiotics is a practical purpose. We 
use things or events as signs that facilitate the navigation in complexity of life.  
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We apply similar approach to study the categorization process within Agent-
Based Modeling (ABM). The ABM method extends the cellular automata-like models 
[2], to more complex computational setups, for example by introducing the asyn-
chronous interactions between agents. Agent is defined here as a subsystem distin-
guished from its environment by some functional characteristics. Moreover, it has 
some ability to perform an autonomic action, i.e. dynamical interaction with sur-
rounding world without external control. The presently used agent models are ranging 
from simple ones (simulations of a disease spreadout, predator-prey systems), to 
complex ones (insects colonies, immune responses modeling, financial markets etc.).  
Typically ABM simulations require an explicit representation of the space, on which 
agents are located. The most important step in the definition of an ABM is to intro-
duce a set of rules in order to describe the changes of system’s state. 

Here, we use specific type of an agent, namely cognitive agents (CA) that are 
equipped with brainstorming algorithm, i.e. several clustering, or machine learning 
algorithms, which are running in parallel. The complex internal structure allows to 
perform classification tasks on training objects, and storing learned knowledge in 
terms of predictive models that can be further applied to unknown cases. This mimics 
the ability of natural cognitive systems (for example neuronal system, living cell, or 
human brain) to deal with incoming information. We need such advanced logic build 
into the agent model in order to construct the symbolic representation of external 
world objects in terms of symbols that represent grounded categories of training data. 

Agent models the grounding process by training its internal learning method to 
map a subset of observed objects into single category. The “name” of this category 
(i.e. the sign denoting it in internal language of an agent) is a symbol representing it. 
The learned predictive model is the proposed concept that describes the category, and 
it is applicable to objects in order to assign them with a proper symbol. The semiotic 
triad first proposed by Peirce is therefore modeled on the level of single agent within 
Agent Based Modelling paradigm. The set of semiotic triads representing several 
categories (or symbols) builds up the semiotic network. In the case of simple cogni-
tive tasks, i.e. when either a set of objects is not large, or a number of categories dis-
tinguishing those objects is small. 

Summarizing, cognitive agents can be used as a model complex system for study-
ing the details of categorization process, the emergent phenomena, patterns learning, 
selection of rules, or in general knowledge discovery. We provide here the founda-
tions of proposed cognitive ABM framework, and initial computational results. The 
simulations are performed for given training information randomly selected from 
available training data, agent during the course of simulation is building its semiotic 
network of input training data, linking proposed categories with selection of training 
objects. The results are compared with categorization studies performed within last 
decade, especially in the field of psycholinguistics. Perspective applications of this 
approach are also sketched. They could include modeling of perceptual grounding of 
symbols using text mining techniques, context information, and visual or auditory 
sensor data categorization in robotics. 
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2 Design of Cognitive Agent 

Our model of categorization process is based on agent based modeling (ABM) para-
digm known from many applications in informatics [3], life [4-11]and social sciences 
[12]. Our present model extends previous results, where probabilistic cellular automa-
ta (CA) model of opinion formation in groups of individuals was simulated by Le-
wenstein et al. [13] using social impact theory introduced by Latane [14, 15]. The 
intermittent behavior was observed with a variety of stationary states with a well-
localized and dynamically stable clusters (domains) of individuals, who share minori-
ty opinions [13]. In the social impact theory a group of N agents influence of a given 
agent opinion, where the level of influence depends on three factors. First, the social 
strengths of all members of the whole group; secondly, their social distance from the 
selected individual; and finally their total number N. Kohring [16, 17] extended La-
tane's theory to include learning. Plewczynski [18, 19] solved analytically the model 
in the continuous limit and the Cartesian space with learning rules. Hołyst et al. per-
formed numerical simulations in simplified geometries, also provided the mean-field 
approximation of the social impact theory [20-23].  

Here, I present an application of agent based modeling in simulating the process 
of categories formation. Each agent (so called “cognitive agent”) is equipped with a 
machine learning, or clustering algorithm. The mathematical method allow them to 
classify training examples based on their features, find differences between them and 
categorize them into separate, or overlapping categories. Moreover, the “cognitive 
interaction” between two agents is proposed by introducing guessing games, which 
allow for coupling of categories not only by sharing the same training data, but also 
by exchanging proposed models outcomes. The topology of a network of interactions 
between agents is defining their “cognitive space” (for example the Cartesian space, 
fully connected, nearest neighbors coupling, or hierarchical geometries). The final 
stable semiotic landscape is defined here as the stationary state for such population of 
agents. 

The agent based model of category formation is based on several assumptions: 

2.1 Discrete Categories 

We assume that training data can be described in the form of several distinct or over-
lapping categories. In the first case, the crisp clustering can be applied and training 
examples can be divided into separate groups of objects using their features. In the 
second case, the full separation cannot be performed, and fuzzy clustering techniques 
have to be applied in order to assign objects to the proposed categories. Both cluster-
ing techniques are optimized using some internal parameters, or validity indices. In 
some cases, the multiobjective optimization can be used, which simultaneously opti-
mizes two internal fuzzy cluster validity indices to yield a set of Pareto-optimal clus-
tering solutions. In the case of machine learning algorithms we deal with binary class 
prediction (only two categories are described), or a set of distinct categories, each 
described by different machine learning model. Here, internal parameters of ML 
algorithms may seriously impact the performance of each method, therefore the di-
versity between agents is achieved. Our population of agents consists from N cogni-
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tive agents. When a given training or testing object is presented to each agent, its 
internal state is described holds one of several distinct categories (from 1 up to k, 
where k is the number of categories constructed by an agent). These states are binary 

1,..,i kσ = , similarly to Ising model of ferromagnet. In most cases the machine learn-
ing algorithms that can model those agents, such as support vector machines, decision 
trees, trend vectors, artificial neural networks, random forest, predict two classes for 
incoming data, based on previous experience in the form of trained models. The pre-
diction of an agent answers single question: is a query data contained in class A 
(“YES”), or it is different from items gathered in this class (“NO”). 

2.2 Disorder and Random Strength Parameter 

Each learner is characterized by two random parameters: persuasiveness 
i

p  and sup-
portiveness 

is  that describe how individual agent interact with others. Persuasiveness 
describes how effectively the individual state of agent is propagated to neighboring 
agents, whereas supportiveness represent self-supportiveness of single agent. In 
present work I assume that influential agents has high self-esteem, what is supported 
by the fact that highly effective learners should have high impact on others in meta-
learning procedure. For example, we can select ( ),

i
p f precision i=  and ( ),

i
s f recall i=  

in the case where agents are modeled as single machine learning procedures. In gen-
eral the individual differences between agents are described as random variables with 
a probability density ( )ˆ ,p p si i= , with mean values pip

N
∑=  and sis

N
∑= . Similarly 

to the social influence theory, the quality of predictor in some way affect its influence 
strength, when the final optimization of meta-learning consensus is done.  

In the case of meta-learning procedure the persuasiveness p j  represents here the 
ability of learning agent j to persuade agents who hold the opposite state to switch to 
having the same state as j. The supportiveness js  represents the ability of learning 
agent j to support agents who hold the same state, so not only the self-support of an 
individual agent (to itself), but the support that an agent gives to other agents who 
share the same state as it has. 

We use here cognitive agents that are allowed to perform categorization process 
of training objects, therefore trying to autonomously build the classification system 
for given perceptual information. Each agent during the simulation time is building its 
semiotic network of input data, linking proposed categories with subsets of objects 
(so called prototypes for a category). 

2.3 Learning Space and Learning Metric 

Each agent is characterized by a location in the learning space, therefore one can 
calculate the abstract learning distance ( ),d i j  of two learners i and j. The strength of 
coupling between two agents tend to decrease with the learning distance between 
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them. Determination of the learning metric is a separate problem, and the particular 
form of the metric and the learning distance function should be empirically deter-
mined, and in principle can be a very peculiar geometry. In present manuscript, I 
select the fully connected learning space, where all distances between agents are 
equal ( ), 1d i j = . This particular geometry is useful for example in the case of simple 
consensus between different yet not organized machine learning algorithms, where no 
group of learners perform significantly better than others. 

The interaction between agents dynamically shape their semiotic networks, adjust 
the categories in order to match them between different individuals, and finally lead 
to equilibrium, stable shared semiotic landscape of training data. The equilibration 
process is described here using the mean-field theory, and fully connected cellular 
automata network of agents. 

2.4 Learning Coupling 

Agents exchange their opinions by biasing others toward their own classification 
outcome. This influence can be described by the total learning impact Ii  that ith 

agent is experiencing from all other learners. Within the cellular automata approach 
this impact is the difference between positive coupling of those agents that hold iden-
tical classification outcome, relative to negative influence of those who share opposite 
state, and can be formalized as 

( ) ( )1 1
p sj j

I I Ip si i j i jN Nj j
σ σ σ σ= − − +∑ ∑

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ,

 (1)

where ( ).I p  and ( ).Is  are the functions of persuasiveness and supportiveness 

impact of the other agents on the i-th agent. It should be noted here that the persua-
siveness p j  represents here the ability of agent j to persuade agents who hold the 

opposite state to switch to having the same state as j. On the contrary the supportive-
ness s j  represents the ability of agent j to support agents who hold the same state, 

i.e. preventing them from switching to the opposite state. That is, persuasiveness 
represents the propensity of j to cause other agents to switch to her state, and suppor-
tiveness represents her propensity to keep them there. 

The social interaction between agents are modeled as guessing games between a 
pair of agents, where the first agent presents to the second one a samples randomly 
selected from different classes of its prototype categorization. 

2.5 Meta-learning 

The equation of dynamics of the learning model defines the state '
iσ  of ith individual 

at the next time step as follows: 
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( )( )' sign Ii i iσ σ= −
,
 (2)

with rescaled learning influence: 

( ) ( ) ( ) ( )1 1
p sj j

Ii i j i jN s p N s pj j
σ σ σ σ= − − +∑ ∑

+ +
. (3)

I assume a synchronous dynamics, i.e. states of all agents are updated in parallel. In 
comparison to standard Monte Carlo methods the synchronous dynamics takes shorter 
time to equilibrate than serial methods, yet it can be trapped into periodic asymptotic 
states with oscillations between neighboring agents. 

The dynamics of cellular automata network simulates the higher level of informa-
tion integration acquired from repetitive learning trials, so called the dynamics of 
semiotic landscape for the whole population. The final categorization of training 
objects is therefore consistent with equilibrium state of the complex system of inte-
racting agents. The individual outcomes of clustering, or machine learning algorithms 
are combined in order to determine the most effective partitioning of a given training 
data into the set of overlapping categories. 

2.6 Noise 

The randomness of state change (phenomenological modeling of various random 
elements in the learning system, and training data) is given by introducing noise into 
dynamics: 

( )( )' sign I hi i i iσ σ= − + , (4)

where hi  is the site-dependent white noise, or one can select a uniform white noise, 

where for all agents h hi = . In the first case hi  are random variables independent for 

different agents and time instants, whereas in the second case h  are independent for 
different time instants. I assume here, that the probability distribution of hi  is both 

site and time independent, i.e. it has uniform statistical properties. The uniform white 
noise simulates the global bias affecting all agents, whereas site-dependent white 
noise describes local effects, such as prediction quality of individual learner etc. 

Each category consists of several prototypes; therefore it is grounded in classified 
data objects. The population of autonomous agents establishes via communication a 
repertoire of perceptually grounded categories that is shared among them. 

3 Concluding Remarks 

Intelligent agents theory is a fascinating topic in modern science [24-28]. Decision 
making transitions depend to high degree on global factors influencing an ensemble 
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of independent learners. On the other hand, those changes are dependent to a high 
degree on individual decisions (predictions) that are based on agents’ attititudes. 
During consensus, i.e. the final decision making, the reciprocal influence is critical as 
each learner exchange its opinion with others. In my approach, I assume that external 
factors acting on each learner are present during only the first phase of meta-learning, 
where initial states for a population of learners are setting up. Yet, both processes 
even if acting on different time scales, are important for understanding the computa-
tional intelligence process.  

In this manuscript I have presented the statistical theory of meta-learning. In my 
approach I select long-range coupling between agents, as opposite for example to the 
Euclidean two dimensional learning space, where only nearest-neighbors are coupled. 
This assumption is well supported by the fact that we are typically focused on only 
equilibrium, stationary states. The fully connected learning space lets agents evolve 
faster in comparison to other types of cellular automata. In addition, all agents influ-
ence each other, therefore we avoid local minima traps for the global system. 

Each learner is characterized by two random parameters: persuasiveness pi and 
supportiveness si that describe how individual agent interact with others. The random 
strength parameters simulate different individual features of learning agents. In prin-
ciple one can define both parameters in various different ways. In the case of a set of 
machine learning algorithms, each of them can be described by its intrinsic parame-
ters affecting precision of single classification model of training data. In general case, 
several different types of machine learning algorithms can be used as individual 
learners. There, the distribution of quality of local prediction can be described as 
random providing that algorithms differ significantly between each other in terms 
both of the quality of prediction (classification accuracy), recall values (the ability to 
memorize the positive items in the training dataset), or precision (the ability to pre-
cisely predict the classification of training items). 

The other definition of those parameters (persuasiveness and supportiveness) can 
enhance the method persuasiveness (the value of pi ), if the method has the state 

1iσ = + , and make its pi value lower when the opposite state is taken. In this way, it 

allows to speed up the consensus process by forcing system to reach equilibrium state 
more rapidly, yet pushing it to the +1 decision based on the selected training dataset. 
This can cause several problems with overtraining, therefore some limitations of this 
approach should be taken into account. The actual solutions presented in this paper, 
yet do not depend strongly on the selected form of those parameters. Anyway we 
assume that they are some random variables describing the variety of individual deci-
sions in the ensemble of learners. 

There two time scales in the system. The first time scale is related to the fast evo-
lution of individual learners. When input testing data is presented to the system, each 
learner respond by its own single prediction. This local prediction of each agent is 
done very rapidly, almost instantly. Then those individual predictions are processed 
by cellular automata algorithm in order to find the stationary state of the system. This 
part is denoted as integration of information. As it was shown above, such stationary 
state has the form of minority clusters surrounded by the sea of majority prediction. 
Therefore, the final consensus prediction given by the majority rule, still preserves 
non-orthodox solutions, allowing for fast adaptivity of the system when training data 
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pattern is changed. The time scale for this integrative process is relatively long in 
comparison to individual predictions, therefore very fast (preferably optimized for 
parallel processing) cellular automata software implementations have to be prepared 
in order to apply described above formalism in real life problems. In the statistical 
model presented here, I assume that there is no coupling between those two time 
scales. Therefore I neglect all details of individual evolution of learners, focusing our 
attention for integration phase of incoming local information into single, consensus 
answer. 

The population of cognitive agents performs classification tasks on training ob-
jects, in order to build the shared complex system of signs and meanings. for given 
perceptual information. Charles Peirce introduced semiotics as a theory of human 
experience mediated by our ability to reflect upon it and create explainations (repre-
sentations). According to Peirce, the major research endeavour of semiotics is to find 
out what are the conditions for meaning to occur in human experience. Thus semiotcs 
directly addresses the issue of meaning: "What is wanted, is a method of ascertaining 
the real meaning of any concept, doctrine, proposition, word, or other sign. The ob-
ject of a sign is one thing; its meaning is another. Its object is the thing or occasion, 
however indefinite, to which it is applied. Its meaning is the idea which it attaches to 
that object, whether by way of mere supposition, or as a command, or as an assertion" 
(Peirce, C. 1931-58 Collected Papers of Charles Peirce in Eight Volumes. Eds: A. 
Burke, C. Hartshorne and P. Weiss. Cambridge: Harvard University Press, 5.5). 
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