
TOWARD REUSABILITY IN WEB MODELING 
Using QVT Relations 

Ali Fatolahi, Stéphane S. Somé and Timothy C. Lethbridge 
School of Information Technology and Engineeing, University of Ottawa, 800 King Edward, K1N 6N5, Ottawa, Canada 

Keywords: MDD, QVT, Web, Reusability, Meta-model. 

Abstract: In this paper, a model-driven approach for web development is presented. The approach contains two 
important elements that serve reusability: an abstract model and a set of transformations. Transformations 
act as the chaining feature of model-driven development (MDD); that is transformations add to the value of 
models by transforming them to those of the desired type. As a standard for developing transformations, 
QVT relations are used in this paper to specify mappings from a high-level model to an abstract model of 
web-based applications. This model is abstract since it does not rely on any specific web platform but on the 
common features of web applications. Having this model and its corresponding transformations, model-
driven web development for specific platforms becomes faster and more reusable. 

1 INTRODUCTION 

Models form the value of model-driven development 
(MDD) methods. Transformations add to the value 
of MDD by processing raw models and by creating 
more detailed ones that could be used for the 
development of actual applications. We aim at 
maximizing the level of value re-use as well as 
minimizing the length of transformations that create 
value or add to it. Thus, we present an abstract 
model of web applications that is reusable for 
several web platforms as well as a set of QVT 
relations to transform requirements to the abstract 
web models. 

We have added an intermediate level termed 
Abstract PSM (APSM) to the three conventional 
levels of MDA, i.e. CIM, PIM and PSM. The 
APSM, an intermediate between the PIM and PSM 
in the context of Web applications, is concerned 
with models specified with respect to common 
features of different web platforms. The APSM is 
platform-specific in the sense that it describes 
features specific to the abstract web platform; it is 
also abstract since it does not contain details of 
specific web platforms but only their shared 
features. Two sets of transformations are needed 
from PIM to PSM: one to map PIM to APSM and 
the second one to map APSM to PSM.  

An important aspect of our work is the usage of 
QVT relations as a means of formalizing model-

driven transformations. In this paper, we present an 
approach based on QVT relations to be used for the 
generation of APSM models. Hence, the PIM-to-
APSM part of the transformations could be re-used 
for all applications. Only the QVT relations required 
for generating a specific PSM from the APSM need 
to be supplied. Since the APSM is semantically 
closer to PSMs, this latter part is easier to develop in 
comparison to the conventional PIM-to-PSM 
transformations. 

The importance of web applications as well as 
the ever-increasing volatility of web technologies 
postulates the need to benefit from models that have 
been created for previous projects. In order to 
achieve this, one needs either web models that are 
adaptable with virtually any platform or automated 
transformations that enable transforming models of 
different platforms to each other. In this paper, we 
use a combination of the two. 

The APSM, which is used as the abstract web 
model in this paper, is a reusable model because it 
can be used to describe models of web applications 
regardless of their platforms. Hence for example, the 
APSM of a web application once deployed using a 
.Net-based technology could be reused to create the 
same application using a GWT-based framework as 
well. 

Also, the transformations that map the APSM to 
specific platforms come in handy here. These 
facilitate model reuse by relieving the developer 

383Fatolahi A., S. Somé S. and C. Lethbridge T..
TOWARD REUSABILITY IN WEB MODELING - Using QVT Relations.
DOI: 10.5220/0003290703830386
In Proceedings of the 7th International Conference on Web Information Systems and Technologies (WEBIST-2011), pages 383-386
ISBN: 978-989-8425-51-5
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)



 

from low-level tasks required to create the platform-
specific designs. At the ultimate case, with a 
completely automated process, the task of 
reproducing the same application for different 
platforms using different technologies becomes a 
matter of changing the automated code generation 
module that targets the new platform. 

2 META-MODEL 
FOR ABSTRACT WEB 

According to Figure 1, an application has several use 
cases, a number of these use cases may be startup 
use cases. User interfaces may be defined for every 
application. For web-based applications, it is 
necessary to recognize different views for different 
users; this is realized using the association of actors 
and user interfaces. States may be associated with 
presentations; this results in a presentation state. A 
presentation is a special UI Composite, which means 
it could contain other UI Components. UI 
Composites are translated to pages, forms, tables or 
panels depending on the specific platform the APSM 
will be mapped to.  UI Components may be 
associated to each other through a FieldOperation. 
This allows client-side operations to be defined. A 
UI component is associated with a data composite in 
order to model the data support required. Data 
composites are composed of data entities. A data 
composite can also participate in an association with 
another data composite, where one data composite is 
used as the basis of selecting data from another one. 

For example, when selecting a country affects the 
list of available provinces such association would be 
created. 

Every data composite is supplied with a service 
class, which manages the flow of information to and 
from the data composite. An attribute crudNature is 
added to the class Operation in order to determine 
the type of service operation and is used for code 
generation. Also, in order to model the call structure 
from controller operations to service ones, an 
association is added from the class Operation to 
itself. A special UI composite, OperationTrigger, is 
used to represent the information submitted to the 
server side, for example, as part of a web form. 

Transitions may carry events. Events can be 
either signal or call events. Signal events represent 
the events fired by UI Components such as 
Operation Triggers, i.e. submit buttons. Call events 
are rather called by controllers to handle the logic of 
the application. These, often, call a data service. 

In order to be able to move between platforms, a 
web model must be able to specify Web 2.0 
applications as well. The model is capable of 
supporting Web 2.0 applications at an abstract level. 
A presentation state may be composed of several 
presentation units, which allows independent update 
of different sub-units within the same presentation 
unit. Also content-oriented UI elements may accept 
feedback, where the feedback is itself a content-
oriented UI element. This enables an interactive 
content as required by Web 2.0. Also, by having 
content-oriented UI elements attached to items 
found for every search event, the whole content 
becomes searchable. 

Figure 1: A Meta-model for Abstract Web Applications. 

WEBIST 2011 - 7th International Conference on Web Information Systems and Technologies

384



In order to achieve reusability using model-
driven transformations, it is critical to have 
transformations that could be traced forward and 
backward through elements that map platforms to 
each other. According to Cichetti and Di Ruscio 
(2008), most of the existing web models do not 
adequately support this because they lose track of 
changes by relying on name-based associations. Our 
meta-model avoids name-based associations by 
creating concrete associations such as the one 
between UIComponent and DataComposite, which 
provides the same type of support as suggested by 
Cichetti and Di Ruscio (2008) in terms of an 
association from DataCompositionWLink and 
CompositionWElement. 

Despite the popularity of the existing web 
models, as shown in Table 1, none of the existing 
models meets all the requirements of a reusable 
model in the context of a model-driven approach. 

Table 1: Comparative Study of the Existing Web Models. 

 

3 AN EXAMPLE 

 

Figure 2: A Sample Input Model. 

Figure 2 shows a sample input model. The figure 
shows that two actors, Member and Admin may 

access this process. This is related to a billing use 
case. The User enters a counter number and requests 
a bill. The system calculates and shows a bill 
providing an option of instant payment or to return. 
The group boxes at the left show the corresponding 
presentations of every state. There could be more 
than one presentation unit per page. The presentation 
model of the state, Enter Counter is only composed 
of one entry form that adds a new entry to the data 
unit Bill. The state, Show Bill is related to a page 
composed of two units. First unit shows the 
information of the recent bill based on the created 
bill in previous step. The second unit is simply a link 
to home page. 

The state Enter Counter is translated to a 
presentation state, which leads to another state 
through signal event Create Bill with two parameters 
Date and Counter. The state runState1 is only 
inserted to enable the activation of the call event on 
the outgoing transition that calls the operation 
required to create the bill. In case this is successful, 
the object theBill, which carries the newly created 
bill, is sent along the transition that ends at the final 
state Online Payment. 

 

 

Figure 3: The APSM Mapping of figure 2. 

Figure 4 presents the classes required to support 
the input model. The data composite BillComposite 
is composed of only one class, BillEntity. The 
attributes of BillEntity are selected so that there is 
one attribute per UI component in Figure 3. The 
class BillService handles the CRUD operations. The 
controller BillingController needs an operation to 

TOWARD REUSABILITY IN WEB MODELING - Using QVT Relations

385



 

handle the creation of a bill. This operation is 
basically required to create an empty BillComposite 
object, to call the corresponding service and to 
transfer this object to the next state as required for 
payment. 

 

 

Figure 4: The APSM Classes of Billing. 

4 MAPPINGS 

Figure 5 presents a summary of the information used 
from the PIM as well as those created at the APSM 
level. According to Figure 8: 
 Data objects and navigations through data 
objects are created based on data associations found 
within the UI model. 
 The contents and the structure of web pages are 
determined by the contents of the presentation states 
and transition flows. 
 Transitions and states from the input model are 
also used to create events and operations used for the 
generation of the behaviour and controllers of the 
application. 
 The generated behaviour and controllers are used 
in turn to build the data access services in 
combination with data associations from 
presentation states. It is also used to map parameters 
to attributes within the data model. 

The following transformations were implemented: 
1- PIM-to-APSM: This set maps the input model 
such as the one in Figures 2 to the APSM model 
such as the one of Figures 3-4. 
2- APSM-to-AndroMDA: This mapping creates a 
fully detailed AndroMDA model, which may be 
transformed to code using AndroMDA . 
3- APSM-to-WebML: The target in this mapping is 
a specific configuration of the WebML-based tool, 
WebRatio. 
4- APSM-to-GWT: maps the APSM to a platform, 
based on Google Web Toolkit. This allows us to 
evaluate the Web 2.0 modeling capabilities of the 
abstract meta-model. 

Although it is possible to use the approach without 
the PIM-APSM transformations, this set helps 
bringing reusability to an even more abstract level 
that is reuse at the level of requirements model. 

 

 

Figure 5: Summary of the transformations. 

5 IMPLEMENTATION 

The implemented approach is named MODEWIS, 
which stands for MOdel-driven DEvelopment of 
Web Information Systems. Figure 6 shows how the 
MODEWIS interacts with other components in this 
implementation. Several case-studies, tools and 
transformations are developed in the context of 
MODEWIS (2010). 

 

Figure 6: The Architecture of MODEWIS. 

REFERENCES 

AndroMDA, www.andromda.org, 15-02-2007. 
Cicchetti, A. Di Ruscio, D. Decoupling Web Application 

Concerns through Weaving Operations. In: Science of 
Computer  Program-ming 70(1) 2008. pp. 62-86. 

Google Web Toolkit, Google Code, 
code.google.com/webtoolkit/, June 2010. 

MODEWIS, modewis.blogspot.com/, 12-1-2010. 
WebML, www.webml.org, May 5, 2008. 
WebRatio, www.webratio.com, 6-5-2008. 

WEBIST 2011 - 7th International Conference on Web Information Systems and Technologies

386


