
REAL-TIME CONTEXT AWARE REASONING IN ON-BOARD
INTELLIGENT TRAFFIC SYSTEMS

An Architecture for Ontology-based Reasoning using Finite State Machines

Arjan Stoter, Simon Dalmolen, Eduard Drenth, Erik Cornelisse and Wico Mulder
Logica, Prof. Keesomlaan 14, Amstelveen, The Netherlands

Keywords: ITS, HMI, Ontology, FSM, Reasoning, Context-awareness, Inference engine.

Abstract: In-vehicle information management is vital in intelligent traffic systems. In this paper we motivate an
architecture for ontology-based context-aware reasoning for in-vehicle information management. An
ontology is essential for system standardization and communication, and ontology-based reasoning allows
context-awareness, inference and advanced reasoning capabilities. However, the amount of computational
power it requires often conflicts with the computational limitations of on-board units, as well as the high
demand for timeliness and safety. Our approach uses ontology-based reasoning and a finite state machine
(FSM). By combining ontology and FSM, we illustrate how a heavy-weight reasoning-solution could be
applied in a light-weight computational environment.

1 INTRODUCTION

The role of Intelligent Traffic Systems (ITS)
becomes increasingly important in traffic
management. The advance of Intelligent
Infrastructure Systems (IIS) and In-Vehicle
Information Systems (IVIS) propose a challenge for
Human Machine Interaction (HMI). Advanced
Driver Assistance Systems (ADAS) such as adaptive
cruise-control, and Advanced Traveller Information
Systems (ATIS) such as navigation and hazard
warnings can support the driver. However, as traffic
places high demands on human information
processing (Barfield & Dingus, 1998), supplying
additional information to the driver can easily result
in an information overload (Lui, 2001; Jamson &
Merat, 2005). In-vehicle information management
aims to prevent information overload, and is
therefore vital in ITS.

In-vehicle information management is defined
here as a process that manages in-car information
originating from ADAS and ATIS, and presents it to
the driver via a dynamic presentation layer. The
current study describes a software architecture for
in-vehicle information management, referred to as
the HMI manager. The HMI manager orchestrates
interaction between in-car devices and applications,
and the user (in this case the driver). It determines

which information is shown to the user by assessing
relevance and priority of information.

The first part of this paper describes the role and
requirements of the HMI manager. In the second
part we discuss our approach. We consider
ontology-based systems and how they can be used
for information management. We discuss the amount
of computational power required for ontology-based
reasoning, and how this commonly conflicts with the
computational limitations of on-board units. We
suggest the use of finite state machines in
combination with ontology-based reasoning, and
argue how heavy-weight (ontology-based) reasoning
could be applied in a light-weight computational
environment.

The architecture proposed in the current study is
part of the Open Platform Solution for ITS,
developed within the Strategic Platform for
Intelligent Traffic Systems (SPITS). SPITS is a
unique collaboration between the Dutch
government, companies and scientific institutes (see
http://www.spits-project.com/).

2 HMI MANAGER

The HMI manager orchestrates interaction between
the driver and in-vehicle applications (ADAS and

637
Stoter A., Dalmolen S., Drenth E., Cornelisse E. and Mulder W..
REAL-TIME CONTEXT AWARE REASONING IN ON-BOARD INTELLIGENT TRAFFIC SYSTEMS - An Architecture for Ontology-based Reasoning
using Finite State Machines.
DOI: 10.5220/0003185506370642
In Proceedings of the 3rd International Conference on Agents and Artificial Intelligence (ICAART-2011), pages 637-642
ISBN: 978-989-8425-40-9
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)

ATAS). It determines priority of information, and
provides information to the user that is relevant in a
given situation. We focussed on two use-cases: [1]
user applications can provide information (that will
be passed on to the user by the HMI manager), [2]
an external device (e.g. sensor) gives feedback about
its status and controls via the HMI manager. User
input was outside the scope of the current study.

Two key-drivers were defined for the HMI
manager: timeliness and safety. Timeliness relates to
real-time response and deliverance of information.
Safety relates to reliability and predictability of the
information-management process. In addition the
following capabilities were defined: presentation of
information, prioritisation of information, and the
ability to remember information, states, and modes.

Figure 1 shows the capability-overview of the
HMI manager. Three components were defined: the
PresentationManager, the MentalState, and the
PriorityManager. Together these are the core
components of the HMI manager.

The PresentationManager component contains
logic and configuration of all presentation-specific
information like style and layout. The MentalState
component collects, stores and shares information
received from user applications as well as input from
external devices. The PriorityManager contains
priority logic, and determines which information is
presented to the user, in which order. It does so
depending on the content of the MentalState.

Figure 1: Capability overview of the HMI manager. The
PresentationManager contains logic and configuration of
all presentation-specific information. The MentalState
component collects, stores and shares information
received from user applications. The PriorityManager
determines which information is presented to the user, and
in which order, depending on the content of the
MentalState.

The HMI manager was placed in between an
application layer and presentation layer (see figure
2). The application layer contains applications that

belong to ADAS and ATIS, which supply real-time
(event driven) information related to safety,
navigation, road conditions, traffic congestions, and
so on. (User input was outside the scope of the
current study, hence the one-way arrows in figure 2.)

Figure 2: Position of the PM in IVIS. The PM is located in
between the application- and presentation layer.

The top-layer in figure 2 is the presentation
layer. Components in this layer present information
to the driver. The presentation layer is dynamic; the
templates of the presentation layer can change
depending on the information it has to show. The
templates are loaded upon request from the
PresentationManager, located inside the HMI
manager.

Note that the HMI manager is event-driven.
Information is sent to the HMI manager on
occurrence of events.

2.1 Information Management

Information is sent by applications as information
messages. These messages contain several
properties, two of which are importance and
urgency. These are set by the applications in the
current setup. Importance of a message depends on
the message type. For instance, a safety-critical
message will have higher importance than
infotainment messages. Urgency relates to time
criticality; how vital it is that information is shown
at the time the event occurs. For example, a message
related to fuel level will become more urgent as the
fuel-level drops.

The PriorityManager uses importance- and
urgency values, and the MentalState (see figure 1) to
determine message priorities. The MentalState stores
and shares information received from user
applications and represents the context of the
information prioritisation process.

ICAART 2011 - 3rd International Conference on Agents and Artificial Intelligence

638

2.1.1 Context-awareness

Context-awareness (in software) is used to describe
collaboration between components in order to deal
with data that describe real-world, complex
situations. It involves semantic data and often
semantic Web technology (e.g. OWL) (Feki &
Mokhtari, 2006), and use of external data to build a
model of the world (an awareness) (McCann et al,
2004; Shaou-Gang et al 2007).

Picture a sunny day as you drive along the
country side. As the scenery passes, the fuel level
drops. Though there is no reason to be alarmed just
yet (normal importance, low urgency), your
navigation system knows you are about to pass a gas
station (low importance, high urgency). In addition,
it also notices that the next gas station is several
miles away (low importance, low urgency). Now,
each of these information elements individually
would have little meaning, or low priority. But its
combined result is rather important: refuel now or
strand later. As a result, the event of the approaching
gas station suddenly gets a high priority. This is
what we mean by context-aware reasoning.

3 APPROACH

3.1 Ontology-based Systems

An ontology is described as a shared
conceptualization of the types and relations of things
that are in the world (Wang et al, 2009). In
computing science, ontology’s are used as a data
model for semantic representation and
conceptualization of knowledge domains (Zhou et al
2008). An ontology represents a domain-vocabulary
containing all essential concepts, their relations, and
axioms and constraints. Using an ontology it is
possible to extract relevant domain terminology and
to extend an existing concept hierarchy by adding
new concepts (William et al 2009). Ontology’s are
widely accepted for deductive reasoning, inference,
and context-based reasoning (Martín et al, 2008).

An ontology-based approach fits the capabilities
of the HMI manager. First, an ontology is essential
for system standardization and communication. The
HMI manager should be able to interact with
multiple applications, and new information entities
should be easily added. Second, an ontology allows
inference about relationships between entities, and
as such provides a powerful solution to reason about
incoming information messages. Finally, being able
to infer about entities and their relations provides a

powerful solution for contextual reasoning about
messages.

3.2 Finite State Machine

An FSM is commonly described as a behavior
model that contains a finite number of states and
transitions, as well as actions. A state is a unique
configuration of the machine. An FSM can be
defined as equation 1.

M = {I, O, S, δ, λ } (1)

I, O and S are finite and nonempty sets of input
symbols, output symbols, and states. Transition
between states is described by the state transition
function δ: S x I -> S and the output function λ: S x I
-> O. The transitions between states are described in
a transition table, which can be represented as a
directed graph (see figure 4, right) (Lee &
Yannakakis, 1996).

An FSM is a relatively light-weight process with
a predictable number of outcomes. By nature it is a
clean, low demanding solution to problems that can
be modelled as a 'machine' with a state, where events
will trigger the transition to another state (e.g. Lee &
Yannakakis, 1996). In our study, an FSM meets the
HMI manager’s requirements of timeliness and
safety (where safety is a predictable outcome).

4 IMPLEMENTATION DESIGN

Using an ontology and rule engine provides a
powerful approach to model the HMI manager’s
reasoning. However, the computational power
required by ontology-based reasoning commonly
conflicts with computational limitations of on-board
units, which in turn conflicts with the HMI
manager’s key-drivers of timeliness and safety.

We suggest a two-step approach that includes
configuration-time and run-time. At configuration
time we designed an ontology with classes, relations
and rules. From there we generate a finite state
machine that was used at runtime.

4.1 Configuration Time

4.1.1 Ontology Reasoning

OWL web ontology language was used for the
knowledge base. The inference engine was created
using semantic web rule language (SWRL). SWRL
provides a data-driven approach in the sense that
new “context” information will trigger the SWRL

REAL-TIME CONTEXT AWARE REASONING IN ON-BOARD INTELLIGENT TRAFFIC SYSTEMS - An
Architecture for Ontology-based Reasoning using Finite State Machines

639

inference rules. SWRL is based on OWL and
RuleML, which can use the knowledge (in terms of
instances) defined in OWL to develop rules (Lui et
al, 2010). We used protégé to develop OWL and
SWRL.

4.1.2 Managing Priorities

The PriorityManager (figure 1) has an inference
engine to determine priority of information
messages. Inference rules describe the relation
between importance, urgency (see 2.1), and priority
of a message. In the current setup, 3 values were
used for importance and urgency: low, normal, and
high. Below is a SWRL example of a rule, where
message x with normal importance and high urgency
will get a high priority:

ImportanceNormal(?x),
UrgencyHigh(?x) ->
PriorityHigh(?x)

Table 1 illustrates the relation between

importance and urgency, and priority of an
information message. The outcome of the table
represents the priority level.

Table 1: Basic relations between importance (left to right)
and urgency (top to bottom). The out-coming values in the
table represent the priority level.

 Low
Importance

Normal
Importance

High
Importance

Low
Urgency

Low
Priority

Low
Priority

Normal
Priority

Normal
Urgency

Low
Priority

Normal
Priority

High
Priority

High
Urgency

Low
Priority

High
Priority

High
Priority

Figure 3 shows the logical components inside the

HMI manager at configuration time. At the bottom
are applications that send messages. Next, messages
enter the MentalState where they are instantiated
according to concepts of an ontology. This in turn
triggers the PriorityManager, which holds an
inference engine. This engine uses the ontology
structure to determine relations between concepts,
and uses rules to make decisions about these
concepts, given the MentalState. Finally, the
message is labeled with a priority and placed on a
message stack inside the PresentationManager.

Figure 3: Logical overview of the HMI manager at
configuration time. Applications send messages to the
HMI manager where they enter the MentalState. Messages
are instantiated in the MentalState according to concepts
of the ontology. This in turn triggers the PriorityManager
that holds a rule engine for the inference process.

4.2 Runtime

At configuration time the MentalState (plus
ontology) and PriorityManager (with inference
engine) are separate parts. At runtime these
components are combined into an FSM (see figure
4). This is done by querying the ontology and
creating a Cartesian product containing all possible
inferences. That is, all possible messages and their
priorities according to the SWRL rules. This resulted
in a large amount of outcomes with all possible
mental states (all combinations from the set of
messages), where each message has a priority per
state. Next, through a process of optimization an
FSM is created with the optimal number of states.

Figure 4: Transition between configuration time (left) and
runtime (right) of the HIM manager. The MentalState with
the Ontology, and the PriorityManager with the rule
engine are transformed into a Cartesian product of
machine states, containing all possible inferences. Next,
through process of optimization an FSM is created with
the minimum number of states.

ICAART 2011 - 3rd International Conference on Agents and Artificial Intelligence

640

5 DISCUSSION

Implementing context-aware reasoning in on-board
units is a challenge. Ontology-based reasoning
provides a powerful solution, but the computational
power it requires conflicts with the capacities of on-
board units. The solution presented in this study is
the transformation of the ontology, rule engine, and
MentalState into an FSM.

We encountered several challenges that require
future research. These challenges relate to modelling
the ontology and rule definitions, and the transition
process between the knowledge base and FSM.

First, for modelling the ontology we are currently
investigating the use of message classes. These
classes are safety, infotainment, navigation, and car
status. Rules in the rule engine would (for instance)
state that messages belonging to safety always get a
higher priority than those belonging to infotainment.

The second challenge lies in defining rules and
relations between concepts, and how to make sure
that some crucial part of the inference process is not
overlooked. These issues are not trivial, as
controlling the inference process to guaranty
predictability and safety is crucial.

Finally, an FSM at runtime provides a light-
weight solution that enables timeliness and
predictability. However, the transition process of
ontology-based reasoning into an FSM requires
extensive research. Creating a Cartesian product of
all inferences, followed by an optimization process
has been promising. But defining the optimization-
rules is a delicate process that requires follow-up
studies. Also, it is expected that the size of the
FSM’s decision table is related to the ontology
structure. As the FSM handles states we are
currently investigating a state-driven structure for
the ontology.

The issues described in the previous paragraph
are currently addressed in collaboration with TNO,
and prototypes have been created. The architecture
will be implemented and tested inside a car
simulator, and will be validated with participant
experiments on simulated driver performance.

6 CONCLUSIONS

The architecture for the HMI manager described in
the current study used ontology-based reasoning and
an FSM. We believe that this approach has the
potential to provide the best of both worlds, in that it
places the power of an elaborate reasoning solution
into a light-weight computation environment.

Our solution is capable of providing context-
aware reasoning while maintaining timeliness and
safety in real-time, demanding traffic situations.
Extensive research will have to be performed on
issues regarding the knowledge base and the FSM
transition and optimization. But we believe that the
present architecture of the HMI manager provides an
important first step towards in-vehicle information
management, as part of an Open Platform Solution
for ITS.

REFERENCES

Barfield, W., Dingus, T. A., 1998. Human factors in
intelligent transportation systems. Lawrence Erlbaum
Associates. Mahwah, New Jersey.

Feki, M. A., Mokhtari M., 2006. Context aware and
ontology specification for assistive environment,
HWRS-ERS Journal, International Journal of Human-
friendly Welfare Robotic Systems, Vol. 4, no. 2, pp.
29-32.

Jamson, A. H., Merat, N., 2005. Surrogate in-vehicle
information systems and driver behaviour: effects of
visual and cognitive load in simulated rural driving.
Transportation Research Part F: Traffic Psychology
and Behavior, Vol. 8, no. 2, pp. 79-96.

Lee, David, Yannakakis, Mihalis, 1996. Principles and
methods of testing finite state machine- a survey.

Liu, C. H., Chang, K. L., Jason, J. Y., Chen, Hung, S. C.,
2010. Ontology-Based Context Representation and
Reasoning Using OWL and SWRL. 8th Annual
Communication Networks and Services Research
Conference.

Liu, Y. C., 2001. Comparative study of the effects of
auditory, visual and multimodal displays on driver’s
performance in advanced traveller information
systems. Ergonomics, Vol. 44, no. 4, pp. 425-442.

Martín, L., Anguita, A., Maojo, V., Bonsma, E., Bucur,
A., I., D., Vrijnsen, J., Brochhausen, M., Cocos, C.,
Stenzhorn, H., Tsiknakis, M., Doerr, M., Kondylakis,
H., 2008. Ontology Based Integration of Distributed
and Heterogeneous Data Sources in ACGT.
HEALTHINF 1INSTICC - Institute for Systems and
Technologies of Information, Control and
Communication, pp. 301-306.

McCann J.A., Kristofferson P., Alonso, E., 2004. Building
Ambient Intelligence into a Ubiquitous Computing
Management System, International Symposium of
Santa Caterina on Challenges in the Internet and
Interdisciplinary Research., Amalfi, Italy (January,
SSCCII-2004).

Shaou-Gang, M., Fu-Chiau S., Chia-Yuan H., 2007. A
Smart Vision-Based Human Fall Detection System for
Telehealth Applications. IASTED Telehealth
Conference (Montreal, QC, Canada) (May- June
2007).

REAL-TIME CONTEXT AWARE REASONING IN ON-BOARD INTELLIGENT TRAFFIC SYSTEMS - An
Architecture for Ontology-based Reasoning using Finite State Machines

641

Wang, J., Zuo, W., He, F., Wang, Y., 2009. A New Formal
Description of Ontology Definition and Ontology
Algebra. Second International Symposium on
Knowledge Acquisition and Modeling.

William L., S., Kristina L., W., Zhengxin C., 2009.
Constructing Domain Ontology from Texts: A
Practical Approach and a Case Study. Fifth
International Conference on Next Generation Web
Services Practices.

Zhou, L., Zhang, D., Chen, X., Zhang C., 2008. A Method
for Semantics-based Conceptual Expansion of
Ontology. Proceedings of the 2008 ACM symposium
on Applied computing.

ICAART 2011 - 3rd International Conference on Agents and Artificial Intelligence

642

