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Abstract: In-vehicle information management is vital in intelligent traffic systems. In this paper we motivate an 
architecture for ontology-based context-aware reasoning for in-vehicle information management. An 
ontology is essential for system standardization and communication, and ontology-based reasoning allows 
context-awareness, inference and advanced reasoning capabilities. However, the amount of computational 
power it requires often conflicts with the computational limitations of on-board units, as well as the high 
demand for timeliness and safety. Our approach uses ontology-based reasoning and a finite state machine 
(FSM). By combining ontology and FSM, we illustrate how a heavy-weight reasoning-solution could be 
applied in a light-weight computational environment. 

1 INTRODUCTION 

The role of Intelligent Traffic Systems (ITS) 
becomes increasingly important in traffic 
management. The advance of Intelligent 
Infrastructure Systems (IIS) and In-Vehicle 
Information Systems (IVIS) propose a challenge for 
Human Machine Interaction (HMI). Advanced 
Driver Assistance Systems (ADAS) such as adaptive 
cruise-control, and Advanced Traveller Information 
Systems (ATIS) such as navigation and hazard 
warnings can support the driver. However, as traffic 
places high demands on human information 
processing (Barfield & Dingus, 1998), supplying 
additional information to the driver can easily result 
in an information overload (Lui, 2001; Jamson & 
Merat, 2005). In-vehicle information management 
aims to prevent information overload, and is 
therefore vital in ITS. 

In-vehicle information management is defined 
here as a process that manages in-car information 
originating from ADAS and ATIS, and presents it to 
the driver via a dynamic presentation layer. The 
current study describes a software architecture for 
in-vehicle information management, referred to as 
the HMI manager. The HMI manager orchestrates 
interaction between in-car devices and applications, 
and the user (in this case the driver). It determines 

which information is shown to the user by assessing 
relevance and priority of information. 

The first part of this paper describes the role and 
requirements of the HMI manager. In the second 
part we discuss our approach. We consider 
ontology-based systems and how they can be used 
for information management. We discuss the amount 
of computational power required for ontology-based 
reasoning, and how this commonly conflicts with the 
computational limitations of on-board units. We 
suggest the use of finite state machines in 
combination with ontology-based reasoning, and 
argue how heavy-weight (ontology-based) reasoning 
could be applied in a light-weight computational 
environment. 

The architecture proposed in the current study is 
part of the Open Platform Solution for ITS, 
developed within the Strategic Platform for 
Intelligent Traffic Systems (SPITS). SPITS is a 
unique collaboration between the Dutch 
government, companies and scientific institutes (see 
http://www.spits-project.com/).  

2 HMI MANAGER 

The HMI manager orchestrates interaction between 
the driver and in-vehicle applications (ADAS and 
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ATAS). It determines priority of information, and 
provides information to the user that is relevant in a 
given situation. We focussed on two use-cases: [1] 
user applications can provide information (that will 
be passed on to the user by the HMI manager), [2] 
an external device (e.g. sensor) gives feedback about 
its status and controls via the HMI manager. User 
input was outside the scope of the current study. 

Two key-drivers were defined for the HMI 
manager: timeliness and safety. Timeliness relates to 
real-time response and deliverance of information. 
Safety relates to reliability and predictability of the 
information-management process. In addition the 
following capabilities were defined: presentation of 
information, prioritisation of information, and the 
ability to remember information, states, and modes. 

Figure 1 shows the capability-overview of the 
HMI manager. Three components were defined: the 
PresentationManager, the MentalState, and the 
PriorityManager. Together these are the core 
components of the HMI manager.  

The PresentationManager component contains 
logic and configuration of all presentation-specific 
information like style and layout. The MentalState 
component collects, stores and shares information 
received from user applications as well as input from 
external devices. The PriorityManager contains 
priority logic, and determines which information is 
presented to the user, in which order. It does so 
depending on the content of the MentalState. 

 

Figure 1: Capability overview of the HMI manager. The 
PresentationManager contains logic and configuration of 
all presentation-specific information. The MentalState 
component collects, stores and shares information 
received from user applications. The PriorityManager 
determines which information is presented to the user, and 
in which order, depending on the content of the 
MentalState. 

The HMI manager was placed in between an 
application layer and presentation layer (see figure 
2). The application layer contains applications that 

belong to ADAS and ATIS, which supply real-time 
(event driven) information related to safety, 
navigation, road conditions, traffic congestions, and 
so on. (User input was outside the scope of the 
current study, hence the one-way arrows in figure 2.) 

 

Figure 2: Position of the PM in IVIS. The PM is located in 
between the application- and presentation layer. 

The top-layer in figure 2 is the presentation 
layer. Components in this layer present information 
to the driver. The presentation layer is dynamic; the 
templates of the presentation layer can change 
depending on the information it has to show. The 
templates are loaded upon request from the 
PresentationManager, located inside the HMI 
manager. 

Note that the HMI manager is event-driven. 
Information is sent to the HMI manager on 
occurrence of events.  

2.1 Information Management 

Information is sent by applications as information 
messages. These messages contain several 
properties, two of which are importance and 
urgency. These are set by the applications in the 
current setup. Importance of a message depends on 
the message type. For instance, a safety-critical 
message will have higher importance than 
infotainment messages. Urgency relates to time 
criticality; how vital it is that information is shown 
at the time the event occurs. For example, a message 
related to fuel level will become more urgent as the 
fuel-level drops. 

The PriorityManager uses importance- and 
urgency values, and the MentalState (see figure 1) to 
determine message priorities. The MentalState stores 
and shares information received from user 
applications and represents the context of the 
information prioritisation process.  
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2.1.1 Context-awareness 

Context-awareness (in software) is used to describe 
collaboration between components in order to deal 
with data that describe real-world, complex 
situations. It involves semantic data and often 
semantic Web technology (e.g. OWL) (Feki & 
Mokhtari, 2006), and use of external data to build a 
model of the world (an awareness) (McCann et al, 
2004; Shaou-Gang et al 2007).  

Picture a sunny day as you drive along the 
country side. As the scenery passes, the fuel level 
drops. Though there is no reason to be alarmed just 
yet (normal importance, low urgency), your 
navigation system knows you are about to pass a gas 
station (low importance, high urgency). In addition, 
it also notices that the next gas station is several 
miles away (low importance, low urgency). Now, 
each of these information elements individually 
would have little meaning, or low priority. But its 
combined result is rather important: refuel now or 
strand later. As a result, the event of the approaching 
gas station suddenly gets a high priority. This is 
what we mean by context-aware reasoning. 

3 APPROACH 

3.1 Ontology-based Systems 

An ontology is described as a shared 
conceptualization of the types and relations of things 
that are in the world (Wang et al, 2009). In 
computing science, ontology’s are used as a data 
model for semantic representation and 
conceptualization of knowledge domains (Zhou et al 
2008). An ontology represents a domain-vocabulary 
containing all essential concepts, their relations, and 
axioms and constraints. Using an ontology it is 
possible to extract relevant domain terminology and 
to extend an existing concept hierarchy by adding 
new concepts (William et al 2009). Ontology’s are 
widely accepted for deductive reasoning, inference, 
and context-based reasoning (Martín et al, 2008). 

An ontology-based approach fits the capabilities 
of the HMI manager. First, an ontology is essential 
for system standardization and communication. The 
HMI manager should be able to interact with 
multiple applications, and new information entities 
should be easily added. Second, an ontology allows 
inference about relationships between entities, and 
as such provides a powerful solution to reason about 
incoming information messages. Finally, being able 
to infer about entities and their relations provides a  

powerful solution for contextual reasoning about 
messages. 

3.2 Finite State Machine 

An FSM is commonly described as a behavior 
model that contains a finite number of states and 
transitions, as well as actions. A state is a unique 
configuration of the machine. An FSM can be 
defined as equation 1. 
 

M = {I, O, S, δ, λ } (1)
 

I, O and S are finite and nonempty sets of input 
symbols, output symbols, and states. Transition 
between states is described by the state transition 
function δ: S x I -> S and the output function λ: S x I 
-> O. The transitions between states are described in 
a transition table, which can be represented as a 
directed graph (see figure 4, right) (Lee & 
Yannakakis, 1996).  

An FSM is a relatively light-weight process with 
a predictable number of outcomes. By nature it is a 
clean, low demanding solution to problems that can 
be modelled as a 'machine' with a state, where events 
will trigger the transition to another state (e.g. Lee & 
Yannakakis, 1996). In our study, an FSM meets the 
HMI manager’s requirements of timeliness and 
safety (where safety is a predictable outcome). 

4 IMPLEMENTATION DESIGN 

Using an ontology and rule engine provides a 
powerful approach to model the HMI manager’s 
reasoning. However, the computational power 
required by ontology-based reasoning commonly 
conflicts with computational limitations of on-board 
units, which in turn conflicts with the HMI 
manager’s key-drivers of timeliness and safety. 

We suggest a two-step approach that includes 
configuration-time and run-time. At configuration 
time we designed an ontology with classes, relations 
and rules. From there we generate a finite state 
machine that was used at runtime. 

4.1 Configuration Time 

4.1.1 Ontology Reasoning 

OWL web ontology language was used for the 
knowledge base. The inference engine was created 
using semantic web rule language (SWRL). SWRL 
provides a data-driven approach in the sense that 
new “context” information will trigger the SWRL 
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inference rules. SWRL is based on OWL and 
RuleML, which can use the knowledge (in terms of 
instances) defined in OWL to develop rules (Lui et 
al, 2010). We used protégé to develop OWL and 
SWRL. 

4.1.2 Managing Priorities 

The PriorityManager (figure 1) has an inference 
engine to determine priority of information 
messages. Inference rules describe the relation 
between importance, urgency (see 2.1), and priority 
of a message. In the current setup, 3 values were 
used for importance and urgency: low, normal, and 
high. Below is a SWRL example of a rule, where 
message x with normal importance and high urgency 
will get a high priority:  

 
ImportanceNormal(?x), 
UrgencyHigh(?x) -> 
PriorityHigh(?x) 

 
Table 1 illustrates the relation between 

importance and urgency, and priority of an 
information message. The outcome of the table 
represents the priority level. 

Table 1: Basic relations between importance (left to right) 
and urgency (top to bottom). The out-coming values in the 
table represent the priority level. 

 Low 
Importance 

Normal 
Importance  

High 
Importance 

Low 
Urgency 

Low 
Priority 

Low 
Priority 

Normal 
Priority 

Normal 
Urgency 

Low 
Priority 

Normal 
Priority 

High 
Priority 

High 
Urgency 

Low 
Priority 

High 
Priority 

High 
Priority 

 
Figure 3 shows the logical components inside the 

HMI manager at configuration time. At the bottom 
are applications that send messages. Next, messages 
enter the MentalState where they are instantiated 
according to concepts of an ontology. This in turn 
triggers the PriorityManager, which holds an 
inference engine. This engine uses the ontology 
structure to determine relations between concepts, 
and uses rules to make decisions about these 
concepts, given the MentalState. Finally, the 
message is labeled with a priority and placed on a 
message stack inside the PresentationManager. 
 
 
 
 
 

 

Figure 3: Logical overview of the HMI manager at 
configuration time. Applications send messages to the 
HMI manager where they enter the MentalState. Messages 
are instantiated in the MentalState according to concepts 
of the ontology. This in turn triggers the PriorityManager 
that holds a rule engine for the inference process. 

4.2 Runtime 

At configuration time the MentalState (plus 
ontology) and PriorityManager (with inference 
engine) are separate parts. At runtime these 
components are combined into an FSM (see figure 
4). This is done by querying the ontology and 
creating a Cartesian product containing all possible 
inferences. That is, all possible messages and their 
priorities according to the SWRL rules. This resulted 
in a large amount of outcomes with all possible 
mental states (all combinations from the set of 
messages), where each message has a priority per 
state. Next, through a process of optimization an 
FSM is created with the optimal number of states. 

 

Figure 4: Transition between configuration time (left) and 
runtime (right) of the HIM manager. The MentalState with 
the Ontology, and the PriorityManager with the rule 
engine are transformed into a Cartesian product of 
machine states, containing all possible inferences. Next, 
through process of optimization an FSM is created with 
the minimum number of states. 
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5 DISCUSSION 

Implementing context-aware reasoning in on-board 
units is a challenge. Ontology-based reasoning 
provides a powerful solution, but the computational 
power it requires conflicts with the capacities of on-
board units. The solution presented in this study is 
the transformation of the ontology, rule engine, and 
MentalState into an FSM.  

We encountered several challenges that require 
future research. These challenges relate to modelling 
the ontology and rule definitions, and the transition 
process between the knowledge base and FSM.  

First, for modelling the ontology we are currently 
investigating the use of message classes. These 
classes are safety, infotainment, navigation, and car 
status. Rules in the rule engine would (for instance) 
state that messages belonging to safety always get a 
higher priority than those belonging to infotainment. 

The second challenge lies in defining rules and 
relations between concepts, and how to make sure 
that some crucial part of the inference process is not 
overlooked. These issues are not trivial, as 
controlling the inference process to guaranty 
predictability and safety is crucial.  

Finally, an FSM at runtime provides a light-
weight solution that enables timeliness and 
predictability. However, the transition process of 
ontology-based reasoning into an FSM requires 
extensive research. Creating a Cartesian product of 
all inferences, followed by an optimization process 
has been promising. But defining the optimization-
rules is a delicate process that requires follow-up 
studies. Also, it is expected that the size of the 
FSM’s decision table is related to the ontology 
structure. As the FSM handles states we are 
currently investigating a state-driven structure for 
the ontology.  

The issues described in the previous paragraph 
are currently addressed in collaboration with TNO, 
and prototypes have been created. The architecture 
will be implemented and tested inside a car 
simulator, and will be validated with participant 
experiments on simulated driver performance. 

6 CONCLUSIONS 

The architecture for the HMI manager described in 
the current study used ontology-based reasoning and 
an FSM. We believe that this approach has the 
potential to provide the best of both worlds, in that it 
places the power of an elaborate reasoning solution 
into a light-weight computation environment. 

Our solution is capable of providing context-
aware reasoning while maintaining timeliness and 
safety in real-time, demanding traffic situations. 
Extensive research will have to be performed on 
issues regarding the knowledge base and the FSM 
transition and optimization. But we believe that the 
present architecture of the HMI manager provides an 
important first step towards in-vehicle information 
management, as part of an Open Platform Solution 
for ITS.  
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