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Abstract: The study problem was learning a fuzzy decision tree to classify patients with adnexal mass into either of 
benign or malignant class prior to surgery using patients’ medical history, physical exam, laboratory tests, 
and ultrasonography. A learning algorithm was developed to learn a fuzzy decision tree in three steps. In the 
growing step, a binary decision tree was learned from a dataset of patients while fuzzy discretization was 
used in decision nodes testing continuous attributes. The best degree of fuzziness was automatically found 
by an algorithm based on optimization procedures. In the pruning step, the overfitted nodes were removed 
by an algorithm based on critical value post-pruning method. In the refitting step, the labels of the leaf 
nodes were optimized. The final resulted tree had 10 decision nodes and 11 leaf nodes. Performance testing 
of the tree gave AUC of ROC of 0.91 and mean squared error of 0.1. The tree was translated into a set of 11 
fuzzy if-then rules and the clinical plausibility of the rules was assessed by domain experts. All rules were 
verified to be in agreement with medical knowledge in the domain. Despite the small learning set and the 
lack of some important input variables, this method gave accurate and, more importantly, clinically 
interpretable results. 

1 INTRODUCTION 

In the pool of more than 20 diseases causing adnexal 
mass, malignant lesions should be differentiated 
from benign lesions, because benign lesions should 
not undergo surgery unless being symptomatic or 
causing subfertility while malignant lesions should 
be removed by surgery (Hoffman, 2009). Ovarian 

cancers, comprising the majority of malignant 
adnexal masses, can spread quickly in the abdominal 
cavity and involve organs like diaphragm and bowel 
(Schaffer, 2008). Performing surgery on such organs 
is beyond the scope of general gynecology; therefore 
patients with malignant adnexal mass should be 
operated by gynecologic oncologists who have 
sufficient expertise in such operations (Mann et al., 
2009). Thus, malignant and benign adnexal masses 
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should be differentiated prior to surgery in order to 
refer patients with malignant lesions to gynecologic 
oncologists as well as withholding surgery for 
innocent benign lesions. 
No single imaging or laboratory study has been able 
to accurately differentiate malignant from benign 
adnexal masses (Myers et al.). In the meantime, 
there are few experts who can accurately 
differentiate malignant from benign masses prior to 
surgery using patient’s history, physical exam, 
laboratory tests, and ultrasonography results. This 
observation leaded to the hypothesis that a 
combination of patient’s data can accurately 
differentiate adnexal masses. A series of studies 
were tried to simulate experts’ thinking process for 
classification of adnexal masses, but none have been 
implemented into routine clinical practice (Hoffman, 
2009). The reason is that simple models like logistic 
regression are not accurate enough despite being 
easy to interpret by clinicians, while complex 
models like advanced kerned-based methods are not 
interpretable by clinicians despite being accurate. 
Ethical and legal issues do not allow clinicians to 
make their therapeutic decisions based on outputs 
coming out of black-box models without knowing 
how the outputs are made. Briefly, a model being 
both accurate and interpretable by clinicians is 
lacking. By overviewing medical textbooks and 
journals, it is revealed that combinatory if-then rules 
and decision trees are the most widely used medical 
decision making methods. Having all these facts, we 
tried to make a decision tree for preoperative 
classification of adnexal masses, which can then be 
translated into a set of if-then rules. Because the 
input data was nondeterministic for predicting 
malignancy, fuzzy inference was used to manage 
uncertainty associated with the data. The resulted 
fuzzy decision tree was then translated into a set of 
fuzzy if-then rules, which are interpretable by 
clinicians and can be criticized and amended based 
on medical knowledge in the domain. 
The paper is organized as follows: Section 2 
introduces the basic ID3 decision tree learning 
algorithm, its extension to use continuous attributes 
as input variables, the concept of nondeterministic 
data and overfitting in decision tree learning, and 
fuzzy decision trees. Section 3 defines the learning 
problem and the steps used to learn a fuzzy decision 
tree.  Section 4 explains the exact methods by which 
the fuzzy decision tree was learned from the dataset. 
Section 5 explains the post-pruning method used to 
eliminate overfitting. Section 6 describes a refitting 
method used to further improve fuzzy decision tree 
classification generalizability. Section 7 reviews the 

dataset used in this study. Section 8 presents the 
final parameters chosen for implementing the 
learning task and the results of the final tree testing. 
Section 9 discusses strengths of this study, inductive 
bias associated with decision tree learning, and the 
conclusion of the study. 

2 INTRODUCTION TO FUZZY 
DECISION TREE LEARNING 

An algorithm which learns a decision tree from a 
dataset of patients is said to learn a decision tree 
from patients’ data in the training dataset. The target 
function of this algorithm is the best decision tree 
which can classify cases into either of benign or 
malignant class. The simplest situation for making 
decision trees is when all attributes are binary, 
meaning each attribute can take only either value of 
0 or 1. For making decision trees using such 
attributes, the decision tree learning algorithm 
follows these steps (Mitchell, 1997): 
1- Create a tree by making a root node with one 

left child and one right child 
2- Using the first attribute, send training examples 

with the value of 0 to the left child and 
examples with the value of 1 to the right child 

3- Assess the pooled purity of left and right 
children for output classes 

4- Redo 2 and 3 for all attributes, saving the 
pooled purity caused by each attribute 

5- Assess which attribute has resulted in the 
maximum pooled purity; Assign that attribute to 
the root 

6- If the left child is pure for one class, make it a 
leaf node and assign its label that class 

7- If the left child is not pure for one class, go to 1 
and start making a subtree rooted in the left 
child 

8- If the right child is pure for one class, make it a 
leaf node and assign its label that class 

9- If the right child is not pure for one class, go to 
1 and start making a subtree rooted in the right 
child  

The above steps are followed by all decision tree 
learning algorithms to grow the tree by making 
children for nodes recursively, until 6 or 8 is met, 
where the node is turned into a leaf and no more 
children are made for the node. A binary attribute 
selected for a node is eliminated from the list of 
attributes which can be used by the descendents of 
that node. 
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2.1 Nondeterministic Data and 
Overfitting 

Other than the variables recorded in the dataset, 
there might be other variables affecting the output 
which are not recorded in the dataset. This is the 
usual case in modeling medical problems, where the 
model has to predict the output using some attributes 
while none of the attributes have a direct effect on 
the output (and not directly caused by the output). In 
this study, the only attribute which can directly 
determine the malignancy is the pathology results, 
but it cannot be used as an input in our model 
(because measuring this attribute needs surgery and 
is invasive). As a result, the model has to predict the 
malignancy by using attributes which are neither 
directly caused by the malignancy nor have direct 
effect on the malignancy, but are noticed to have 
interactions with the malignancy (e.g. malignant 
tumors often, but not always, have bigger sizes). 
When data is not deterministic, the output cannot be 
absolutely predicted by any combination of the 
attributes. Thus, even the best models will have a 
degree of inaccuracy, called residual error. 
When residual error is present, even the best 
attributes in the final test nodes cannot make 
absolutely pure children. If residual error is not 
recognized, the learning algorithm tries to make 
absolutely pure leaves while it is not possible by 
using any attributes. The learning algorithm 
continues to make children for nodes recursively, 
leading to small number of cases in the bottom 
nodes of an excessively grown tree. In this stage, 
because of the small number of cases in each test 
node, there is a high probability that one among all 
attributes has different values for cases of different 
classes, thus selecting this attribute for the node is 
associated with correct separation of cases in the 
training dataset who have reached that node (the 
cases are thus separated by chance, not by the 
selected attribute); but selecting this attribute for the 
node is associated with incorrect classification of 
cases reaching that node in subsequent testing of the 
tree on a separate dataset (because the same chance 
is improbable to occur again in testing). This 
learning algorithm will select irrelevant attributes for 
multiple bottom test nodes, resulting in an overfitted 
tree to the training dataset. 
To prevent overfitting, the learner has to recognize 
residual error and turn the node into a leaf if a 
sufficient amount of purity, consistent with residual 
error, is met. Another approach is that the learning 
algorithm lets the tree to become overfitted, and then 
post-prunes the overfitted tree to make an optimal 

decision tree. This approach is used in this study and 
is introduced in section 5. 

2.2 Crisp Discretization of Continuous 
Attributes 

If attributes are continuous rather than binary, the 
second step of the learning algorithm becomes more 
elaborate. The learner should test multiple thresholds 
for the first attribute, sending cases with the attribute 
value of less than threshold to the left child, and 
cases with the attribute value of more than threshold 
to the right child. The pooled purity of children will 
be assessed for each threshold, and the best 
threshold is selected for that attribute. 
Then the same process will be repeated for all 
attributes, assessing the pooled purity of children for 
each threshold of each attribute. The best attribute 
with its best threshold is finally assigned to the node. 

2.3 Fuzzy Decision Trees 

Assume a patient being classified by a conventional 
decision tree. In each test node, a single attribute is 
tested using a single threshold having two possible 
answers: less than threshold and more than 
threshold. The attribute space of the node (the local 
attribute space) is thus split into two non-
overlapping subspaces, as shown in figure 1. 
Patients with value of the tested attribute less than 
threshold go to the left child, while cases with 
attribute value more than threshold go to the right 
child. To classify a new patient, it starts at the root 
node and is tested sequentially in multiple test nodes 
until it reaches a leaf. All patients reaching a leaf 
will be assigned to the same class corresponding to 
that leaf. In summary, each patient follows a single 
path, reaches a single leaf, and is assigned the class 
stored in that leaf. 
Instead of defining crisp sets, we can define two 
fuzzy sets for members of the left and right children 
using a smooth and overlapping fuzzy discriminator 
function for continuous attributes tested in the test 
nodes (Olaru and Louis, 2003). Each fuzzy test node 
tests a single attribute using a pair of two parameters 
which characterize the fuzzy discriminator function. 
The two parameters are threshold which is the 
cutpoint, and width which defines the overlapping 
region of left and right children. The local attribute 
space is thus split into two overlapping subspaces. In 
a fuzzy decision tree, a case can be classified by 
being propagated through multiple paths in the tree 
and reaching multiple leaves, if the case is situated 
in the overlapping region of some test nodes. At the  
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Figure 1: Conventional decision tree testing two attributes and its corresponding fuzzy decision tree. In conventional 
decision trees, the attribute space is partitioned into non-overlapping subspaces in which each case is assigned to a single 
class. In fuzzy decision trees, the attribute space is partitioned into overlapping subspaces by fuzzy boundaries. If a case is 
situated in the overlapping area, it may belong to both classes with different degrees of membership. 

end, the case might have reached one or multiple 
leaves with different membership values. The class 
estimations given by all these leaves are then 
aggregated through some defuzzification process to 
determine the final estimated membership value of 
the case in each output class. 

3 THE LEARNING PROBLEM 

In this study, we have a concept learning problem. 
Let us use ܿ to denote the malignancy concept. Then ܿ(݌) denotes whether or not the patient ݌ is a 
member of the malignancy class (section 5.1, 
equation 3), and ̂ߤ஼(݌) denotes degree of 
membership of the patient in the malignancy class 
estimated by the tree. 

In this study, membership-value weighted 
average of leaves labels was used to calculate 
patient’s estimated membership value in the 
malignancy class: 

(݌)஼ߤ̂ = ∑ .(݌)௝ߤ  ∑௝௝∈௟௘௔௩௘௦ܮ ௝∈௟௘௔௩௘௦(݌)௝ߤ   (1)

where ߤ௝(݌) denotes patient’s degree of 
membrership in the ݆th leaf and ܮ௝ denotes label of 
the ݆th leaf. The label of a node is the class 
estimation of that node for cases reaching that node. 
While the label of a leaf in a non-fuzzy decision 
trees is the name of one class, the label of a leaf in a 
fuzzy decision tree can be the fuzzy degree of 
membership in one class. When the number of 
output classes is only two, like in this study, we can 
define the label of each leaf as the fuzzy degree of 
membership in one class, like malignancy class in 
this study. The denominator equals patient’s 
membership value in the root and is equal to one in 
this study.  
A fuzzy decision tree is an approximation structure 
for computing the degree of membership of patients 
to a particular class, as a function of patients’ 
attribute values. The term attribute is used to denote 
the input parameters used in the decision tree test 
nodes for classifying patients, the term instances 
denotes the set of all possible patients with any 
possible attributes values, which we denote by ܺ, 
and the term example denotes the patient’s 
attributes-output pairs provided in the training 
dataset. The process of fuzzy decision tree making 
was automatically done by supervised learning from 
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examples in the training dataset.  The learning 
problem could then be defined as: 

Learning Task. Classifying patients into either of 
benign or malignant class using patients’ attributes 

Target Function. The function ܿ that maps the 
instance space to whether the patient is a member of 
the malignancy class: ܿ:  ܺ → {0 , 1} 

Target Function Representation. the function ߨ 
equivalent to the fuzzy decision tree that maps the 
instance space to the patient’s degree of membership 
in the malignancy class: ߨ:  ܺ → [0 , 1] 
Training Experience. Using examples in the 
training dataset to make a fuzzy decision tree to 
calculate ̂ߤ஼(݌)  

Performance Measure. minimized squared error 
between the vector of outputs estimated by ߨ and the 
vector of real outputs: ܧ௣௥௙ = ‖[ܿ] − ଶ‖[ߨ] = ൣ[ܿ] − .൧்[ߨ] ൣ[ܿ] − ൧ (2)[ߨ]

where ܧ௣௥௙ denotes performance error, [ߨ] is the 
vector of the estimated class of patients estimated by ߨ containing values in the interval [0,1], and [ܿ] is 
the vector of the real class of patients provided in the 
training dataset containing values from the set {0,1}. 
For making an optimal fuzzy decision tree, a process 
of three steps was used (Olaru and Louis, 2003). 
First, a sufficiently large fuzzy decision tree was 
made in the growing step, using a subset of the 
dataset called the growing set (GS). In this step, test 
nodes are consecutively added in a top-down 
fashion, until one of the stopping criteria are met. At 
the end of this step, a large (and presumably 
overfitted) fuzzy decision tree is made. 
Then, in the pruning step, the overfitted nodes of the 
grown tree were pruned in a bottom-up fashion. A 
cross-validation method was used for this step, using 
a separate subset of the dataset called the pruning set 
(PS). 
Finally, in the refitting step, the labels of the leaves 
of the pruned tree were tuned to optimize the 
decision tree performance. This step used the whole 
learning set (LS), including all cases of both 
growing and pruning sets. At the end, the tree was 
tested to assess its performance on a dataset separate 
from the learning set. 
All algorithms were coded in MATLAB 
programming language and implemented in 

MATLAB software (version 7.8.0.347 (R2009a), 
The MathWorks Inc). 

4 GROWING METHOD 

We used a modified version of the method 
introduced by Olaru et al (Olaru and Louis, 2003). 
Figure 2 shows the split of a tree node corresponding 
to a fuzzy set ܶ into two fuzzy subsets ܮ as the left 
child and ܴ as the right child, based on the chosen 
attribute ܽݐݐ in the node ܶ. Each test node is 
associated with a discriminator function ݒ which 
determines the degree of membership of each patient 
in the left child by using patient’s attribute value ܽ(݌)ݐݐ. A widely used fuzzy discriminator function 
is the simple linear piecewise function, as shown in 
figure 3.  

 
Figure 2: Fuzzy split of test node ܶ into left and right 
children ܮ and ܴ.  test node attribute :்ݐ ;test node selected attribute ்ݐݐܽ ;test node error :்ܧ ;test node label :்ܮ
threshold; ்ݓ: test node attribute width; [(݌݌)்ߤ]: 
patients’ membership values in the test node; ݒ൫ܽ(݌)்ݐݐ൯: 
discriminator function value for the patient �. 
Corresponding left and right children features are shown 
by subscripts L and R, respectively. The right child is a 
leaf and thus does not have attribute-related features. Note 
that ݒ൫ܽ(݌)்ݐݐ൯ is not a feature stored in the test node, but 
can be calculated from the patient’s attribute value and test 
node discriminator function parameters. 

Left and right children membership values can then 
be calculated from patient’s membership value in the 
test node (݌)்ߤ and patient’s discriminator function 
value ܽ(݌)ݐݐ, which itself is dependent on the test 
node attribute threshold ݐ and width ݓ, and the 
   
  
 

 ்ݓ ்ݐ ்ݐݐܽ ൯(݌)்ݐݐ൫ܽݒ ்ܧ ்ܮ ܶ [(݌݌)்ߤ]
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ோܮ ܴ ோܧ

௅ܮ ܮ [(݌݌)௅ߤ] ௅ݐ௅ݐݐܽ ൯(݌)௅ݐݐ൫ܽݒ௅ܧ ௅ݓ

1 - 
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Figure 3: Linear piecewise discriminator function for test 
node ܶ. ݒ: discriminator function; ܽ(݌)்ݐݐ: patient’s 
attribute value; ݒ൫ܽ(݌)்ݐݐ൯: left child discriminator 
function value; ்ݐ: test node attribute threshold; ்ݓ: test 
node attribute width. The inclining line characterizes right 
child discriminator function value, which can be 
calculated by subtracting left child discriminator function 
value from one. 

patient’s attribute value ܽߤ :(݌)ݐݐ௅(݌) = .(݌)்ߤ (݌)ோߤ  ൯(݌)ݐݐ൫ܽݒ = (݌)்ߤ − (݌)௅ߤ = .(݌)்ߤ ൣ1 − ൯(݌)ݐݐ൫ܽݒ  ൯൧(݌)ݐݐ൫ܽݒ =  

۔ۖەۖ     
(݌)ݐݐܽ                              ,1ۓ ≤ ݐ − ௪ଶ (݌)ݐݐܽ                              ,0                  > ݐ + ௪ଶ௧ା మೢ ି௔௧௧(௣)௪ ݐ   , − ௪ଶ < (݌)ݐݐܽ ≤ ݐ + ௪ଶ

  

The algorithm for making a fuzzy decision tree 
follows the basic steps described in section 2. 
However, some general concepts used there should 
be exactly defined to accommodate fuzzy concepts, 
including: 
a. A method for selecting the best attribute for 

each test node, including selecting the optimum 
threshold and width of the fuzzy discriminator 
function for each continuous attribute 

b. A method for assigning a label to each node 

c. Exact definitions for stopping criteria 

4.1 Selecting the Best Attribute for the 
Test Node, and Assigning Optimum 
Labels to Left and Right Children 

Objective: given [(݌݌)்ߤ] , the vector of the 
membership values of all patients in node ܶ, find the 
attribute ܽݐݐ, threshold ݐ and width ݓ (parameters 
defining the discriminator function) together with 

left and right child labels ܮ௅ and ܮோ , so that the 
division error ܧௗ௜௩ is minimized in equation 3. 

Because the parameters of ݒ are still not fixed and 
the search algorithm has to search for the optimum 
values of ݐ and ݓ as well, the value of ݒ for each 
patient is dependent on both the patient’s attribute 
value ܽ(݌)ݐݐ and the discriminator function 
parameters ݐ and ݓ. The concept of minimizing ܧௗ௜௩ 
in equation 3 is to select the attribute and 
discriminator function parameters so that the 
estimated class of all patients pooled in both 
children would have the minimum difference from 
the real class of all patients, if the patients are 
divided into left and right children by the 
discriminator function. If a decision tree is 
composed of a root with its left and right children 
being leafs, then ܧௗ௜௩ equals ܧ௣௥௙. For larger trees,  ܧ௣௥௙ cannot be directly minimized in each test node, 
and thus ܧௗ௜௩ was used as the closest possible 
approximation to ܧ௣௥௙ which can be minimized in 
each test node. 
The algorithm selects the first attribute, searches for 
multiple values of both ݐ and ݓ, reshapes the 
discriminator function according to them, and 
calculates [ߤ௅(݌݌)] , the vector of membership 
values of all patients in the left child, and [ߤோ(݌݌)] , 
the vector of membership values of all patients in the 
right child. Then the algorithm calculates the 
optimum values of ܮ௅ and ܮோ for the selected ܽݐ ,ݐݐ 
and ݓ. 
Assuming that ܽݐ ,ݐݐ and ݓ are selected and are 
temporarily fixed, the optimum values of ܮ௅ and ܮோ 
to minimize ܧௗ௜௩ are achieved by getting the partial 
derivative of ܧௗ௜௩ with respect to ܮ௅ and ܮோ and 
making them equal to zero: ߲ܧௗ௜௩߲ܮ௅ = ோܮௗ௜௩߲ܧ߲                                               0 = 0 

Because of the quadratic shape of ܧௗ௜௩ as a function 
of ܮ௅ and ܮோ, solving the above equations will surely 
give the unique global minimum of ܧௗ௜௩. Solving the 
above equations will give us equations 4 and 5. By 
solving this linear system in ܮ௅ and ܮோ, we will have 
the formulas for calculating the optimum values of ܮ௅ and ܮோ at each fixed ݐ and ݓ: 

௅ܮ = .ߛ ߜ − .ߚ ଶߚߠ − .ߙ ߚ ோܮ                           = .ߙ ߠ − .ߚ ଶߚߜ − .ߙ ߚ  

where ߜ ,ߛ ,ߚ ,ߙ and ߠ are all sums computed from (݌)ܿ , (݌)்ߤ , and ݒ൫ܽ(݌)ݐݐ൯: 
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ߙ = ∑ .(݌)்ߤ ൯ଶ௣∈ீௌ(݌)ݐݐ൫ܽݒ ߚ   = ∑ .(݌)்ߤ .൯(݌)ݐݐ൫ܽݒ ൣ1 − ൯൧௣∈ீௌ(݌)ݐݐ൫ܽݒ ߛ   = ∑ .(݌)்ߤ ൣ1 − ൯൧ଶ௣∈ீௌ(݌)ݐݐ൫ܽݒ ߜ   = − ∑ .(݌)்ߤ .(݌)ܿ ൯௣∈ீௌ(݌)ݐݐ൫ܽݒ ߠ   = − ∑ .(݌)்ߤ .(݌)ܿ ൣ1 − ൯൧௣∈ீௌ(݌)ݐݐ൫ܽݒ   

ௗ௜௩ܧ  = ෍ .(݌)்ߤ ൛ܿ(݌) − ,(݌)ݐݐܽ)ݒൣ ,ݐ .(ݓ ௅௣∈ீௌܮ + ൫1 − ,(݌)ݐݐܽ)ݒ ,ݐ .൯(ݓ ோ൧ൟଶܮ
 

(3)

−2 ෍ ௣∈ீௌ்ߤ .(݌) .൯(݌)ݐݐ൫ܽݒ ቄ(݌)்ߤ− ቂݒ൫ܽ(݌)ݐݐ൯. +௅ܮ ቀ1 − ൯ቁ(݌)ݐݐ൫ܽݒ . ோቃቅܮ =  0 
(4)

−2 ෍ .(݌)்ߤ ቀ1 − ൯ቁ(݌)ݐݐ൫ܽݒ . ቄ(݌)்ߤ௣∈ீௌ − ቂݒ൫ܽ(݌)ݐݐ൯. +௅ܮ ቀ1 − ൯ቁ(݌)ݐݐ൫ܽݒ . ோቃቅܮ = 0 
(5)

Then, ܧௗ௜௩ is calculated using the temporary values 
of ,  ௗ௜௩ are selected for the discriminator function ofܧ ோ . The parameters that minimizeܮ ௅, andܮ ,ݓ
this attribute.  

4.2 Searching for ࢚ and ࢝ 

We developed an algorithm to find the optimum 
values of ݐ and ݓ for each attribute. This algorithm 
sorts the cases based on their attribute values (and 
eliminates duplicate values), assigns to ݐ the mean of 
attribute values of two patients in the dataset while 
assigning to ݓ the difference between the attribute 
values of the same two patients. The algorithm 
repeats this process for combinations of all two 
patients attribute values, and calculates ݐ,  ,ோܮ , ௅ܮ ,ݓ
and ܧௗ௜௩ for each of them. When the two selected 
patient’s attribute values are picked up from a single 
patient, the splitting would be crisp (with ݓ equal to 
0); thus the algorithm does not have any tendency 
for fuzzy splitting. 
This algorithm performs better than simply 
searching the interval of minimum to maximum 
values of the attribute (the attribute range) with 
changing ݐ and ݓ in small increments. In fact, we 
first tried to search for ݐ and ݓ by changing ݐ from 
the minimum to maximum in small increments (ߝ), 
and changing ݓ from 0 to min(ݐ − min(ܽݐݐ) , max(ܽݐݐ) −  in small (ݐ

increments for each ݐ value. Because various 
attributes have different units of measurement, the 
value of ߝ could not be defined as a single value, and 
it had to be defined as a fraction of the attribute 
range. Most attributes had some very big values for 
some patients. For example, while CA125 attribute 
value is less than 500 for most patients, its value is 
more than 5000 for few patients. If we have defined 
the value of ߝ = range(125ܣܥ)/100, then the value 
of ߝ could be more than 50, making the searching 
algorithm inefficient. We additionally tried to 
eliminate the outlier attribute values by eliminating 
the attribute values out of the interval: mean(ܽݐݐ) ± 2 SD(ܽݐݐ) 

where SD(ܽݐݐ) denotes standard deviation of the 
attribute values. This approach did not assign 
enough small values to ߝ either, because the 
distribution of most attributes were left skewed, 
causing this approach for eliminating outliers to be 
inefficient. 
On the other hand, the algorithm we developed 
extensively searches for ݐ in high density areas of 
the attribute distribution while minimal searching is 
done over low density areas of the distribution. 
The final parameters selected for the discriminator 
function of the attribute were the ones minimizing ܧௗ௜௩. 

4.3 Defining the Stopping Criteria 

The stopping criteria used in the non-fuzzy, binary 
ID3 algorithm (Mitchell, 1997) should be 
generalized to include fuzzy membership of patients 
in each node. The stopping criteria in the ID3 
algorithm include limited number of members in the 
node, sufficient purity of the node members, and 
consumption of all attributes already in the ancestor 
nodes so that no attribute is remained for further 
splitting. 
The cardinality of a fuzzy set is defined as the sum 
of membership values of all members: 

|ܵ| = ෍ ௣∈ௌ(݌)ௌߤ  

For having a measure for the purity of node 
members, Node Error is defined as:   ܧே = ෍ ௣∈ீௌ(݌)ேߤ . (݌)ܿ] −  ே]ଶܮ

where ܧே denotes node error, ߤே(݌) denotes 
patient’s membership value in the node, and ܮே 
denotes node label. 
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The third criterion of ID3 algorithm can be 
conceptualized as inability of the best selected 
attribute to further purify the successor children. 
When all attributes are used in the ancestor nodes, it 
means that they can be used again but they will not 
further purify the successor children. This concept is 
close to the concept of ܧௗ௜௩: if ܧௗ௜௩ of the best 
selected attribute for the node is high, it means that 
even the best attribute cannot further purify the 
successor children. 
Finally, we can define the generalized stopping 
criteria to include fuzzy concepts: 

a. |ܰ| ≤ |ܶே| 
b. ܧே ≤ ாܶಿ 
c. ܧௗ௜௩ ≥ ாܶ೏೔ೡ 

where |ܰ| denotes cardinality of the set of node 
members, |ܶே| denotes cardinality threshold, ܧே 
denotes node error, ாܶಿdenotes node error threshold, ܧௗ௜௩ denotes division error, and ாܶ೏೔ೡ denotes 
division error threshold.  
By decreasing the values of |ܶே| and ாܶಿ and 
increasing the value of ாܶ೏೔ೡ , the resulted tree will 
be bigger and, presumably, more overfitted. Because 
the grown tree would be pruned later, stopping 
criteria should be tuned such that the tree would 
grow large enough without concerning about the 
overfitting. However, stopping criteria should not be 
set such that the growing process would need a 
plentiful amount of computational time for making 
an unnecessarily overgrown tree. 

5 PRUNING METHOD 

Objective: given a grown fuzzy decision tree (FDT) 
and a pruning set, find the subtree of FDT among all 
subtrees which can be generated from FDT that has 
the minimum mean absolute error (ܧܣܯ) on the 
pruning set: ܧܣܯ = |ܵܲ|௣௥௙ܧ = ∑ (݌)ܿ] − |ܵܲ| ଶ௣∈௉ௌ[(݌)஼ߤ̂  

A subtree of the ܶܦܨ is made by contracting one or 
several test nodes of the FDT. Contracting a test 
nodes means replacing the test node with a leaf 
(Mingers, 1989). The estimated output class of the 
node is assigned the label of the node. Nodes labels 
are already calculated in the growing step. The 
number of subtrees which can be made from a tree 
by contracting its test nodes increases exponentially 

with the number of test nodes of the tree; thus 
contracting all test nodes of a given tree one by one, 
and testing the resulted trees on the pruning set one 
by one, takes a considerable amount of 
computational time. Therefore, we used a modified 
version of the critical value pruning method in the 
following three steps: 

1- Test Nodes Sorting by increasing order of their 
importance. The importance of each test node is 
determined by the node error (ܧே) calculated in 
the growing step and saved in each node. The 
more ܧே of a test node, the less pure the test 
node, and thus the more important the test node 
for differentiation of output classes in the 
successor nodes. If a node in this list is placed 
in a more important position than any of its 
ancestors, the node is removed from the list 
because it would be pruned together with the 
pruning of that ancestor. In the list, the most 
important test node is invariably the root. 

2- Subtrees Sequence Generation: the previous list 
gives the order of the critical values for pruning. 
In critical value pruning, a critical value for the 
importance of test nodes is determined, and test 
nodes which are less important than the critical 
value are pruned, unless one of the successor 
test nodes reach the critical value. The larger the 
critical value selected, the greater the degree of 
pruning, and the smaller the resulted tree. In 
practice, a sequence of pruned trees is generated 
using increasing critical values. The previous 
list gives the order of critical values by which 
the test nodes are contracted.  

At the first step, the first node in the list is 
contracted, and the resultant tree is saved in a tree 
sequence. The process is continued by contracting 
the next nodes in the list one by one, and saving the 
resulted trees in the tree sequence. At the end, we 
will have a sequence of trees in decreasing order of 
complexity. 

Before contracting the first test node in the list, 
the complete tree is tested on the pruning set to 
calculate its ܧܣܯ. For doing that, the pruning set 
patients are propagated through the tree and the 
membership value of all patients in each node is 
calculated and saved. Then the output class of all 
patients estimated by the complete tree is calculated 
and saved. Afterwards, ܧܣܯ of the complete tree is 
calculated. 

Then, every time a test node ܶ from the sorted 
list of the important nodes is contracted, the output 
class of all patients of the pruning set estimated by 
the new subtree is recursively updated by removing 
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from ̂ߤ஼(݌) the pooled output estimated by the 
successor leaves of the contracted node, and then 
adding to ̂ߤ஼(݌) the output estimated by the 
contracted node which has become a new leaf: 

a. ∀݆ ܾ݈݁݁݀݋݊ ݐݏ݁ݐ ݓ݋ ܶ, ݌∀ ݀݊ܽ ∈ (݌)஼ߤ̂  :ܵܲ = (݌)஼ߤ̂ − .(݌)௝ߤ  ௝ܮ

b. ∀݌ ∈ (݌)஼ߤ̂  :ܵܲ = (݌)஼ߤ̂ + .(݌)்ߤ  ்ܮ

Where ܶ is the test node being contracted. The 
above process for updating ̂ߤ஼(݌) of all patients 
eliminates the necessity of propagating all patients 
through the pruned subtree in each step of subtrees 
generation. Each step of subtrees sequence 
generation is completed by calculating ܧܣܯ of the 
resulted pruned subtree on the pruning set. Subtrees 
sequence generation is finished when there are no 
more nodes in the sorted list candidate for 
contracting. 

3- Best subtree selection: finally, the best subtree 
in the sequence is selected. By having ܣܧܯ of 
all subtrees in the sequence, the smallest subtree 
having the least ܧܣܯ is selected. 

6 REFITTING METHOD 

In the growing step, structure of the tree is built and 
labels are assigned to each node, both based on local 
optimization strategies. In the pruning step, structure 
of the tree is amended by contracting the overfitted 
test nodes. In the refitting step, leaves labels are 
amended based on global optimization strategies 
(Olaru and Louis, 2003). 
Let us consider the following definitions: [ܿ] = ௜݌∀     ,(௜݌)ܿ ∈ [ߨ] ܵܮ = ௜݌∀     ,(௜݌)஼ߤ̂ ∈ [ܮ] ܵܮ = ݆∀            , ௝ܮ ∈ ௜௝൧ܯൣ ݏ݁ݒ݈ܽ݁ = ݆∀   ,(௜݌)௝ߤ ∈ ,ݏ݁ݒ݈ܽ݁ ௜݌∀ ∈  ܵܮ

where ݆ is the index of leaves in the tree, and ݅ is the 
index of patients in the learning set. [ܮ], [ܿ], and [ߨ] 
are defined as column vectors, and [ܯ] is defined as 
a matrix of ݉ × ݊ dimension while ݉ denotes 
number of patients in the learning set and ݊ denotes 
number of leaves (presumably ݉ > ݊). Then: 
Objective: given the pruned fuzzy decision tree and 
the learning set as the set of examples for refitting, 

find amended fuzzy decision tree leaves labels [ܮ∗] 
so that ܧ௣௥௙ is minimized: ܧ௣௥௙ = ෍ (݌)ܿ] − ଶ௣∈௅ௌ[(݌)஼ߤ̂ = ‖[ܿ] − .[ܯ]  ଶ‖[ܮ]

[∗ܮ] = arg min[௅]  ‖[ܿ] − .[ܯ]  ଶ‖[ܮ]

By solving this problem, we will have the amended 
leaves labels, [ܮ∗]. The solution of above 
optimization problem is as follow. [ܮ∗] = .்[ܯ]ൣ .൧ିଵ[ܯ] .்ܯ [ܿ] 
7 THE DATASET 

A dataset of 305 patients collected for the 
International Ovarian Tumor Analysis (IOTA) study 
was used in this project. The IOTA study is a 
multicenter collaborative project for preoperative 
differentiation of ovarian tumors based on predictive 
models. 

Patients assessed with transvaginal 
ultrasonography and found to have an apparent 
persistent extrauterine pelvic mass were included in 
the IOTA study. Before surgery, clinical, laboratory, 
and ultrasonographic data was recorded to be used 
as input attributes. Patients then underwent surgical 
resection of the mass. All surgically removed tissues 
were extensively sampled for histologic 
examination. The histologic classification of the 
removed tissue (benign or malignant) was recorded 
to be used as output, as follows: ܿ(݌) = ൜1, (݌)ݕ݃݋݈݋ℎݐܽ݌ = ,0ݐ݈݊ܽ݊݃݅ܽ݉ (݌)ݕ݃݋݈݋ℎݐܽ݌ = ܾ݁݊݅݃݊       (6)

The dataset contained the following variables: 
patient’s age (years), menopausal status 
(premenopausal versus postmenopausal), serum 
CA125 level (units/mL), 8 sonographic morphologic 
variables, 5 color Doppler variables, and pathology 
results classification (benign or malignant). 
Ultrasonographic examination was done and 
reported based on the standard methods already 
published by IOTA group (Timmerman et al., 2000). 

8 RESULTS 

The size of growing, pruning, and testing sets was 
200, 55, and 50, respectively. The values of the 
stopping criteria were set as |ܶே| equal to 4, ாܶಿ 
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equal to 4, and ாܶ೏೔ೡ equal to 30. Smaller values 
resulted in reaching the maximum recursion limit of 
MATLAB without returning any trees. Using above 
algorithm parameters, a decision tree with 27 nodes 
was made at the end of the growing step. Pruning 
resulted in elimination of 6 overfitted nodes. Finally, 
the pruned tree was refitted and tested. 

For testing the fuzzy decision tree, the following 
steps were done: 

1- Patients of the testing set were propagated 
through the tree, and membership values of all 
patients in all leaves were calculated and saved. 
Then the output class of all patients of the 
testing set estimated by the complete tree was 
calculated according to equation 1. 

2- The performance error, ܧ௣௥௙, was calculated: ܧ௣௥௙ = ෍ (݌)ܿ] −   ଶ௣∈்ௌ[(݌)஼ߤ̂

The performance error is presumably increased by 
larger sizes of the testing set, and thus should be 
adjusted by the size of the testing set: ܧܣܯ =  |ܵܶ|௣௥௙ܧ
where |ܶܵ| denotes cardinality of the testing set 
equaling the number of patients in the testing set, 
and ܧܣܯ denotes mean absolute error. 

3- A Receiver Operator Curve (ROC) was 
developed for analyzing the performance of the 
tree in terms of area under curve (AUC) of the 
ROC as well as finding the optimal cutoff value 
for the estimated output class. 

The optimal point of the ROC was found by using 
the built-in function ݁ݒݎݑ݂ܿݎ݁݌ in MATLAB 
programming language. The function plots the true 
positive rate (TPR) versus false positive rate (FPR) 
while the resultant ROC is parameterized as a 
function of cutoff values: [ݔ, [ݕ = ൫FPR(݂݂ܿ݋ݐݑ), TPR(݂݂ܿ݋ݐݑ)൯ 

where ݔ and ݕ denote coordinates of each point of 
the plot. The optimal point of the ROC was found by 
moving a straight line with the slope of one from the 
upper left corner of the ROC (FPR=0, TPR=1) down 
and to the right until it intersects the ROC. Using the 
coordinates of this point (x=FPR, y=TPR), the 

optimum cutoff for the estimated output was then 
computed. 

4- Using the coordinates of the optimum point of 
the ROC, sensitivity and specificity were 
calculated: ݕݐ݅ݒ݅ݐ݅ݏ݊݁ݏ = ݕݐ݂݅ܿ݅݅ܿ݁݌ݏ               ܴܲܶ = 1 −  ܴܲܨ

Then, using sensitivity and specificity, the likelihood 
ratios for positive (malignant) and negative (benign) 
results of the tree were calculated: ܴܮା = 1ݕݐ݅ݒ݅ݐ݅ݏ݊݁ݏ − ିܴܮ       ݕݐ݂݅ܿ݅݅ܿ݁݌ݏ = 1 − ݕݐ݂݅ܿ݅݅ܿ݁݌ݏݕݐ݅ݒ݅ݐ݅ݏ݊݁ݏ  

The results of the final fuzzy decision tree testing on 
the testing set are summarized in table 1. To ensure 
that the small size of the testing set had not biased 
the testing results, all growing, pruning, and refitting 
steps were repeated for 10 times, allocating all 
patients to GS, PS, and TS again each time, and the 
resulted trees were compared. Except for 2 times 

 
Figure 4: ROC for classification of cases in the testing set 
by fuzzy decision tree. 

where the resulted trees were different in some 
bottom nodes, the resulted trees were almost the 
same in structure and leaves labels. Testing the 
resulted trees on their corresponding testing sets 
resulted in AUCs ranged from 0.89 to 0.96. The 
ROC plot is shown in figure 4. 

9 DISCUSSIONS 

The performance measures of the final resulted tree 
were acceptable for clinical utilization. The positive 
likelihood ratio of near 10 as well as the negative 
likelihood ratio of near 0.1 is indicative of the high 
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accuracy of the resulted fuzzy decision tree. More 
importantly, the tree had the capacity of being 
translated into the equivalent set of fuzzy if-then 
rules; each rule is made by conjunction of all 
conditions from the root to each leaf. Because the 
decision tree had 11 leaves, the decision tree was 
translated into 11 fuzzy if-then rules. Then the rules 
were interpreted and criticized by domain experts. 
This process of interpretation and amendment of the 
rules by clinicians is the main advantage of this 
method. A sample of rules extracted from the tree is: 

Table 1: Decision tree testing results. 

Performance measure Value 
Mean squared error 0.1195 
AUC of ROC curve 0.9092 
Output class cutoff 0.3596 
Positive likelihood ratio 9.0000 
Negative likelihood ratio 0.1111 
Sensitivity 90.00% 
Specificity 90.00% 

“If patient’s CA125 level is low, and the lesion 
internal wall is not smooth, and color score is low, 
and the cyst content is hemorrhagic, then the lesion 
is benign.” 
where italic words are linguistic fuzzy variables 
defined over continuous attributes. The comment of 
a domain expert on the above rule was: 
“This rule is right, because a hemorrhagic cyst 
having low blood flow (low color score) and low 
CA125 level would be a hemorrhagic functional 
ovarian cyst which is a benign lesion.” 
Likewise, all rules were interpreted by clinicians, 
and some rules were amended by clinicians based on 
clinical knowledge.  

9.1 Inductive Bias 

An approximation to the inductive bias of decision 
tree learning is (Mitchell, 1997): 
“Smaller trees are preferred over larger trees. Trees 
that place highly purifying attributes closer to the 
root are preferred over those that do not.” 
While selecting attribute for a test node, decision 
tree learning algorithms can just think of the 
immediate consequences of this selection, but cannot 
think of further consequences in successor nodes. 
Additionally, when the learning algorithm faces the 
consequences of the bad selections in the ancestor 
nodes (such as facing nodes which cannot be further 
purified using any attribute), it never backtracks to 
reconsider its previous choices. Therefore, these 
learning algorithms are susceptible to the usual 
drawback of simple-to-complex searching for 

hypotheses without backtracking: selecting locally 
optimal solutions which are not globally optimal. 
All backfitting algorithms designed for decision tree 
learning can just tune parameters of decision trees, 
but cannot amend their structure. Pruning algorithms 
are just able to contract overfitted nodes, but are not 
able to reconsider various generations of nodes to 
find the globally optimal decision tree. In fact, 
amending the structure of decision trees by 
simultaneously considering various generations of 
nodes for finding a globally optimal decision tree is 
too complex to be done by simple algorithms. 
While inductive bias of decision tree learning cannot 
be easily solved by simple algorithms, it can be 
solved by using the aid of human experts to amend 
the tree or its equivalent rules. Currently, the 
complex thinking process of a clinician cannot be 
simulated by any algorithm. The main advantage of 
decision trees is their explicit and easy-to-
understand nature, as well as their ability to be 
translated into the equivalent if-then rules. The 
whole point was making a decision tree by an 
artificial learner, because of the perfect abilities of 
artificial learners in analyzing high-dimensional 
data; and then amending the built tree (or its 
equivalent rules) by human experts, because of the 
perfect abilities of the human brain in interpreting 
and criticizing rules. 

10 CONCLUSIONS 

Decision trees are easy-to-interpret for clinicians, 
and fuzzy reasoning is a more general approach for 
managing uncertainty than probability theory. We 
proposed that a combination of decision trees and 
fuzzy reasoning would result in a robust and 
accurate classification method. 
The performance results of the tree are acceptable, 
with positive likelihood ratio of near 10 and negative 
likelihood ratio of near 0.1 for diagnosing 
malignancy. This model has minimal restriction 
bias, the problem of overfitting is eliminated in the 
pruning step, and the problem of model preference 
bias was minimized by getting aid from human 
experts to amend the extracted rules. 
Eleven fuzzy if-then rules were extracted from the 
tree and were interpreted and amended by clinicians. 
These rules are ready to be used in clinical practice 
guidelines as well as being implemented into some 
expert system for management of patients with 
adnexal mass. 
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