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Abstract: During in vivo experiments of fetal cardiac surgery performed in sheep, physiological signals were 
recorded, and subsequently analyzed. In order to characterize their complexity, the fractal dimension was 
calculated. The adopted model of dimension estimation allowed for a possible multifractal nature of the 
signals, by considering two distinct fractal dimensions ѵ1, ѵ 2 at different length scales. A comparison was 
also carried out with an alternative measure of system complexity, Approximate Entropy (ApEn). The 
results of the analysis suggest that fractal dimension may be a useful indicator of the cardiac stress and, 
ultimately, of the quality of the support delivered during the operation.  

1 INTRODUCTION 

Fetal cardiac surgery is actively being studied 
worldwide, with the favourable prospective of 
providing the treatment of congenital cardiac 
malformations as early as possible. In principle, in 
utero interventions would allow to treat simple 
primary lesions in order to prevent  complex 
secondary ones. The physiologic fetal low-flow 
condition and the possibility to use the residual 
pregnancy as a sort of natural ECMO would allow 
for the anatomic and functional recovery of the 
fetus. The final result would be the absolute 
avoidance of systemic consequences of congenital 
heart lesions with overall better outcomes compared 
to those obtained by application of current neonatal 
and infant repair techniques (Hanley, 1994; Carotti 
et al., 2003). 
However, although the technical feasibility of fetal 
cardiac or cardiopulmonary bypass has already been 
demonstrated (Sakata et al., 1998; Reddy et al., 
1996a; Reddy et al., 1996b), its main drawback 
remains the progressive deterioration of the 
fetoplacental unit function, occurring especially 
during the post-bypass recovery phase. Hence, a 
relevant research effort is ongoing, based on 
methods to improve the fetoplacental tolerance  and 
to monitor the fetoplacental unit function during 
extracorporeal circulation (Carotti et al., 2003). 
In our study we sought to investigate the 
effectiveness of new methods for monitoring  left 

ventricular contractility during experimental fetal 
cardiac surgery procedures, based on a nonlinear 
analysis of the left ventricular pressure, according to 
the concept of fractal dimension. 
The aim of the study was to provide useful insights 
on fetal monitoring with regards also to the topic 
phase of post-operative recovery. 

2 MATERIALS AND METHODS 

The experimental model used for fetal surgery 
procedures was the fetal lamb at 110 to 130 days of 
gestation (delivery term is approximately 145 days). 
Two animals were selected and managed according 
to the anaesthesiological and surgical protocols 
already described (Grigioni et al., 2000), in 
compliance with the Guide for Care and Use of 
Laboratory Animals of the Italian Ministry of 
Health. 
 Prolonged extracorporeal circulation (ECC) was run 
under steady-flow assistance without the use of an 
oxygenator, using a miniaturized bypass circuit to 
minimize the autologous priming volume (Carotti et 
al., 2003). 
Left ventricular pressure was measured with a Millar 
pressure transducer (Millar Instruments, Inc., 
Houston, Texas. USA), mounted on a catheter tip. A 
12-bit A/D board (AT-MIO16F, National 
Instruments, USA) was used to sample the signal at 
the output of the pressure amplifier, under control of 
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an original software developed in the LabView 
(National Instruments Corp., USA) environment. 
The analysis of the signals was carried out by means 
of original Matlab (The MathWorks, Natick, MA, 
USA) programs.  
After instrumentation of the animal, the baseline 
signals were recorded. Subsequently, atrial venous 
and pulmonary arterial cannulation were performed 
and a 60-min. cardiac bypass was run at a flow rate 
of 300 ml/Kg/min. At the end of the circulatory 
assistance the cannulae were removed, blood 
priming volume was reinfused, and a 90-minute 
observation period followed (recordings at 30, 60, 
90 min. after ECC) before animals were sacrificed.  
Correlation dimension. The left ventricular pressure 
was analyzed using the estimation of the fractal 
dimension, according to the method of (Grassberger 
and Procaccia, 1983). 
Denoting by x the signal whose fractal dimension is 
to be calculated (in this case, the left ventricular 
pressure), the set of points defined as 

( ) ( ) ( )( ){ }ττξ 1,.., −++= mtxtxtx iiii , Ni ,..2,1=   (1) 

where τ is an appropriate delay, constitute a 
geometrical object (usually denoted as an attractor) 
which is embedded in the m-dimensional phase 
space.  
The dimension of this object, then, will be smaller 
than m, for sufficiently high values of m. Denoting 
the correlation integral as 
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where ( ) 1=xθ   for x>0 and ( ) 0=xθ  otherwise, iξ  
and kξ  being two noncoincident points in the phase 
space, defined by (1),it can be demonstrated that, for 
small values of the distance l, νllC ∝)( . The 
exponent ν can be considered as the fractal 
dimension of the constructed set of points in the 
phase space. 
In the current study, the delay τ  was chosen equal to 

2/1τ , i.e., the value at which  the autocorrelation 
function  ( )τf  of the original pressure signal falls at 
half its maximum value, ( )0f . Thus, an excessive 
degree of correlation between components of the 
vectors iξ  was avoided. In fact, setting τ at a very 
low value has the consequence that the attractor is 
stretched along the diagonal of the phase space, as 
shown in Fig. 1; this renders more difficult to 
compute the correlation dimension. It is convenient, 

instead, to choose  τ  equal to 2/1τ , yielding a more 
expanded structure in the phase space, and at the 
same time not having too much decorrelation 
between the components of iξ , which would be 
characteristic of a purely noisy signal. 
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Figure 1: Two-dimensional section of the attractor 
composed of the points iξ  , according to (1), when τ =1 
ms. The time series x(t) is the left ventricular pressure 
recorded during the experiments described in the text. In 
this limit case, the attractor is stretched along the diagonal 
of the phase space, rendering more difficult the extraction 
of the correlation dimension. 

In this study, we adopted a slight modification of the 
correlation integral, proposed by (Theiler, 1986). 
This procedure  is aimed at minimizing the  effect of 
the degree of autocorrelation present in the original 
signal, in that the linear range (in the log-log plane) 
of the correlation integral is not restricted, as 
happens with the original Grassberger-Procaccia 
algorithm. In the following, a Theiler window of 
T=5 sampling points was employed in the 
calculation of the modified form of the correlation 
integral. 
The dimension of phase space was set to m=5. As 
shown in the Results section, this is higher than what 
is strictly required for the calculation of a fractal 
dimension ν (i.e., m>2ν, according to the Takens 
criterion (Takens, 1980)). In order to have a more 
general estimation scheme, we considered more than 
a single fractal dimension. Thus, a pair (ν1, ν2) of 
fractal dimensions was calculated, ν1  (ν2) being the 
slope of the regression line relative to lower (higher) 
distances l in the phase space. The cut-off distance   
marking the separation between the low- and high-
distance regions was found as the one warranting a 
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good quality of the )(lC  data fit: considering, for 
each regression line, the correlation between the   

)(lC  points and the relative approximating line, in 
terms of the Pearson correlation coefficient r, the 
cut-off distance l′  between the two regions was 
yielded by the maximization of the sum of the 
coefficients r relative to the low and high distances 
l  in the phase space.  
The usefulness of calculating two correlation 
dimensions was verified with the analysis of a 
monodimensional signal, whose values were given 
by the abscissae of the Cantor set (Mandelbrot 
1982), with noise added to investigate about the 
efficiency of the proposed scheme for correlation 
dimension estimation.  
The Cantor set is a fractal object, built with an 
iterative procedure. In the first step, the interval [0, 
1] is split in three equal parts, and only the intervals 
[0, 1/3] and [2/3, 1]  are retained. For the n-th 
iteration, each of the intervals retained after the n-1-
th iteration is subjected to the same procedure, 
discarding the central third. The Cantor set is 
comprised of the extrema of the retained intervals, in 
the limit ∞→n . For such a fractal set, the 
Hausdorff-Besicovich dimension is 

)3log(/)2log(=HBD .  
Since it has been demonstrated that HBDD ≤2 ,   2D  
denoting the correlation dimension (Grassberger and 
Procaccia, 1983), we compared the result of the 
correlation dimension calculation with the 
theoretical value, )3log(/)2log(  . This is particularly 
well-grounded, in this case, since the strict 
inequality HBDD <2  can be expected only for the 
case of a dynamical system not spanning uniformly 
the phase space, whereas the uniform coverage of 
the attractor implies that HBDD =2  (see section 3 of 
(Grassberger and Procaccia, 1983)). In our example 
the data points were taken once and only once  from 
the Cantor set, so that it can be excluded that some 
regions of the phase space were covered more often 
than others. Therefore, we expect that HBDD =2  

)3log(/)2log(= . 
We added to the series ( )kxc , generated after 13 
iterations of the procedure previously described, a 
noise with a flat probability density function, of zero 
mean and range equal to 2-11. The embedding 
dimension was set to m=1. As shown in Fig. 2, 
where the value (1/2)2-11 is marked by a vertical line, 
the determination of two fractal dimensions 
correctly highlights the presence of additive noise: at 
the lower values of l,  the fractal dimension ν1 was 

found to be 0.9434, as a result of the “space-filling” 
property of stochastic data (Grassberger and 
Procaccia, 1983), i.e., the noise added to the Cantor 
set data. Instead, the calculated value of n2 was 
0.6277, very close to the theoretical value   0.6309. 
Had a unique correlation dimension been carried 
out, it would have been biased by the noisy data, and 
overestimated (in this example, n=0.6614). Thus, the 
proposed procedure can be used to automatically 
identify a noise level, and calculate the appropriate 
correlation dimension above that noise level, making 
use efficiently of the available data. It must be 
underlined that this is a parameter-free procedure.  

 
Figure 2: Calculation of the correlation dimensions 21,νν , 
for a synthetic signal consisting of the Cantor set with 
zero-mean added noise, in the range ±a, with a= (1/2)2-11 
(this value is overlaid as a vertical line). The higher-scale 
correlation dimension 2ν =0.627 agrees well with the 
theoretical fractal dimension of the Cantor set, 
notwithstanding the presence of the additive noise. 

In order to investigate about the nonlinear features 
of the signals, we analysed also the surrogate time 
series derived by the originals signals with the 
iterative amplitude adjusting procedure, described in 
(Schreiber and Schmitz, 1996). With this technique, 
the amplitude distribution and the power spectrum of 
the original signal are simultaneously retained, for 
each generated surrogate. The algorithm consists of 
a simple iteration scheme: a sorted list is stored of 
the time-series values { } ( ){ }nn txx ≡ , together with 
the squared amplitudes of the Fourier transform of 
{ }nx , denoted by { }2

nX . A random shuffle (without 

replacements) { })0(
nx  of { }nx  is  calculated. Then, 

each iteration consists of two steps: 1) { })(i
nx  is 

brought to the desired power spectrum, using the 
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original squared amplitudes { }2
nX  in the Fourier 

transform of { })(i
nx , retaining the phases of the 

transform itself and transforming back; 2) rank order 
the resulting series, in order to impart to it the 
original amplitude distribution given by { }nx . The 
algorithm is iterated until a negligible change in the 
spectrum is attained between successive iterations.  
Before extracting the correlation dimension of the 
surrogates, we checked for a possible 
nonstationarity, that would have biased the 
conclusions derived from the surrogate analysis. In 
particular, we adopted the weak stationarity criterion 
(Andrzejak et al., 2001), which compares the 
average deviation of the amplitudes and of the center 
frequency of the signal ( xF  and ωF , respectively) 
with the same quantities, calculated for each of the 
N surrogates (here, N=40). The criterion requires 
that xF  ( ωF ) must fall within the range of  x

isurrF ,  
( ω

isurrF , ), i=1,2,.. N. 
An alternative measure of system complexity, 
Approximate Entropy (ApEn) (Pincus, 1991), was 
also adopted to analyze the data, in order to quantify 
the amount of regularity in left ventricular pressure 
recordings. Approximate Entropy represents a 
family of statistics, hence it is denoted as 

( )Nrm ,,ApEn , where m is the dimension of the 
vectors built with the time series data (left 
ventricular pressure in the current study), r is a 
vector comparison distance and N is the length of the 
data array. In the present study, we set m=2 and 

)( dev. std.0.2 Xr ×= ; these values give reliable 
results for N>1000, as reported in (Pincus, 1991)  

3 RESULTS 

Fig. 3 reports the results of the correlation dimension 
analysis for the experiment A, at baseline condition, 
during the extracorporeal circulation, and during the 
post-ECC recovery phase (at 1, 30 and 90 minutes 
after ECC). Fig. 4 provides the same information for 
the experiment B. 
The statistical analysis of the results for the 
correlation dimension relative to different phases of 
the experiments is reported in Table I and II, for case 
A and B, respectively. 
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Figure 3: Correlation dimension 2ν   during the course of 
the experiment A (mean value + s.d.).  
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Figure 4: Correlation dimension 2ν   during the course of 
the experiment B (mean value + s.d.).  

As shown in the error bars in Figs. 3-4, the standard 
deviation of the measurements for the fractal 
dimension was small, assuring a satisfying 
repeatability of the measurements (typically three 
consecutive recordings were used in each phase). 
The effect of the ECC phase on the dimension of the 
relative attractor is evident in case B, where lower 
values of the correlation dimension 2ν  were found 
with respect to the baseline. On the other hand, a  
less evident effect, if any, was found in case A. The 
t-test for the difference in 2ν   between baseline and 
ECC supports this view (Table 1 and 2).  
As for the surrogate analysis, the weak stationarity 
criterion was always met by the signals and the 
respective surrogates, then we proceeded to compare 
the correlation dimension for the two types of data. 
Fig. 5 reports the results of the surrogate analysis for 
one recording relative to each of three phases of the 
experiment (case A, baseline and 30 and 90’ off-
ECC). A slight variation of the calculated value from 
the one reported in Fig. 3, for the relative phase, is 
due to the fact that, in the same graph, values were 
averaged over three runs, whereas in Fig. 5 only one 
run and the relative surrogates were depicted, for the 
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sake of clarity. It is evident how the calculated 
correlation dimension 2ν  of the original was found 
to lie outside of the range of the respective surrogate 
ensemble (with only one exception for the 30’ off 
case), so that there is a strong indication for 
nonlinearity.  

Table 1: Results of t-tests between the correlation 
dimension values 2ν  relative to different phases of 
experiment A. 

exp. A  basal  ECC 1’ off  30’ off   90’ off 

 basal  0.139 0.403 0.037 0.443 

 ECC   0.038 0.155 0.273 

1’ off    0.152 0.344 

30’ off 
    0.025 

Table 2: Results of t-tests between the correlation 
dimension values 2ν  relative to different phases of 
experiment B. 

exp. B  basal  ECC 1’ off  30’ off   90’ off 

basal 
 0.003 0.024 0.007 0.057 

ECC 
  0.135 0.378 0.083 

1’ off 
   0.670 0.783 

30’ off 
    0.298 

 
Figure 5: Surrogate analysis, case A, baseline and 30 and 
90’ off-ECC. Crosses (circles): correlation dimension 2ν   
relative to the original (surrogate) data. 

 
Figure 6: Approximate Entropy (ApEn) during the course 
of the experiment A (mean value + s.d.).  

 
Figure 7: Approximate Entropy (ApEn) during the course 
of the experiment B (mean value + s.d.).  

With regard to the Approximate Entropy values 
(Fig. 6 and 7), in case A we did not find a very large 
difference between the start and the end of the 
experiment (Fig. 6). A slight decrease of ApEn was 
observed during ECC with respect to baseline, as 
also in Fig. 3 for correlation dimension. 
Instead, for case B (Fig. 7) a marked increase of 
ApEn can be seen for the off-ECC phases with 
respect to both basal and ECC. In this case, the  
transition from the basal state to any of the post-
ECC phases was always significant; the same 
applies also for the transition from the ECC phase to 
any of the post-ECC phases.  
A clear increase of ApEn was found for the post-
ECC pahse with respect to baseline, for both cases. 
This confirms that a higher degree of irregularity 
characterize the phase immediately after return to 
unassisted circulation. 
Later on, during the experiments, in case A ApEn 
returned to the lower values observed during 
baseline (Fig. 6), whereas for case B the values 
remained high at 30’ and 90’ post-ECC phases (Fig. 
7). 
The transition between 1’ off and 90’ off is related 
to significant difference for both correlation 
dimension and ApEn, for case A. In this case, we 
recall that the experiment could be carried out with 
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no apparent problem until the end of the protocol. 
Thus, it can be assumed that from 1’ to 90’ a 
normalisation of the foetus conditions took place. As 
opposed to this, in case B the same transition is not 
statistically significant, for both analysis techniques. 
Probably, the lack of a satisfying return of the 
cardiac function to normal values, in this case, is 
reflected by a not statistically significant difference 
between the start and the end of the post-ECC phase.  

4 DISCUSSION  

The estimation of the fractal dimension according to 
the method of Grassberger and Procaccia (1983) is 
especially useful for the analysis of single-variable 
temporal series.  
As already reported in the Methods section, we 
considered more than a single fractal dimension in 
order to have a more general estimation scheme. 
Thus, a pair ( 21,νν ) of fractal dimensions was 
calculated, 1ν  ( 2ν ) being the slope of the regression 
line relative to lower (higher) distances l in the phase 
space. 
The presented results refer only to the fractal 
dimension 2ν , because at the lower distances the 
effect of noise can be important, possibly masking 
useful information connected to the physiological 
conditions. For instance, noise is produced by the 
A/D conversion of the LV pressure (quantization 
noise), acting at the scale corresponding to the 
minimum difference between levels at the output of 
the converter. Moreover,  the effect must be also 
considered of the noise related to the electronics of 
the acquisition apparatus before sampling. A well-
known property of noise is that its correlation 
dimension is ideally equal to the embedding 
dimension, because the phase space tends to be filled 
uniformly by the vectors (Grassberger and 
Procaccia, 1983). Even though this is rigorously true 
only for an infinite time series, it has been observed 
(e.g., Osorio et al., 2001) that also for finite-size data 
there is an increase of the correlation dimension with 
the embedding dimension. Therefore, we chose to 
retain only the correlation dimension 2ν  relative to 
higher spatial scales, which is less affected by the 
presence of noise. This procedure may be viewed as 
a nonlinear filtering of the pressure signals, which 
allows to discard their noisiness’ effect on the fractal 
dimension estimation.  It is evident that, in the ideal 
case of a signal for which   at all scales, we would 
find 1ν = 2ν , hence the proposed scheme is a 

generalization of the more usual single dimension 
analysis. The correlation dimension technique has 
already been used in (Yambe et al., 1996)  to 
estimate the complexity in physiological signals; 
specifically, the arterial blood pressure waveform 
was analysed to derive the fractal dimension during 
natural and assisted blood flow. A lower dimension 
was found for the assisted circulation phase, which 
is in agreement with the results of the present paper 
(see Figs. 3 and 4). However, it must be taken into 
consideration  that the results in (Yambe et al. 1996) 
refer to a single fractal dimension, not allowing for 
an eventual multifractal nature of the signal, as 
opposed to the present study. 
Besides correlation dimension, as an alternative 
measure of system complexity, Approximate 
Entropy was also used to characterize the evolution 
of the experiments. As demonstrated in (Pincus, 
1991), ApEn is capable of capturing the increasing 
complexity of low-dimensional nonlinear 
deterministic systems and of stochastic models, 
being positively correlated with the degree of such 
complexity.  
The results for ApEn were in agreement with those 
relative to the correlation dimension 2ν . In 
particular, comparing the two quantities, the 
variation between consecutive phases was almost 
always of the same sign, for case A as well as for 
case B. It must be also underlined the fact that ApEn 
increased for both experiments after the return to the 
unassisted circulation, with respect to the ECC 
phase; the same effect was observed for 2ν .    
The starting condition of the two experiments was 
quite different, as shown by the higher blood 
concentration of endogenous catecholamine in 
experiment B compared to experiment A. This 
difference could be related to a  different response to 
general anesthesia, as previously reported (Reddy et 
al., 1996b).  
Since the “baseline” condition is actually the state 
after the delivery of anaesthesia, the comparison of 
this phase in Fig. 3 and 4 shows that there is a 
possible positive correlation between the fetal stress 
(and the consequent release of agents capable of 
increasing the ventricular contractility) and the 
values of 2ν . Another evidence of the correlation 
between fetal stress and fractal dimension may be 
recognized in Figs. 3 and 4, observing that the 
transition ECC – 1’ off, which is an obviously 
stressful event, is in both cases related to an increse 
in 2ν . This result was statistically significant only 
for experiment A, though (see Tables I and II). 
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A difference in fractal dimension between the 
beginning and the end of the procedure was found to 
be much more statistically significant in experiment 
B than in case A (see basal – 90’ off ECC transitions 
in Tables I and II). This may confirm that in case A 
the mechanical assistance to the circulation was 
followed by a favourable outcome of the 
experiment, since the ventricular function 90 
minutes after the return to the normal circulation 
was found to be associated to a not statistically 
significant difference with respect to   the pre-bypass 
phase, (p=0.443), whereas the p value associated to 
the same transition for case B was just above 
p=0.05. The values of 2ν  were already high in the 
basal condition for case B (Fig. 4), probably as a 
consequence of a poor response to general 
anesthesia, and the highly statistically significant 
lessening of 2ν  in the post-bypass phase with 
respect to the baseline is probably closely related to 
such conditions. The general trend is the same for 
the two experiments, with a decrease of 2ν  at 30’ 
off  after a high value of 2ν  at 1’ off, and a slight 
increase found at the end of the experiment (90’ off). 
The results of 1’ off ECC phase confirm that the 
phase immediately following the stop of the 
extracorporeal circulation is particularly critical. In 
Table I the transitions ECC-1’ off and 30’ off – 90’ 
off for case A are statistically significant. Instead, in 
case B such transitions are not significant. This 
could be related to a less successful clinical outcome 
of the procedure, with lower blood pH values than in 
case A (Grigioni et al, 2000). In particular, the 
comparison of the values related to ECC - 1’ off, 
p=0.038 vs. 0.135, could indicate the loss of a clear 
recovery from the withdrawal of the assistance, due 
to the already compromised metabolic conditions, 
for case B.  
Estimation of fractal dimension can be very useful to 
characterize  the complexity of physiological 
signals, which can be related to the state of the 
cardiovascular system. Moreover, this analysis could 
be used in conjunction with other, more traditional 
types of analysis, such as the end-systolic pressure-
volume relationship (ESPVR), already employed in 
(Grigioni et al, 2000) to evaluate the recovery of the 
ventricular contractile state after steady-flow 
support. 
Since the methods hereby presented require the 
calculation of the   distances between N points in the 
phase space, its complexity is O( 2N ). A possible 
real-time implementation is related to the 
improvement in computing power and to the 
significance of the use of data segments of 
reasonable length.  

5 CONCLUSIONS 

The proposed generalization of the usual single-
dimension analysis, allowing for the possible 
multifractal nature of the ventricular pressure signal, 
proved to be effective in tracking the evolution of 
the ventricular contractility in the considered 
experiments.   
In particular, a decrease of the fractal dimension 
associated with the physiological signal of interest 
was observed during the assisted circulation phase, 
consistently with earlier findings (Yambe et al., 
1996). The considered method does not require very 
long data segment, thus it could also be used to 
monitor in real time the heart’s conditions, in 
assisted conditions as well as in the normal 
functionment. 
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