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Abstract: This paper presents a simple continuous-time linear vaccination-based control strategy for a SEIR 
(susceptible plus infected plus infectious plus removed populations) propagation disease model. The model 
takes into account the total population amounts as a refrain for the illness transmission since its increase 
makes more difficult contacts among susceptible and infected. The control objective is the asymptotically 
tracking the joint susceptible plus the removed-by-immunity population to the total population while 
achieving simultaneously the remaining population (i.e. infected plus infectious) to asymptotically tend to 
zero. 

1 INTRODUCTION 

Important control problems nowadays related to Life 
Sciences are the control of ecological models like, 
for instance, those of population evolution 
(Beverton-Holt model, Hassell model, Ricker model 
etc.) via the online adjustment of the species 
environment carrying capacity, that of the 
population growth or that of the regulated harvesting 
quota as well as the disease propagation via 
vaccination control. In a set of papers, several 
variants and generalizations of the Beverton-Holt 
model (standard time-invariant, time-varying 
parameterized, generalized model or modified 
generalized model) have been investigated at the 
levels of stability, cycle-oscillatory behavior, 
permanence and control through the manipulation of 
the carrying capacity (De la Sen, 2008a, 2008b, De 
la Sen and Alonso-Quesada, 2008a, 2008b, 2009). 
The design of related control actions has been 
proved to be important in those papers at the levels, 
for instance, of aquaculture exploitation or plague 
fighting. On the other hand, the literature about 

epidemic mathematical models is exhaustive in 
many books and papers. A non-exhaustive list of 
references is given in this manuscript (Erturk and 
Momani, 2008, Keeling and Rohani, 2008, Khan et 
al., 2009, Mollison, 2003, Mukhopadhyay and 
Battacharyya, 2007, Ortega et al., 2003, Song et al., 
2009, Yildirim and Cherruault, 2009, Zhang et al., 
2009). The sets of models include the most basic 
ones (Keeling and Rohani, 2008, Mollison, 2003): 
• SI models where not removed-by-immunity 

population is assumed. i.e., only susceptible and 
infected populations are assumed, 

• SIR models, which include susceptible, infected 
and removed-by-immunity populations, and 

• SEIR models where the infected populations is 
split into the “infected”, which incubate the 
disease but do not still have any disease 
symptoms, and the “infectious” or “infective”, 
which do have the external disease symptoms. 

Those models have also two major variants, 
namely, the so-called “pseudo-mass action models”, 
where the total population is not taken into account 
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as a relevant disease contagious factor and the so-
called “true-mass action models”, where the total 
population is more realistically considered as an 
inverse factor of the disease transmission rates. 
There are many variants of the above models, for 
instance, including vaccination of different kinds: 
constant (Yildirim and Cherruault, 2009), impulsive 
(Song et al., 2009, Zhang et al., 2009), discrete-time 
etc., incorporating point or distributed delays (Song 
et al., 2009), oscillatory behaviors (Mukhopadhyay 
and Battacharyya, 2007) and so on. In this paper, a 
continuous-time vaccination control strategy is given 
for a SEIR epidemic model which makes directly the 
susceptible plus removed- by-immunity populations 
to asymptotically track the whole population. It is 
assumed that the total population remains uniformly 
bounded through time while being nonnegative as 
they are all the partial populations of susceptible, 
infected, infectious and immune. Thus, the disease 
transmission is not critical, and the SEIR-model is of 
the above mentioned true-mass action type. Note 
that although all the partial populations and the total 
one are all nonnegative for all time in the real 
problem under study, the property has to be 
guaranteed for the mathematical SEIR-model (1)-(4) 
as well. 

2 SEIR EPIDEMIC MODEL 

Let S(t) be the “susceptible” population of infection, 
E(t) the “infected”, I(t ) the “infectious” population, 
and R(t) the “removed by immunity” (or “immune”) 
population at time t. Consider the SEIR-type 
epidemic model: 

( )S(t)I(t)S(t) S(t) R(t) N(t) 1 V(t)
N(t)

= −μ +ω −β + ν −  (1) 

S(t)I(t)E(t) ( )E(t)
N(t)

= β − μ + σ  (2) 

I(t) ( )I(t) E(t)= − μ + γ +σ  (3) 
R(t) ( )R(t) (1 )I(t) N(t)V(t)= − μ + ω + γ −ρ + ν (4) 

subject to initial conditions S(0) 0≥ , E(0) 0≥ , 
I(0) 0≥  and R(0) 0≥  under the vaccination 

function 0 0V : + +→ , with { }0 z z 0+ ∈ ≥ . 
The vaccination control is either the vaccination 
function itself or some appropriate four dimensional 
vector depending on it defined “ad-hoc” for some 
obtained equivalent representation of the SEIR-
model as a dynamic system. In the above SEIR-
model, N(t) is the total population, μ  is the rate of 
deaths from causes unrelated to the infection, ω  is 

the rate of losing immunity, β  is the transmission 
constant (with the total number of infections per 

unity of time at time t being S(t)I(t)
N(t)

β ), 1−σ  and 

1−γ  are, respectively, the average durations of the 
latent and infective periods. All the above 
parameters are nonnegative. The parameter ω  
means the rate of immunity lost since it makes the 
susceptible to increase and then the immune to 
decrease. The usual simplified SEIR-model is 
obtained with ν = μ  and 0ρ = . In that case, 

[ ] 0

N(t) S(t) E(t) I(t) R(t)
   N(t) S(t) E(t) I(t) R(t) 0   t

N(t) S(t) E(t) I(t) R(t) N(0) N 0
+

= + + +

= μ − − − − = ∀ ∈

⇒ + + + = = >

 

If ν > μ  then the new-born lost of maternal 
immunity is considered in the model. If ν < μ  then 
there is a considered mortality incidence by external 
causes to the illness. The parameter ( ]0,  1ρ∈  is the 
per-capita probability of dying from the infection. If 
either ν ≠ μ  and 0ρ =  or ν = μ  and 0ρ ≠ , and 

otherwise, ( )N(t)I(t) ν −μ
=

ργ
 occurs eventually on a 

set of zero measure only, then the total population 
varies through time as obtained by correspondingly 
summing up both sides of (1)-(4). Furthermore, (1) 
and (4) and (2) and (3) might be separately summed 
up to obtain the evolution dynamics of the separate 
populations of joint susceptible and immune and 
joint infected and infectious. This leads to: 

N(t) ( )N(t) I(t)= ν −μ −ργ  (5) 
[ ]
( )

S(t) R(t) S(t) R(t)
S(t)                 1 I(t) N(t)
N(t)

+ = −μ +
⎛ ⎞

+ γ −ρ −β + ν⎜ ⎟
⎝ ⎠

 (6) 

[ ] S(t)E(t) I(t) E(t) I(t) I(t)
N(t)

⎛ ⎞
+ = −μ + − γ −β⎜ ⎟

⎝ ⎠
 (7) 

Note that (5) is identically zero if 0ν −μ = ρ = . 
From (5)-(7), it follows that: 

t( ) t ( )( t )

0
N(t) e N(0) e I( )dν−μ ν−μ −τ= −ργ τ τ∫  (8) 

[ ]t

t ( t )

0

S(t) R(t) e S(0) R(0)

S( )e N( ) (1 ) I( ) d
N( )

−μ

−μ −τ

+ = +

⎡ ⎤⎛ ⎞τ
+ ν τ + γ −ρ −β τ τ⎢ ⎥⎜ ⎟τ⎝ ⎠⎣ ⎦
∫

 
(9) 

[ ]t

t ( t )

0

E(t) I(t) e E(0) I(0)

S( )e I( )d
N( )

−μ

−μ −τ

+ = +

⎛ ⎞τ
− γ −β τ τ⎜ ⎟τ⎝ ⎠
∫

 (10) 
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In order to further solve (9), an integration by parts 
is performed as follows: 

[ ]

t t t ( t )

0 0 0

tt

0 0

p( )dq(t, ) p( )q(t, )d N( )e d

                    N( )q(t, ) q(t, )N( )d

−μ −ττ τ = τ τ τ ≡ τ τ

= τ τ − τ τ τ

∫ ∫ ∫
∫

 (11) 

where: 

[ ]
t(t )t t(t )

00
0

t

eq(t) e d q(t, )

1 e      q(t, t) q(t,0)

−μ −τ
−μ −τ

−μ

⎡ ⎤
τ = = τ⎢ ⎥μ⎣ ⎦

−
= = −

μ

∫
 (12) 

so that q(t, t) 1/= μ , tq(t,0) e /−μ= μ  and then, 
using (5) in (11) yields: 

[ ]

t (t ) t

0

t ( t )

0

1N( )e d N(t) e N(0)

1        e ( )N( ) I( )  d

−μ −τ −μ

−μ −τ

⎡ ⎤τ τ = −⎣ ⎦μ

− ν −μ τ −ργ τ τ
μ

∫

∫
 (13) 

which, after grouping identical terms, leads to: 
t (t )

0

tt (t )

0

N( )e d

1     N(t) e N(0) e I( )d

−μ −τ

−μ −μ −τ

τ τ

⎡ ⎤= − +ργ τ τ⎢ ⎥⎣ ⎦ν

∫

∫
 (14) 

Thus, combining (9)-(10) and (14) yields: 

[ ]
tt

0

tt

0

S(t) R(t) N(t) E(t) I(t)

S( )e S(0) R(0) N(0) e I( )d
N( )

S( )e E(0) I(0) e I( )d
N( )

−μ μτ

−μ μτ

+ − = − +

⎡ ⎤⎛ ⎞τ
= + − + γ −β τ τ⎢ ⎥⎜ ⎟τ⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞τ
= − + − γ −β τ τ⎢ ⎥⎜ ⎟τ⎝ ⎠⎣ ⎦

∫

∫

 

(15) 

3 VACCINATION CONTROL 

If the control objective S(t) N(t) /= γ β  for all time 
is achieved with a positive vaccination control in 
[ ]0, 1 , it is proven below that the whole population 
converges exponentially to the sum of the 
susceptible population plus the immune population 
while both the infectious and infective converge 
exponentially to zero. This is theoretically the ideal 
objective since the infection is collapsing as time 
increases while the susceptible plus the immune 
populations are approximately integrating the whole 
population for large time. Other alternative objective 
has been that the immune population be the whole 
one but this is a more restrictive practical objective 
since the whole susceptible population should 

asymptotically track the immune one even those of 
the susceptible who are not contacting the disease. 
Theorem 1. Assume that 0β > γ ≥  and that the 
vaccination function is such that S(t) N(t) /= γ β  

0t +∀ ∈  with a vaccination control in [ ]0, 1  for all 
time. Then, the SEIR model (1)-(4) is positive for all 
time. Furthermore, 

[ ]
[ ] [ ]t t

S(t) R(t) N(t) E(t) I(t)

 e S(0) R(0) N(0) e E(0) I(0)−μ −μ

+ − = − +

= + − = − +
 (16) 

for all time what implies the following constraint for 
the initial conditions: 

[ ]N(0)S(0) E(0) I(0) R(0)γ γ
= = + +

β β− γ
 (17) 

As a result, 

[ ]

[ ]

t

t

t

R(t) N(t) S(t) e E(0) I(0)

      N(t) e E(0) I(0)

N(t) e R(0) S(0) N(t)

−μ

−μ

−μ

= − − +

β− γ
= − +

β

⎡ ⎤β − γ β− γ β − γ
= + − ≤⎢ ⎥β γ β⎣ ⎦

 
(18) 

0t +∀ ∈ . Then, R(t) N(t)β− γ
→

β
 as t →∞ . 

Furthermore, the following two limits exist: 

{ } { }
t t
lim S(t) R(t) N(t) lim E(t) I(t) 0
→∞ →∞

+ − = + =  (19) 

If, in addition, 0ν −μ = ρ =  then 

{ }
{ } { }

t

t t

N(t) N(0) N lim S(t) R(t)

lim E(t) lim I(t) 0
→∞

→∞ →∞

= = = +

= =
 (20) 

Proof: The mathematical SEIR-model (1)-(4) is 
positive since the vaccination control is in [ ]0, 1  for 
all time so that no population takes negative values 
at any time. On the other hand, (16) and (19) follow 
directly from (15) and S(t) N(t) /= γ β  for all time. 
Finally, (20) follows from (16) and (19) since 

0ν −μ = ρ =  implies N(t) 0≡  0t +∀ ∈ , i.e., 
N(t) N(0)≡  0t +∀ ∈  from (5).            *** 

An associate stability result follows: 

Theorem 2. Assume that 0ργ ≥ . Then, the 
following properties hold: 
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(i) The SEIR-model is globally stable if 
0 ≤ ν ≤ μ  and the vaccination law fulfils 

[ ]0V : 0,  1+ → . 

(ii) If S(t) N(t) /= γ β  and 0ν > μ ≥  then the 
conditions 

{ }( )

0 t

   with   0

N(0) e I( )d  ,   lim N(t) 0
∞ ν − μ τ

→∞

μ < ν < μ +ργ ργ >

= ργ τ τ =∫
 

are jointly necessary for global stability under 
Theorem 1. 

(iii) If 0ν > μ ≥  and I(t) ( )N(t)= ν −μ ργ  

0 0t t (finite) +∀ ≥ ∈  then global stability of the 
SEIR-model (1)-(4) is guaranteed if 

[ ]0V : 0,  1+ → . If 0ν > μ ≥ , [ ]0V : 0,  1+ →  
and I(t) ( )N(t)= ν −μ ργ  is replaced with the 
weaker condition 

tI(t) ( )N(t) o(e )−α− ν −μ ργ =  for some 

+α∈  then the SEIR-model (1)-(4) is globally 
stable. 

Proof: 
(i) If 0 ≤ ν ≤ μ  and 0ργ ≥  then: 

N(t) ( )N(t) I(t) ( )N(t) 0= ν −μ −ργ ≤ ν −μ ≤  

0t +∀ ∈  so that N(t) N(0)≤ < ∞  0t +∀ ∈ . Since 
the SEIR-model is positive if [ ]0V : 0,  1+ →  then 
all the populations are nonnegative and upper-
bounded by N(0). 
(ii) On the other hand, the solution of (5) for any 
initial conditions is: 

t( ) t ( )

0
N(t) e N(0) e I( )dν−μ − ν−μ τ⎡ ⎤= −ργ τ τ⎢ ⎥⎣ ⎦∫  

which is uniformly bounded for all time only if 
( )

0
N(0) e I( )d

∞ − ν−μ τ= ργ τ τ∫  since 0ν > μ ≥ . Also, 

N(t) < ∞  0t +∀ ∈  only if N(t) 0≤  on a non-
necessarily connected set of infinite Lebesgue 
measure. Thus, there is a finite sufficiently large 
finite time “t” such that: 

[ ]

[ ]

[ ]

I(t) N(t) S(t) E(t) I(t) R(t)

1 I(t) S(t) E(t) R(t)

I(t) S(t) E(t) R(t)

ν −μ ν −μ
≥ = + + +

ργ ργ

⎛ ⎞ν −μ ν −μ
⇔ − ≥ + +⎜ ⎟ργ ργ⎝ ⎠

ν −μ
⇔ ≥ + +

μ +ργ − ν

 

which requires the parametrical conditions 0ργ >  
and μ < ν < μ +ργ . Since I(t) is of exponential order 
of at most −μ  from Theorem 1 [see (16)] then 
S(t) E(t) R(t)+ +  is also of exponential of order of 
at most −μ  so that N(t) extinguishes exponentially 
as they do all the populations of susceptible, 
infected, infectious and immune. 

(iii) If I(t) N(t)ν −μ
=

ργ
 with ν > μ  after some finite 

time 0t  then 0N(t) N(t )= < ∞  0t t∀ ≥  and the 
SEIR-model is positive since [ ]0V : 0,  1+ → . 
Thus, global stability follows. If 

tI(t) ( )N(t) o(e )−α− ν −μ ργ =  replaces the above 
stronger condition I(t) ( )N(t)= ν −μ ργ  after a 
finite time then N(t)  is of exponential order −α  so 
that )t(N  is uniformly bounded for all time and the 
global stability still holds.                *** 

3.1 Control Law Synthesis 

Note that the case ν > μ  is not feasible in practice 
for 0ργ =  since the population diverges. If 0ργ > , 
it requires a collapsing effect of the illness on the 
population which is also unfeasible in practical 
situations. It is now discussed how the vaccination 
law is generated to keep simultaneously the SEIR-
model positivity plus the tracking objective of 
Theorem 1 which requires positivity. The tracking 
objective S(t) N(t) /= γ β  for all time is equivalent 
to any of the subsequent equivalent identities below: 

[ ]

N(t) N(t) / E(t) I(t) R(t)

N(t) E(t) I(t) R(t)

N(t) E(t) I(t) R(t)

R(t) N(t) E(t) I(t)

= γ β+ + +

⎛ ⎞β − γ
⇔ = + +⎜ ⎟β⎝ ⎠

β
⇔ = + +

β− γ
β− γ

⇔ = − −
β

 (21) 

which requires as necessary condition 0β > γ ≥ . 
Although unrelated to the physical problem at hand, 
the necessary condition will be also accomplished 
with 0β <  and 0γ ≤  with S(t) N(t) /= γ β . 

The solution of (4) matches (21) for all time if 
and only if: 

BIOINFORMATICS 2011 - International Conference on Bioinformatics Models, Methods and Algorithms

168



 

[ ]

[ ]( )

t

t( ) t ( )

0

R(t) N(t) E(t) I(t) N(t) e E(0) I(0)

e R(0) e (1 )I( ) N( )V( )  d

−μ

− μ+ω μ+ω τ

β − γ β− γ
= − − = − +

β β

= + γ −ρ τ + ν τ τ τ∫

 
(22) 

where (10), with S(t) N(t) /= γ β , has been used. 
Define an everywhere time-differentiable 

auxiliary function 0h : + →  defined as: 

[ ]t

0
h(t) h(0) (1 )I( ) N( )V( )  d= + γ −ρ τ + ν τ τ τ∫  (23) 

such that, 

h(t) (1 )I(t) N(t)V(t)
1V(t) h(t) (1 )I(t)

N(t)

= γ −ρ + ν

⎡ ⎤⇔ = − γ −ρ⎣ ⎦ν

 (24) 

for all time so that the last right-hand-side additive 
term in (23) becomes after integration by parts: 

t( )t ( )

0

t( ) t ( ) t ( )

0

e e h( )d

e e h(t) h(0) ( ) e h( )d

− μ+ω μ+ω τ

− μ+ω μ+ω μ+ω τ

τ τ

⎡ ⎤= − − μ +ω τ τ⎢ ⎥⎣ ⎦

∫

∫
 (25) 

The replacement of (25) into (22) yields: 

[ ]

[ ]

( ) t t

t ( )

0
t( ) t ( )

0

e N(t) e E(0) I(0)

R(0) e (1 )I( ) N( )V( )  d

R(0) e h(t) h(0) ( ) e h( )d

μ+ω ω

μ+ω τ

μ+ω μ+ω τ

β − γ
− +

β

= + γ −ρ τ + ν τ τ τ

= + − − μ +ω τ τ

∫
∫

 (26) 

and equivalently: 

[ ]

[ ]

[ ]( )

( )t

t ( )(t ) t

0
t ( )(t )

0

t t

h(t) N(t) e h(0) R(0)

   ( ) e h( )d e E(0) I(0)

 N(t) ( ) e h( )d

    e e h(0) R(0) E(0) I(0)

− μ+ω

− μ+ω −τ −μ

− μ+ω −τ

−μ −ω

β − γ
= + −

β

+ μ+ω τ τ− +
β− γ

= + μ+ω τ τ
β

+ − − −

∫
∫

 (27) 

generated from: 

[ ]

[ ] [ ]( )t t

t2 ( )( t )

0

h(t) ( )N(t) I(t)

  ( )e h(0) R(0) e E(0) I(0)

  ( ) e h( )d ( )h(t)

− μ+ω −μ

− μ+ω −τ

β − γ
= ν −μ −ργ

β

− μ +ω − +μ +

− μ +ω τ τ + μ +ω∫

 (28) 

so that: 

[ ] [ ]( )t t

t2 ( )(t )

0

( )( )h(t) (1 )I(t) N(t) 1 I(t)

     ( )e h(0) R(0) e E(0) I(0)

     ( ) e h( )d ( )h(t)

− μ+ω −μ

− μ+ω −τ

⎛ ⎞β − γ ν −μ γρ
− γ −ρ = + γ −⎜ ⎟β β⎝ ⎠
− μ + ω − +μ +

− μ +ω τ τ + μ +ω∫

 (29) 

The vaccination law which ensures the positivity 
of the mathematical SEIR-model (1)-(4) is generated 
as follows: 

[ ]V(t)     if    V(t) 0, 1

V(t)   1        if    V(t) 1
  0        if    V(t) 1

⎧ ∈
⎪⎪= >⎨
⎪ <⎪⎩

 (30) 

where: 

h(t) (1 )I(t)V(t)
N(t)

− γ −ρ
=

ν
 (31) 

Define the indicator function i(t) as follows: 

[ ] 0     if    V(t) 0, 1
i(t)

  1     otherwise
⎧ ∈⎪= ⎨
⎪⎩

 (32) 

Then, one has instead of (15): 

[ ]
tt

0

tt

0

S(t) R(t) N(t) E(t) I(t)

S( )e S(0) R(0) N(0) e I( )i( )d
N( )

S( )e E(0) I(0) e I( )i( )d
N( )

−μ μτ

−μ μτ

+ − = − +

⎡ ⎤⎛ ⎞τ
= + − + γ −β τ τ τ⎢ ⎥⎜ ⎟τ⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞τ
= − + − γ −β τ τ τ⎢ ⎥⎜ ⎟τ⎝ ⎠⎣ ⎦

∫

∫

 

(33) 

which coincides with (15) for all time if the indicator 
function is identically zero, that is, if h(t)  is such 
that the auxiliary vaccination law (31) is in [ ]0, 1  
for all time. Also, one gets from (15) that: 

t (t )

0

S( )N(t) S(t) R(t) e I( )i( )d
N( )

−μ −τ ⎛ ⎞τ
− − ≤ ε + β − γ τ τ τ⎜ ⎟τ⎝ ⎠

∫  (34) 

1 N(0) S(0) R(0)t T( ) ln − −⎛ ⎞∀ ≥ ε ⎜ ⎟μ ε⎝ ⎠
 for any given 

real 0ε > . The right-hand-side integral of (34) takes 
into account the tracking deterioration if there is a 
time interval of nonzero Lebesgue measure such that 
V(t) V(t)≠  0t +∀ ∈ . The following result is 
important to discuss stability when the vaccination 
law [ ]V(t) 0,  1∈  but it is not identically equal to 

V(t) . In fact, the positivity part of Theorem 1 still 
holds because of the SEIR-model is positive since 

[ ]V(t) 0,  1∈  0t +∀ ∈  and the whole population 
evolution is independent of the vaccination law 
according to (5). However, the whole susceptible 
plus immune does not asymptotically track the 
whole population. In summary, one has: 
Theorem 3. The vaccination law (28), (30)-(31) 
makes the SEIR–model (1)-(4) positive and globally 
stable under Theorem 2. Furthermore, 
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∫
 

                *** 
A more practical vaccination law is defined as 

follows: 
{ }
{ }

aux

min S(t),  R(t) 0  and
V(t)          if  

V(t) min E(t),  I(t) 0

V (t)     otherwise

⎧ >⎧⎪⎪ ⎨= ≥⎨ ⎪⎩
⎪
⎩

 (35) 

with V(t)  given by (31) and auxV (t)  obtained from: 

aux

1    if   S(t) 0 and / or R(t) 0
V (t)

0    otherwise
= =⎧

= ⎨
⎩

 (36) 

Remark 1. The inclusion of the auxiliary function 
auxV (t)  in (35) guarantees the non-negativity of the 

susceptible and remove-by-immunity populations. In 
this sense, note that large values of V(t)  could 
eventually do negative S(t)  or R(t)  from (1)-(4). 
This fact is avoided with such a construction of 
V(t)  since auxV(t) V (t)=  at the time instants where 

S(t) 0=  and/or R(t) 0=  guarantees that S(t) 0≥  
and R(t) 0≥  0t +∀ ∈ . Moreover, the non-
negativity for S(t)  and R(t)  guarantees the non-
negativity of the infected and infectious populations 
from (2) and (3). Finally, note that the construction 
of the vaccination function (35)-(36) lets that E(t)  
and I(t)  reach zero, which is the ideal objective for 
the eradication of the infection from the population. 
In summary, such an alternative control law 
guarantees the positivity property for the SEIR-
epidemic model by the proper construction of the 
law. In this sense, the condition [ ]0V : 0, 1+ →  in 
Theorem 1 is a sufficient, but a non-necessary, 
condition to ensure the positivity of the system.   *** 

4 SIMULATION EXAMPLE 

An example based on the rabbit hemorrhagic disease 
in United Kingdom is considered to illustrate the 
theoretical results presented in the paper. An initial 
population of N(0) 1000=  rabbits is used. Such an 
epidemic can be described by the SEIR model (1)-
(4) with the parameter values: 

0.01 per day (p. d.)μ = , 0.017 p. d.ν = , 

0.936 p. d.β = , 0.0333 p. d.ω = , 0.9314ρ =  and 
0.025 p. d.σ = γ = . Such values are commonly used 

in the literature (Keeling and Rohani, 2008, White et 
al., 2004). The main characteristic of such an 
infection is its high mortality, note the value of the 
probability of dying from the infection ( 0.9314ρ = ) 
close to 1. The initial conditions for the individual 
populations are given by: S(0) 800= , E(0) 80= , 
I(0) 50=  and R(0) 70= . 

The time evolution of the system in the free-
vaccination case, i.e. if V(t) 0=  0t +∀ ∈  is 
displayed in Figure 1. The population of rabbits 
disappears because of the high mortality of the 
infection as it can be seen in such a figure. As a 
consequence, a vaccination strategy has to be 
applied if the persistence of the rabbits is required. 
In this sense, Figure 2 displays the evolution of the 
total, the susceptible and the removed-by-immunity 
populations if the vaccination control law defined by 
(28), (31), (35) and (36), with the initial condition 
h(0) 0= , is applied. On the other hand, the time 
evolution of the infected and the infectious 
population with such a vaccination strategy is shown 
in Figure 3. The total population of the rabbits 
monotonically grows through time as it can be seen 
from Figure 2. Moreover, the infected and infectious 
population decrease to zero as time grows as it is 
seen in Figure 3. In other words, the infection is 
eradicated after a time interval and then, the 
population of rabbits grows in a fast way, like it 
occurs in absence of disease. Finally, the time 
evolution of the vaccination function is displayed in 
Figure 4. 
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Figure 1: Time evolution of the total and individual 
populations without vaccination. 
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These simulation results point out the improvement 
of the use of a vaccination strategy in order to 
guarantee the suitable growth of a population against 
a high mortality infectious disease. 
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Figure 2: Time evolution of the total, susceptible and 
removed-by-immunity populations with the proposed 
vaccination control law. 
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Figure 3: Time evolution of the infected and infectious 
populations with the proposed vaccination control law. 
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Figure 4: Time evolution of the vaccination associated to 
the control law. 

5 CONCLUSIONS 

A vaccination control strategy has been presented to 
eradicate the propagation of infectious diseases. The 
SEIR mathematical model has been used to design a 
control action via a vaccination strategy, which 
modifies suitably the system dynamics in order to 
get the disease eradication objective. The 
performance of such a vaccination strategy has been 
illustrated via some simulation results based on the 
rabbit hemorrhagic disease. Such results show that a 
continuous-time vaccination through the population 
could be carried out in order to eradicate the 
epidemic. Otherwise, the rabbits population 
extinguishes due to the high mortality associated to 
such an epidemic disease. 

Future research is in progress to deal with more 
general models to describe propagations of diseases. 
Also, other types of control strategies based on 
impulsive or discrete-time vaccinations are going to 
be treated. 
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