
 
REFERENCES 
Allen, F. R., Ambikairajah, E., Lovell, N. H. & Celler, B. 
G., 2006. Classification of a known sequence of 
motions and postures from accelerometry data using 
adapted gaussian mixture models. Physiol. Meas., 27, 
935–951. 
Babu, R. V., Anantharaman, B., Ramakrishnan, K. & 
Srinivasan, S., 2002. Compressed domain action 
classification using hmm. Pattern Recognit. Lett., 
23(10), 1203 – 1213. 
Bao, L. & Intille, S. S., 2004. Activity recognition from 
user-annotated  acceleration data. In Ferscha, A. & 
Mattern, F. Pervasive Computing, Springer, 301,1-17. 
Bouten, C., Koekkoek, K., Verduin, M., Kodde, R. & 
Janssen, J., 1997. A triaxial accelerometer and 
portable data processing unit for the assessment of 
daily physical activity. IEEE Trans. Biomed. Eng., 
44(3):136–147. 
Brézillon, P., 1999. Context in problem solving: a survey. 
Knowl. Eng. Rev., 14(1), 47–80. 
Chuy, O., Hirata, Y., Wang, Z. D. & Kosuge, K., 2007. A 
control approach based on passive behavior to enhance 
user interaction. IEEE Trans. Rob., 23(5), 899–908. 
Foerster, F., Smeja, M. & Fahrenberg, J., 1999. Detection 
of posture and motion by accelerometry: a validation 
study in ambulatory monitoring. Comput. Hum. 
Behav., 15, 571 –583. 
Hirata, Y., Komatsuda, S. & Kosuge, K., 2008. Fall 
prevention control of passive intelligent walker based 
on human model. IEEE  Int.Conf. on Intell. Robots 
Syst, 1222–1228. 
Jain, A. K., Duin, R. P. W. & Mao, J., 2000. Statistical 
pattern recognition: A review. IEEE Trans. Pattern 
Anal. Mach. Intell., 22(1), 4–37. 
Karantonis, D., Narayanan, M., Mathie, M., Lovell, N., & 
Celler, B., 2006. Implementation of a real-time human 
movement classifier using a triaxial accelerometer for 
ambulatory monitoring. IEEE Trans. Informat. 
Technol. Biomed., 10(1), 156–167. 
Liang, R. & Ouhyoung, M., 1995. A real-time continuous 
alphabetic sign language to speech conversion VR 
system. Comput. Graph. Forum, 14(3), 67–76. 
Mannini, A. & Sabatini, A. M., 2010. Machine learning 
methods for classifying human physical activity from 
on-body accelerometers. Sensors, 10(2), 1154–1175. 
Martinez-Contreras, F., Orrite-Urunuela, C., Herrero-
Jaraba, E., Ragheb, H. & Velastin, S. A., 2009. 
Recognizing human actions using silhouette-based 
hmm.  IEEE Conf. on Adv. Video Signal Based 
Surv.,43–48. 
Mathie, M. J., Celler, B. G., Lovell, N. H. & Coster, A. C., 
2004. Classification of basic daily movements using a 
triaxial accelerometer. Med. Biol. Eng. Comput., 
42,679 – 687. 
Meijer, G., Westerterp, K., Verhoeven, F., Koper, H. & 
Ten Hoor, F., 1991. Methods to assess physical 
activity with special reference to motion sensors and 
accelerometers.  IEEE Trans. Biomed. Eng., 38(3), 
221–229. 
Pudil, P., Novovicová, J. & Kittler, J., 1994. Floating 
search methods in feature selection. Pattern Recogn. 
Lett., 15(11), 1119–1125. 
Rabiner, L. R., 1989. A tutorial on hidden markov models 
and selected applications in speech recognition. Proc. 
IEEE, 77(2), 257–286. 
Ravi, N., Dandekar, N., Mysore, P. & Littman, M. L., 
2005. Activity recognition from accelerometer data. 
American Association for Artificial Intelligence, 5, 
1541–1546. 
Sabatini, A., Genovese, V. & Pacchierotti, E., 2002. A 
mobility aid for the support to walking and object 
transportation of people with motor impairments. 
IEEE Int.Conf. on Intell. Robots Syst, 2, 1349–1354. 
Sabatini A. M., 2006, Inertial sensing in biomechanics: a 
survey of computational techniques bridging motion 
analysis and personal navigation.In  Begg, R. & 
Palaniswami, M.,  Computational Intelligence for 
Movement Sciences: Neural Networks and Other 
Emerging Techniques;Eds.; Idea Group Pubilishing: 
Hershey, PA, USA, 70–100. 
Van Laerhoven, K. & Cakmakci, O., 2000. What shall we 
teach our pants? Proc. IEEE Int. Symposium on 
Wearable Computers, 77. 
Yamato J., Ohya J. & Ishii K., 1992, Recognizing human 
action in time-sequential images using Hidden Markov 
Models,  Proc. Conf. Comp. Vision and Pattern Rec., 
379-385.  
Yang, J., Xu, Y. & Chen, C., 1997. Human action learning 
via hidden markov model. IEEE Trans. Syst. Man and 
Cyb., Part A, 27(1), 34–44. 
Yu, H., Spenko, M. & Dubowsky, S., 2003. An adaptive 
shared control system for an intelligent mobility aid 
for the elderly. Auton. Rob., 15(1), 53–66. 
BIOSIGNALS 2011 - International Conference on Bio-inspired Systems and Signal Processing
208