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Abstract: The use of a weighted-frequency Fourier linear combiner (WFLC) algorithm for assessment and attenuation 
of movement disorder tremor (including essential tremor and Parkinson’s tremor) is quite prevalent; indeed, 
this technique is likely the most popular for such applications. The novel work presented here applies this 
technique to accelerometer and gyroscope data describing six degree-of-freedom motion (three translational 
and three rotational degrees-of-freedom). Most analysis of tremor is based on observation of generally one 
to three degrees-of-freedom of motion. Six degree-of-freedom motion analysis is more difficult to 
accomplish because of the complexity of capturing such a large amount of motion data. As well, processing 
accelerometer and gyroscope data to yield six degree-of-freedom motion generally involves the use of a 
Kalman smoother (necessary because of signal noise and drift) to ensure that accelerometer signals are 
correctly compensated for the influence of gravity. After data are processed using a Kalman smoother and 
the WFLC algorithm is applied, results are interpreted using wavelet frequency spectrum analysis to 
determine the frequency content before and after processing the data. Results show that the WFLC 
algorithm can be successfully applied to all six degrees-of-freedom of motion to largely remove tremor. 

1 INTRODUCTION 

1.1 Movement Disorder Assessment 

In recent years there has been much focus on 
movement disorder tremor assessment using inertial 
sensors (accelerometers and gyroscopes (Rocon, et 
al., 2004, 2006)). Such assessment of tremor related 
disorders (focussing largely on size of tremor, 
frequency, axis of motion etc.) can help to create a 
standardized approach to assist medical 
professionals when diagnosing tremor; this approach 
can help to better understand the nature of the 
disorder under evaluation. As well, assessment of 
tremor can be used to evaluate the effectiveness of 
medication. 

1.2 Movement Disorder Attenuation 

Attenuation of tremor is another major focus of 
recent research conducted. It can take the form of an 

orthesis designed to actively remove tremor, or 
passive and active feedback systems to dampen and 
mitigate tremor (such as a pen with a feedback 
system such that the tip moves so as to counteract 
tremor motion). Such attenuation can be quite useful 
because 90% of tremor patients report a disability 
(Gallego, et al., 2009). 

1.3 Types of Disorders Evaluated 

Tremors types evaluated for this research paper 
include essential tremor (ET) and Parkinson’s 
disease (PD); these are among the most common 
types of tremor disorders (although, sufferers of 
these disorders can also exhibit other non-tremor 
related symptoms) (Rocon, et al., 2004). ET is the 
more prevalent of these two, affecting 4% of people 
over age 65 (Louis, 2005); while PD affects 1.5-
2.5% of people older than 70 in the United States 
(Mansur, et al., 2007). Tremor is generally regarded 
to have a frequency of 3-12 Hz (Elble and Koller, 
1990). 
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2 IMPORTANCE OF KALMAN 
FILTER 

When utilizing accelerometers for tremor assessment 
and attenuation, it is critical to consider that raw 
accelerometer data contain both lateral and 
rotational tremor components (Rocon, et al., 2004). 
The former tremor type is measured directly by 
accelerometers and the later is caused by rotation 
through the gravity field. Indeed, rotating an 
accelerometer through a gravity field (i.e. about a 
vector perpendicular to gravity) at a constant rate 
will cause the accelerometer signal to follow a 
generally sinusoidal trajectory with peaks at positive 
gravitational acceleration (generally approximately 
9.81 m/s2 depending on the local gravity field) and 
troughs at negative gravitational acceleration; this is 
illustrated in Figure 1. It follows that a rotational 
tremor (with no lateral motion component) will also 
register an accelerometer signal depicting tremor 
motion components. Such a rotational tremor is 
removed from accelerometer data in this research 
paper so that the lateral acceleration components can 
be evaluated independently of rotation. This is 
shown in Figure 2, an overall flow chart of the data 
processing. From this figure, it can be seen that 
processed accelerometer data (bottom half of the 
figure on the right hand side) is used to evaluate 
lateral tremor and processed gyroscope data (bottom 
half of the figure on the left hand side) is used to 
evaluate rotational tremor. 

 
Figure 1: An accelerometer rotated through the gravity 
field and the signal generated. 

To decipher lateral and rotational tremor motion (for 
six degree-of-freedom motion resolution), a Kalman 
smoother is employed. Strictly speaking, raw 
gyroscope data should be sufficient to remove 
rotational tremor components from accelerometer 
data by providing orientation information; however, 
due to signal noise, an accurate solution generally 
involves extra information and data fusion to 
accurately obtain orientation data. For the Kalman 
smoother employed in this research paper, such data 
fusion uses the known start and end orientation of 
inertial sensors. As well, updates are performed 
using   accelerometer   data   during  relatively  still  

 
Figure 2: Overall flow chart for data processing. 

motion signal portions to estimate orientation about 
the two horizontal axes (i.e. an orientation reading is 
performed using an accelerometer gravity 
measurement when the inertial sensors are 
stationary). 

After Kalman smoothing, the weighted-
frequency Fourier linear combiner (WFLC) 
algorithm is used for further analysis. The 
application of WFLC for the evaluation of all six 
degrees-of-freedom of tremor motion is novel and is 
introduced in this research paper likely for the first 
time. The WFLC algorithm is generally regarded as 
the most useful for both assessment and attenuation 

ADAPTIVE HUMAN TREMOR ASSESSMENT AND ATTENUATION - Six Degree-of-Freedom Motion Analysis
Utilizing Wavelets

47



 

of tremor (Rocon, et al., 2004). 
There are many advantages to using the WFLC 

technique for six degree-of-freedom tremor analysis. 
One is that it can allow for medical professionals 
studying tremor to determine the axis of motion for 
which tremor is most prevalent for different patients. 
It also allows for one to determine the degree of 
correlation of different lateral and rotational tremors 
and their phase shift with regard to one another. 
Another feature important for tremor assessment, the 
overall signal shape (i.e. sinusoidal, zigzag etc.) for 
each axis of motion, can also be studied. 

Six degree-of-freedom motion information is 
required to properly attenuate tremor for many 
applications; this is often the case when an external 
mechanism is used for attenuation (such as implied 
by the test setup utilized for the research conducted 
and presented here, where patients were told to 
simulate eating using a spoon). Such a motion was 
chosen for analysis because many tremor patients 
complained about to the fact that they often spilled 
their soup whilst trying to eat. Studying such a 
movement is also useful from the perspective of 
assessment in that significant tremor data is present 
during evaluation. Future applications stemming 
from the research carried out could see actuators 
between the spoon head and handle to mitigate 
tremor motion. 

3 MATHEMATICAL METHODS 

3.1 Kalman Filter and Smoother 

3.1.1 Kalman Filter 

Raw data is first processed to determine sensor 
orientation for all six inertial sensors used in data 
collection (three accelerometer and three gyroscopes 
mounted on a rigid body). The state vector for the 
Kalman smoother is given as follows: ݍത = ሾݍଵ, ,ଶݍ ,ଷݍ  ସሿ் (1)ݍ

Where the first three elements of ݍത indirectly 
give rotation magnitude about the x, y and z axes, 
respectively, and the last element gives the 
magnitude of overall orientation. The following 
equations can be used to determine the Kalman filter 
a priori values of the quaternion vector for 
subsequent time steps under evaluation (as found in 
(Sabatini, 2006)): ݍത௞ାଵ =  ത௞ (2)ݍ௞ାଵ,௞ߔ

 

and ߔ௞ାଵ,௞ = ସ,ସܫ + )ߗ12 ഥ߱)(3) ݐ߂ 

Where ݐ߂ is time interval between data readings, ܫସ,ସ is a four by four element identity matrix and the 
matrix ߗ( ഥ߱) is given by: 

)ߗ ഥ߱) = ێێێۏ
ۍ 0 −߱௭ ߱௬ −߱௫߱௭ 0 −߱௫ −߱௬−߱௬ ߱௫ 0 −߱௭߱௫ ߱௬ ߱௭ 0 ۑۑۑے

ې
  (4) 

Elements ߱௫, ߱௬ and ߱௭ (components of the 
vector ഥ߱) are gyroscope measurements for the x, y 
and z axes respectively. The Kalman filter a priori 
covariance matrix (ܲ) for the quaternion state vector 
is found for subsequent time steps as follows: 

௞ܲାଵ = ௞ାଵ,௞ߔ ௞ܲߔ௞ାଵ,௞்+ ݐ߂ ൬12൰ଶ  ்ܯ௚,௔௥௪ܥܯ
(5) 

Where 

ܯ = ൦−ݍସ ଷݍ ଷݍ−ଶݍ− ସݍ− ଶݍଵݍ ଵݍ− ଵݍସݍ− ଶݍ ଷݍ ൪ (6) 

And ܥ௚,௔௥௪ is a three by three covariance matrix 
for gyroscope measurements populated with non-
zero elements along only the main diagonal as in 
Sabatini (2006). Values for the matrix are found 
using an angular random walk formulation as in El-
Sheimy, et al. (2008), Shin (2005) and Stockwell 
(2010). 

A standard Kalman filter a posteriori update 
procedure is used as in Chui and Chen (1991) and 
Grewal (1993). Updates are taken from known start 
and end orientations of the inertial sensors and 
accelerometer data measurements during periods of 
relatively stationary or limited motion (stationary or 
limited motion is determined from when 
accelerometer signals show low standard deviation 
and have a combined signal strength roughly 
equivalent to gravity). Such accelerometer gravity 
measurements can provide orientation information 
for two of the three axes of orientation (the two 
lying in the horizontal plane). 

3.1.2 Kalman Smoother 

After Kalman filtering has finished, a Rauch-Tung-
Striebel (RTS) Kalman smoother is applied as given 
in Brown and Hwang (1992) and Shin (2005). This 
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smoother has the effect of removing discontinuities 
in the processed data and improving data quality. 

Once orientation data has been found and 
smoothed, it can be used to correct accelerometer 
signals for gravitational measurements. This is done 
by using a rotation matrix at each time step ( ෠ܴ) to 
transform accelerometer data ( തܽ) (which lie in the 
coordinate frame of the moving IMU (Inertial 
Measurement Unit)) into a consistent coordinate 
frame. Such a consistent coordinate frame is fixed 
relative to the earth so that gravity (݃̅) can be 
subtracted from the signal. After gravity is removed, 
the remaining accelerometer data are transferred 
back into the IMU coordinate frame, as follows: തܽ௧ = ෠ܴିଵ( ෠ܴ തܽ − ݃̅) (7) 

Where superscript −1 denotes matrix inversion 
and തܽ௧ is accelerometer data with only translational 
motion components remaining (and not influenced 
by gravitational acceleration). ෠ܴ  can be found 
directly from Kalman smoothed quaternion values 
 as depicted in Altmann (1986) and Kuipers ,(ොݍ)
(1999)). As well, ݃̅ (a three element vector) will 
have values of 0, 0 and −݃௠, respectively, for its x, 
y and z axes (where ݃௠ is the magnitude of 
gravitational acceleration) if the consistent 
coordinate frame chosen is that of the IMU start 
position as depicted in Figure 4 (a). 

3.2 Application of the WFLC 
Algorithm 

3.2.1 Critically Dampened Filter 

Processed gyroscope data (raw data with low 
frequency error drifts removed) and processed 
accelerometer data (with the gravitational influence 
on signals removed) are evaluated using a critically 
dampened filter. This filter was found to be the best 
in estimating intended motion (i.e. motion with 
tremor components removed) when compared to a 
number of popular alternatives based on its ability to 
adequately track a signal without being influenced 
by signal components with significant tremor 
(Gallego, et al., 2009). The filter effectively uses a 
least squares straight line fit of data with more recent 
data being given a higher weight (i.e. more influence 
on the fitting line parameters) than previous data 
(Brookner, 1998). 

3.2.2 WFLC Algorithm 

The WFLC algorithm fits a series of sinusoidal 
signals (harmonic sines and cosines referenced to a 

fundamental frequency) to the data under evaluation 
(Riviere, et al., 1997). In its early development, it 
was used for removing the tremor of a surgeon’s 
hand during critical operations by using a feedback 
system and electric actuators within a surgical 
instrument to counteract tremor (Riviere, et al., 
1998). The algorithm also is quite useful for 
describing and removing movement disorder tremor 
because of its ease of implementation (i.e. simplistic 
mathematical iterations are utilized), zero phase lag 
real time filtering capabilities and its relative 
computational efficiency (utilizing just a small 
number of iterative computational steps). 

3.3 Wavelet Spectral Analysis 

Pre and post WFLC processed inertial data (both 
with gravitational effects on accelerometer data 
removed) are analyzed using wavelets to determine 
the frequency spectrum. The main advantages of 
using wavelets for such an application is the 
localization power in both frequency and time 
domain (so non tremor signal portions between trials 
can be easily negated) and the availability of 
numerous base functions, that can be used as mother 
wavelet function, leading to better signal modelling; 
as opposed to Fourier based analysis which is 
largely focussed on the use of sinusoidal functions 
for analysis. 

A continuous wavelet transform was used to 
allow for a more thorough visual inspection of the 
signal evaluated than can be afforded using a 
discrete wavelet transform. The continuous wavelet 
transform is found as follows (Goswami and Chan, 
,௝݌൫ݓ :(1999 ௞൯ݐ = ଵඥ௣ೕ ׬ (ݐ)ݏ ෨߰(௧ି௧ೖ௣ೕ ஶିஶݐ݀(   (8) 

Where ݌௝ is a scaling coefficient to allow for 
analysis of different frequencies of interest, ݐ௞ is a 
time shift parameter that allows for localization of 
the analysis, (ݐ)ݏ is the inertial signal under 
evaluation at time ݐ and ෨߰ is the mother wavelet 
analyzing function’s complex conjugate. Wavelet 
scales selected (given as ݆ in (8)) for evaluation span 
1 to 64 (with corresponding pseudo-frequencies of 
91.8 Hz and 1.4 Hz respectively; these pseudo-
frequencies are found by scaling the wavelet center 
frequency (Matlab, 2008)). Such a broad frequency 
spectrum for analysis allows for an in depth view of 
the signal under examination. 

A coiflets wavelet of order three was used for 
evaluation because it matched closely with the data 
when compared to other possible wavelet candidate 
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functions. The coiflets 3 mother wavelet is shown in 
Figure 3. 

4 EXPERIMETNAL METHODS 
AND RESULTS 

4.1 Data Collection 

Figure 4 depicts the manner in which data was 
collected from test subjects (note the IMU axes 
labels in Figure 4 (a)). Test subjects lifted an IMU 
out of a holster and simulated eating using a spoon 
attached to the IMU (simulating only one placement 
of food into their mouth). Upon completion of this 
task, the returned the IMU to the holster; ten such 
tests were carried out for each subject under 
evaluation. In this manner, both the start and end 
orientation of the IMU were known (relative to one 
another) which is important for implementation of 
the Kalman filter and smoother depicted in sub-
section 3.1. 

 
Figure 3: The coiflets 3 mother wavelet. 

Data logging took place at 130 Hz. The IMU 
used was manufactured by the Mobile Multi-Sensor 
Systems (MMSS) research group at the University 
of Calgary. A tri-axial accelerometer (LIS3L06AL 
from ST Microelectronics (2006)) and three single-
axis gyroscopes (XV-8100CV from Epson Toyocom 
(2010)) were utilized. 

During experimentation, 11 controls (7 female), 9 
ET patients (3 female) and 30 PD patients (20 
female) were evaluated using testing that had 
received ethics approval from the Conjoint Health 
Research Ethics Board at The University of Calgary. 
The mean age of controls was 64.1, for ET patients 
it was 64.8 and for PD patients it was 66. A number 
of patients (2 ET and 27 PD) were on medication to 
help reduce tremor. For the ET patients, this 
medication was largely ineffective (based on 

conversation with the patients and results of the data 
analysis presented here) and for PD patients it had 
varying effectiveness depending on when they last 
took their medication and how large the dosage was. 

Patients with the most significant tremor (8 of 
the ET patients and 9 PD patients) were evaluated 
separately for the analysis in the following sections 
of this research paper. These patients were selected 
based on a thresholding criteria that required their 
tremor to be one standard deviation in excess of the 
tremor measured for controls (for at least one of the 
six inertial signals evaluated), based on the mean 
absolute value of wavelet details coefficients at scale 
18 (corresponding to approximately 5.1 Hz). A 
higher value for details coefficients suggested more 
tremor motion was present. Test subjects that did not 
pass this thresholding criteria produced data that 
largely resembled that of controls and therefore such 
data is not displayed in the following sections of this 
research paper. 

 
Figure 4 (a): A test subject prior to evaluation. 

 
Figure 4 (b): A test subject during evaluation. 

x-axis
y-axis 

z-axis
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4.2 Kalman Smoothing and WFLC 

The Kalman smoothing algorithm was very effective 
in removing gravitational readings from 
accelerometer signals. A representative example of 
this is shown in Figure 5 for a control. 

It is important to note that the raw data signal in 
Figure 5 has extended periods of time in which it is 
continuously a long distance from the zero 
acceleration mark. This is expected because 
gravitational readings can influence the sensors, 
depending on their orientation. When gravity’s 
impact is removed, the signal remaining only has 
short durations when it is not near the zero 
accelerometer reading. This illustrates the value of 
using the algorithm outlined because the remaining 
accelerometer data, for the most part, only have 
lateral motion information embedded within them, 
making subsequent data analysis significantly more 
useful than if raw data were used. 

 
Figure 5: An x-accelerometer signal before and after 
Kalman smoothing to remove gravitational readings. 

After accelerometer signals are corrected as 
depicted in Figure 5, they are analysed (along with 
processed gyroscope data) using a critically 
dampened filter. The goal is to estimate the intended 
motion of the test subjects under evaluation. The 
results for this are shown in Figure 6 for an ET 
subject. Generally, the critically dampened filter 
performed quite well and was a very efficient filter 
for estimating intended motion of test subjects. One 
issue that if unavoidable with such a filter is that if 
the influence of past measurements if kept high (in 
the least squares sense), the filter will lag the signal 
under evaluation; however, if the influence of past 
measurements is reduced, then the filter does not 
remove all tremor motion components. A balance 
needs to be struck to ensure both adequate tracking 
and tremor removal are achieved. The results given 

in Figure 6 are generally representative of results for 
all inertial data when a subject with high tremor is 
evaluated. In this case, a small amount of residual 
tremor remains in the processed signal; but the 
ability of the critically damped filter to track the 
signal adequately, so as to approximate intended 
motion, is reasonable. 

After the critically damped intended motion 
approximation is removed from the signal, the 
remaining signal portion can be evaluated using the 
WFLC algorithm. Application of this algorithm 
required a two stage iteration at each time step, the 
first iteration was used to find the fundamental 
frequency of the tracked signal and the second 
iteration was used to find the numerical weights for 
sinusoids tracking the signal. Multiple iterations 
were sometimes required at the same time step to 
allow the algorithm to sufficiently converge to a 
solution (particularly with the gyroscope data which 
had a large dynamic range). A representative sample 
for the WFLC motion approximation is shown in 
Figure 7; it is a close up of a signal portion of the 
data displayed in Figure 6. 

 
Figure 6: A processed z-gyroscope signal before and after 
a critically damped filter is applied to approximate 
intended rotational motion. 

It is clear from Figure 7 that the WFLC 
algorithm tracks tremor quite well. The result 
depicted is quite typical for all inertial data 
evaluated. Given such an approximation of the 
tremor, it is possible to very precisely pinpoint the 
frequency of the tremor observed and its magnitude. 
This is useful for assessment because it allows for 
medical professional to evaluate how tremor varies 
between patients and for the same patient before and 
after medication is taken. 
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Figure 7: A processed z-gyroscope signal portion and its 
WFLC approximation depicting rotational motion. 

For the purposes of attenuation, the WFLC 
algorithm provides the signal to be removed from 
motion to mitigate tremor. The WFLC algorithm is 
especially useful for attenuation because its zero 
phase lag property allows for accurate and real time 
tremor suppression which is critical for many 
attenuation applications. 

4.3 Wavelet Spectral Analysis 

Signals can be compared before and after removal of 
WFLC tremor components to evaluate their 
frequency spectrum. Such an analysis can assist one 
in understanding what components of motion have 
been removed and whether tremor frequencies of 
interest have been adequately targeted (3-12 Hz). It 
also helps one to understand how useful the WFLC 
algorithm is for assessment by depicting how well 
the tremor motion can be tracked. 

In Figure 8, the results of applying the 
continuous wavelet transform to the signal in Figure 
6 (with the critically dampened portion of motion 
removed) are shown; lighter colours depict that more 
frequency content is present. 

When comparing Figure 8 to Figure 6, it is clear 
that when a great deal of tremor motion is present, 
the amount of signal energy depicted in the 3-12 Hz 
frequency band increases significantly. Thus, Figure 
8 validates the use of a coiflets 3 wavelet for the 
application undertaken (given that other inertial 
signals processed gave similar results). 

 
Figure 8: Wavelet processed z-gyroscope data (only 
unintended tremor motion is processed for rotational 
movement). 

The overall (population) results for the data 
analyzed are given in Figures 9 and 10 for a 
representative accelerometer axis of motion and 
gyroscope axis of motion, respectively. Tellingly, 
the results for all three accelerometer axes of motion 
were very similar as were the results for all three 
gyroscope axes of motion. This tends to indicate that 
tremor acts along all axes of motion concurrently 
and also that it can be removed in a similar fashion 
(using the critically dampened and WFLC 
algorithms) for all of these axes. The results depicted 
were found by taking the mean magnitude of details 
coefficients at each wavelet scale for all test subjects 
of a particular group. 

 
Figure 9: x-accelerometer wavelet spectral analysis for 
lateral tremor 

It can be seen from the results in Figures 9 and 
10 that the frequency of the tremor measured for 
both ET and PD patients was within the expected 3-
12 Hz range (as depicted by a bulge in the data 
displayed within this band). ET patients generally 
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depicted more tremor that PD patients, which 
corresponds well to the fact that most ET patients 
were not on medications for treatment while most 
PD patient were. 

Tremor was reduced substantially for all three 
groups examined (ET, PD and control) when the 
WFLC algorithm was applied and it decreased in a 
proportionate manner, such that those with more 
tremor before processing also had more frequency 
content remaining in their motion after application 
the WLFC algorithm. Signal noise was also likely 
reduced inadvertently. One of the more significant 
results is that in the 3-12 Hz range, all three groups 
evaluated with the WFLC technique had less tremor 
after evaluation than the control group had before 
evaluation. 

One unfortunate drawback of the analysis is that 
it seems to remove a lot of low and high frequency 
motion (as is evident in Figures 9 and 10) along with 
the 3-12 Hz frequency band of interest. 

The high frequency motion likely represents 
jerky motion, such as when a subject inadvertently 
struck the IMU on the table during testing. Likely, 
for mechanical attenuation applications, some kind 
of thresholding criteria will need to be applied to 
ensure such signal spikes are not processed, because 
mitigation of such motion is likely unrealistic due to 
limits in the operation range of mechanical 
equipment. 

 
Figure 10: x-gyroscope wavelet spectral analysis for 
rotational tremor. 

The low frequency motion removed likely 
represents the inadequacy of the critically dampened 
filter in tracking intended motion. Determining 
which motion is desired and which is not is a very 
difficult research challenge that has been studied for 
many years (Rocon, et al., 2004). Clearly, there still 
remains some work to be done to find and 

appropriate algorithm that is adequately 
computationally fast and has zero phase lag. 

5 SUMMARY 
AND CONCLUSIONS 

The analysis performed validated the use of the 
Kalman smoothing scheme depicted for removal of 
the gravitational influence on accelerometer signals. 
This was necessary so that accelerometer data would 
properly depict the lateral motion under 
consideration. 

The most significant finding of this research 
paper is that a combination of a critically dampened 
filter and the WFLC technique adequately removed 
the tremor components of motion within the 3-12 Hz 
frequency band; this was likely applied for the first 
time in six degrees-of-freedom for movement 
disorders in this research paper. The same procedure 
was applied to all motion axes with quality results in 
all cases. 

Another significant finding of this research paper 
is that the wavelet analysis performed was well 
suited for the evaluation of a frequency spectrum. 
The coiflets 3 wavelets was quite capable of 
realizing tremor motion components, and provided a 
useful tool for identifying motion at frequencies of 
interest. 
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