
Methodological Support for the Design of Enterprise
Information Systems with SDBS: Towards Distributed,

Service-Oriented and Context-Aware Solutions

Boris Shishkov

IICREST, 53 Iv. Susanin Str., Sofia, Bulgaria
b.b.shishkov@iicrest.eu

Abstract. Taking in consideration the inability of traditional software
development methods to meet to a full extent some new demands, such as ones
related to service-orientation and context-awareness, we suggest in this paper
directions to enrich software development methods, for (partially) resolving this
drawback. We introduce and briefly discuss the SDBC approach – ‘SDBC –
Software Derived from Business Components’, mentioning as well actual
related work that is concerned with the alignment between business process
modeling and software specification. We then discuss two of the most
important challenges of current software development, namely adaptability
(envisioning distribution and context-awareness as desired properties) and
service-orientation. Based on this, we derive some actual solution directions
that concern software development. We consider this as a contribution that
relates to the further software development trends.

Keywords. SDBC, Components, Service-Orientation, Context-Awareness.

1 Introduction

Information and Communication Technology (ICT) has substantially influenced
almost all spheres of human activity (including enterprise development), during the
previous century, bringing on the stage information, as main asset, which in turn led
to the problems of collecting, storing, processing, and communicating (enterprise-
related) information [1]. Hence, Enterprise Information Systems (EIS) consist not
only of software applications and software infrastructures to run them but also of
people, hardware units, and so on. The EIS notion gets broader and more complex
with the development of enterprises and the advances in enterprise technology. It is
widely agreed nevertheless that ensuring the development and operation of enterprise
software applications with predictable and improved cost, schedule, and quality, is of
crucial importance for current EIS [2]. This inspires us to focus in particular on the
development of ICT applications that are to support enterprises. Nevertheless, this
was not a big challenge well until the late 1980s, in our view, not only because
enterprise processes were not so complex (for example distributed and adaptable) as
they currently are but also because the assumed support that ICT applications would
deliver was mostly limited to the delivery of some calculation upon request. This
changed rapidly in the following decade when more and more software development

Shishkov B.
Methodological Support for the Design of Enterprise Information Systems with SDBS: Towards Distributed, Service-Oriented and Context-Aware Solutions.
DOI: 10.5220/0004465300360050
In Proceedings of the 4th International Workshop on Enterprise Systems and Technology (I-WEST 2010), pages 36-50
ISBN: 978-989-8425-44-7
Copyright c© 2010 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

tasks were dominated by the goal of (partially) automating human actions. This
pushed, we believe, software engineering in a new ‘dimension’ where software
systems were supposed to play complex role in the context of an enterprise. Hence,
the alignment between business process modeling and software specification was
becoming crucial.

This mentioned alignment used to be a weak point in most of the software
development methods during the 1990s and even beyond [3]. What’s more, the
software community used to consider the challenge of closing this gap as having a
breakthrough importance [4]. Reporting actual (partial) research results in this
direction, we relate in this paper the mentioned challenge to further and currently
actual ones, such as adaptability and service-orientation, in order to establish a
perspective on how ICT applications should be built in order to meet current
demands, especially as far as EIS are concerned.

In particular, we introduce and briefly discuss one software development approach
that reflects the traditional software development best practices, namely the SDBC
approach – ‘SDBC – Software Derived from Business Components’ [5], mentioning
as well actual related work that is concerned with the alignment between business
process modeling and software specification. We then discuss two of the most
important challenges of current software development, namely adaptability
(envisioning distribution and context-awareness as desired properties) and service-
orientation, concluding about the importance of enriching the well-established
software development tools with adaptability and service –related features. We have a
two-fold problem here, nevertheless: (i) The well-established software development
methods are mostly envisioning the design of an ICT application which even though
built in a component-based fashion, is self-contained – services performed by
unknown components through the ‘Cloud’, being adapted dynamically to a need, are
not considered. (ii) The current service-oriented and context-driven approaches are
often too abstract with regard to the actual service realization that is to be anchored in
particular ICT applications and some corresponding components.

Thus, the contribution of this paper relates to a proposed reinforcement of some
well-established software development best practices through actual enrichments
inspired by adaptability and service –related desired features.

The outline of the remaining of this paper is as follows: Section 2 introduces the
SDBC approach and discusses other representative traditional software development
approaches, for the sake of getting insight on some of the well-established software
development best practices. Section 3 outlines two of the currently actual EIS-related
challenges, namely distribution and adaptability, in order to inspire the further
discussion on enriching traditional software development methods. Then Section 4
presents some proposed solution directions with regard to traditional software
development methods and their desired enrichment. Section 5 exemplifies partially
some of the presented views and proposed solution directions. Section 6 briefly
outlines related work. Finally, Section 7 presents our conclusions.

37

2 SDBC and Traditional Software Development Methods

In this section we outline briefly the SDBC approach as an approach that is based on
the traditional software development principles and we discuss subsequently some
other traditional approaches.

SDBC. In summarizing the approach Software Derived from Business Components –
SDBC [3], we use the following abbreviations as applied in Figure 1: bc – Business
Component (a business sub-system that comprises exactly one business process); bk –
Business CoMponent (a model of a Business Component, which model is adequately
elaborated in terms of statics and dynamics); glbk – general Business CoMponent
(which is re-usable by extension); gcbk – generic Business CoMponent (which is re-
usable by parameterization); ssm – software specification model; sc – software
Component (an implemented piece of software representing a part of an application);
sk – Software CoMponent (a conceptual specification model of a Software
Component).

Fig. 1. Outline of the SDBC approach [5].

The Figure shows that SDBC is about a component-based business-process-
modeling-driven specification and realization of software. The starting point is the
consideration of a business system. Business Components are identified from it. This
can be done through the SCI technique – Structuring Customers’ Information [5]. The
Business Components should then be reflected in corresponding Business
CoMponents, in supplying an adequate modeling foundation for the further software
specification activities. Another way of arriving at a Business CoMponent is by
applying re-use: either extending a general Business CoMponent or parameterizing a
generic Business CoMponent. DEMO and other Language-Action-Perspective -driven

38

modeling tools [6] are relevant as far as Business CoMponents’ specification is
concerned. Each Business CoMponent should be then elaborated with the domain-
imposed requirements, for the purpose of adding elicitation on the particular context
in which its corresponding Business Component exists within the business system.
Then, a mapping towards a software specification model should take place, possibly
driven by the DEMO-UML transformation mechanism [5]. The domain-imposed
requirements as well as the user-defined requirements are to be considered here, since
the derived software model should reflect not only the original business features but
also the particular user demands towards the system-to-be. The (UML-based)
software specification model would need then a precise elaboration so that it provides
sufficient elicitation in terms of structure, dynamics, data, and coordination [3]. The
model needs also to be decomposed into a number of Software CoMponents
reflecting functionality pieces. Then these Software CoMponents are to undergo
realization and implementation, being reflected (in this way) in Software
Components. This final set of components might consist of such components which
are implemented (using software component technologies, such as .NET or EJB, for
instance) based on corresponding Software CoMponents and such components which
are purchased. Finally, the (resulting) component-based application would support the
target business system, by automating anything that concerns the initially identified
Business Component(s) identified from the mentioned system.

Other Traditional Methods. The challenge of capturing the essential aspects about
business processes for the purpose of further software specification, has been
addressed not only by the SDBC approach but also by methods such as Catalysis [7]
and Tropos [8] as well as by the Model Driven Architecture – MDA [9].
The Catalysis method provides a coherent set of techniques for business analysis and
system development as well as well-defined consistency rules across models.
However, these techniques concern the software design perspective and have no
theoretical roots relevant to the modeling of business processes. Hence, the business
process modeling as conducted in Catalysis would inevitably be superficial and
therefore the method cannot guarantee an adequate capturing of all related real-life
aspects, including semantic and pragmatic ones. In addition to this, Catalysis does not
have mechanisms for a mapping between business process models and software
specification models. Therefore, a definite strength (in this regard) of SDBC is that,
relying on the LAP-OS ‘combination’, the approach supports adequately the business
process modeling task and the software design activities in SDBC stem from a pure
business process model, guaranteeing that the application-to-be would function
adequately in the business environment in which it would have to be integrated.

The strengths of the method Tropos relate to its capability of conducting a sound
requirements analysis, considering the business processes which are to be supported
by the application-to-be. From such a business process modeling point of view, the
method addresses the software design. The mentioned requirements analysis includes
elicitation not only of the ‘early requirements’ that concern the original business
reality but also of the ‘late requirements’ which are about a corresponding updated
(desired) business reality. The analysis is driven by a thorough consideration of the
intentions of stakeholders, modeled as goals which are then reflected in the system’s
global architecture. Its definition is in terms of sub-systems interconnected through
data, control, and other dependencies. Then a detailed design follows. Therefore, all

39

this features Tropos as a powerful method for designing software, which
appropriately refers to the task of capturing essential real-life aspects that concern the
modeling of business processes. However, the method is incomplete with regard to
some of these aspects – it is not exhaustive in handling semantics and is insufficiently
concerned with essential pragmatic issues, such as communicative actions,
negotiations, coordination, and so on [5]. Further, the method lacks (just like
Catalysis) clear and complete guidelines (and elaboration) on how to reflect the
business process modeling output in the specification of the application-to-be. Such a
specification would therefore inadequately reflect the original business model.

MDA prescribes three viewpoints from which models of the application-to-be (our
target software system) should be defined: Computational Independent Models
(CIMs) should focus on the environment and requirements of the system, abstracting
from the system’s construction; Platform-Independent Models (PIMs) should focus on
the functionality of the system without revealing details on the specific technological
platform on which the system is built, and Platform-Specific Models (PSMs) should
define how a PIM is built using some specific platform. Therefore, the Computational
Independent Modeling as well as the CIM-PIM transformation relate to the problem
addressed in the current paper, namely the achievement of an adequate business-
software alignment which is concerned with all relevant real-life aspects. However,
bridging business process models and application design by using Computational
Independent Modeling and realizing a CIM-PIM mapping, are issues not enough
explored, as it is well known. The MDA Community still misses sound guidelines and
procedures on how to discover Computational Independent Models and how to reflect
them in Platform Independent Models.

What we conclude is that traditional software development approaches
fundamentally address the link between the construction of ICT components (done by
developers) and the delivered functionality (mainly consumed by users). Hence,
traditional software development is not considering the possibility to directly
‘consume’ services from the ‘Cloud’, adjusting this in an ad-hoc fashion, upon the
appearance of a necessity.

3 Towards More Distributed and Adaptable Solutions

In this section we outline, as mentioned in the Introduction, two of the currently
actual EIS-related challenges, namely distribution and adaptability, in order to inspire
the further discussion on enriching traditional software development methods.

Distributed Web Services. We start discussing the actual (EIS-related) challenges
(which challenges are in our view insufficiently reflected in traditional software
development approaches), by firstly addressing the service concept not only because
service-orientation usually demands a heavy distribution (that is not fully in line with
most software development approaches) but also because the current significant
changes in software technology are centered around this concept [10].

From an abstract point of view, a service represents a piece of well-defined
functionality that is available at some network endpoint and is accessible via various
transport protocols and specialization formats. The functionalities provided by

40

services cover a vast spectrum reaching from low level features like offering storage
capabilities, over simple application functions like changing a customer address, to
complex business processes like hiring a new employee.

To usefully utilize the service perspective in developing ICT applications would
mean according to Shishkov & Van Sinderen [11] the ability to create new
applications from existing services, independently of who provides these services,
where they are provided, and how they are implemented. It should be nevertheless
mentioned that by ‘creating’ an application, it is not meant constructing the
application from the scratch; what is ‘created’ is the end result that represents a
functionality consumed by users. This is the significant change in our vision
concerning software technology – developers would no longer possess full control
over all software components that realize services. What is more, the development
task may split:
- some developers would just focus on the development of small software modules
delivering generic adjustable services to whoever might be interested in using them;
- other developers would not develop software components any longer, focusing
instead on the composition of complex functionalities (for this, they would be using
available generic services).

According to some recent views of Frank Leymann [12], a new kind of middleware is
currently evolving for the partial support directed to the dealing with services in such
a way, with the idea that based on the specification of the functionality needed, the
middleware determines (automatically or through a developer’s intervention) a
(composite) service that would deliver the required functionality. This is not only
affecting the application functionality creation but it would concern performance,
taking into account that services would require in most cases processing power of
back-end server systems. Thus both application creation and run time processing
would substantially rely on support from the ‘Cloud’ and this should certainly point in
particular to web services that represent services which are created and executed
through the Web. Hence, in order to be of actual use, such services would demand
enabling technology standards and the web service technology stack as according to
Papazoglou [10] outlines some actual web service technologies and standards –
Figure 2.

As it is seen from the Figure, web services’ relying on a transportation protocol is
crucial. Although not tied to any specific transport protocol, web services build on
ubiquitous Internet connectivity and infrastructure to ensure nearly universal reach
and support. Hence, their mostly relying on HTTP (the connection protocol used by
web servers and browsers) and XML (a widely accepted format for all exchanging
data and its corresponding semantics) looks logical.

41

HTTP, GMS, SMTP

XML

SOAP

WSDL

UDDI

Orchestration – BPEL4WS

Choreography – CDL4WS

Transport

Description

Discovery

Context

Coordination

Transaction

M
an

ag
em

en
t

Fig. 2. Web services technology stack [10].

Having this as a ‘foundation’, we are to mention further the core web service
standards, namely SOAP, WSDL, and UDDI:
- SOAP (Simple Object Access Protocol) is a simple XML-based messaging
protocol on which web services rely in exchanging among themselves information.
SOAP implements a request/response model for communication between interacting
web services.
- WSDL (Web Service Description Language) is a language that specifies the
interface of a web service, providing to the requestors a description of the service in
this way.
- UDDI (Universal Description, Discovery, and Integration) represents a public
directory that not only provides the publication of online services but also facilitates
their eventual discovery.

When we then have to compose web services, we need to introduce some
orchestration, defining their control flows [13], such as sequential, parallel,
conditional, and so on, with this ending up with the determination of complex
processes that may span many parties. BPEL4WS (Business Process Execution
Language for Web Services) can support usefully such composition activities.

As the collaboration among many parties (through their web services) is
concerned, a common observable behavior (choreography) would often need to be
defined. CDL4WS (Choreography Description Language for Web Services) can
usefully support such collaboration descriptions.

Adaptable Systems with Context-Aware Behavior. The utilization of a generic
service for a specific user-related situation logically relates to acquiring knowledge on
the context of the user and also exploiting this knowledge to provide the best possible
service, which is labeled as context-awareness by Shishkov & Van Sinderen [14].

42

We hence claim that taking the end-user context into account is important in
adequately delivering a service. Examples of end-user context are the location of the
user, the user’s activity, the availability of the user, and so on. We do assume that the
end-user is in different contexts over time, and as a consequence (s)he has changing
preferences or needs with respect to services.

Usefully enriching in this perspective traditional application development that
may be SDBC-driven for example, means that the application under consideration or
the component under consideration need some ‘sensitivity’ with regard to the changes
in the end-user’s context.

A schematic set-up for a context-aware application is depicted in Figure 3. Here,
the application is informed by sensors of the context (or of context changes), where
the sensing is done as unobtrusively (and invisibly) for the end-user as possible.
Sensors sample the user's environment and produce (primitive) context information,
which is an approximation of the actual context, suitable for computer interpretation
and processing. Higher level context information may be derived through inference
and aggregation (using input from multiple sensors) before it is presented to
applications which in turn can decide on the current context of the end-user and the
corresponding service(s) that must be offered.

Fig. 3. Schematic representation of a context-aware application [14].

Based on previous research, the authors claim that the establishment of what
desirable behavior corresponds to a (captured) change in end-user’s context, is a
challenge of great importance. For this reason, we would like to especially discuss
this challenge in the current paper.

This challenge points to several interrelated sub-challenges, discussed briefly
below:
- The Capturing: it is not trivial to establish through sensors what change in end-
user’s situation has actually occurred not only because the raw sensor data is very
often at high risk of being misinterpreted but also because establishing adequate
Quality-of-Context levels that are reliable is rarely realistic in our view.
- The Delivery: although a deterministic approach for defining the delivered
behaviors, when it is precisely known still in advance what is the service that the
system should deliver in one or another particular end-user context situation, appears
to be a reliable solution, it is questionable how realistic is it to adequately foresee all
possible end-user context situations at design time; as for non-deterministic solutions,
we doubt how much reliable they would be taking into account the observed by us
failure (in general) in much artificial-intelligence -related projects.

43

- The Response Capacity: even though it should be in most of the cases possible to
predict most of the situations the end-user may appear to be in, there would always be
such situations that are completely out of expectation and if they would demand
service(s) that in turn need(s) unavailable resources, it would be impossible to deliver
timely the proper service(s) to the end-user.

What we conclude is that traditional software development approaches can have
chances to stay adequate if they allow for a paradigm shift according to which:
- Components and not applications are developed, with no restriction on how and
with what other components the component under development will interact;
- The service delivered by a component is separated conceptually from the
implementation of the component, keeping at the same time correspondence and
traceability that would allow for different interactions of the service delivered by the
component with other services, with these interactions realizable just through the
service descriptions;
- A component is to allow for delivering different versions of its service putting this
in dependence from the end-user situation.
A schematic representation of this vision is exhibited in Figure 4:

c c c c c c c c c c c c c

s s s s s s s s s s s s s

U1 U2 Un…
s11, s12 … s1l s21, s22 … s2o sn1, sn2 … snp

C11, C12 … C1i C21, C22 … C2j Cn1, Cn2 … Cnk …

 s111, s121, … s1l1

 s112, s122, … s1l2
 …
 s11i, s12i, … s1li

 s211, s221, … s2o1

 s212, s222, … s2o2
 …
 s21j, s22j, … s2oj

 sn11, sn21, … snp1

 sn12, sn22, … snp2
 …
 sn1k, sn2k, … snpk

Fig.4. Actual view on the software development challenge.

As the Figure suggests, software components (c) appear to be the units to be
developed, intended to deliver functionality pieces to a broad non pre-defined public.
The manifestation of these functionality pieces are the services (s). It is to be noted
that the corresponding underlying components remain ‘hidden’ from the broad public.
Being utilizable in unlimited ways, a service may appear in tens and hundreds of
utilization schemes (U), in each of which schemes it is combined in different ways
with other different services. Hence, for a particular utilization scheme, there should
be services derived from the service level (s) which are appropriately parameterized,
composed and combined. The aggregate of this represents the desired functionality
with regard to a utilization scheme. What should also be taken into account however
is the context corresponding to each of the utilization schemes – this would point to a

44

number of different possible context states (Ci); for each of these context states, the
service output should appear in different versions. Therefore, each matrix (colored in
grey in the Figure) corresponds to the service support that relates to a particular
utilization scheme – there are different versions of combinations of services for each
possible context state.

The visions that were presented in this section inspire us to propose some solution
directions with regard to traditional software development methods and their desired
enrichment – this will be done in Section 4.

4 Solution Directions

As already mentioned, we will propose some solution directions with regard to
traditional software development methods and their desired enrichment. We will do
this by firstly further analyzing several actual demands towards the development of
software and secondly – proposing some partial solution directions on this basis.

Analysis. Inspired by the demands identified and also discussed in the previous
section, which can be summarized as: (i) floating components; (ii) utilizable services;
(iii) sensitivity to end-user’s context, we add as well the following issues that are to
be taken into consideration:
- the run-time control will be slipping away from the hands of the user since
different services are delivered by components which are implemented/run on remote
servers where the user has limited or no control;
- the inevitable infrastructure dependency regarding service utilization will push
much more attention to the service environments development, which together with
the development of generic components, will be comprising the main part of the
software development efforts.

These changes put in our view less technical and more business oriented people as the
actual producers of the solutions that are finally delivered to the user; it becomes
more necessary to be able to properly combine functionalities in the context of a
business process and different requirements rather than being able to implement
components that deliver functionality pieces (such tasks are already becoming trivial
in many cases).
Proposal for Reinforcing Traditional Software Development Practices.
Considering (i) the traditional application development ways, and particularly the
perspective of the SDBC approach, (ii) the current needs for distribution, service-
orientation, and context-awareness, and also the conclusions (derived) on their
applicability within software development, (iii) the brief analysis (see the first part of
the current section) on the impact of the change in the way we look upon software
development, we propose a software development vision (outlined in Figure 5) that
we expect would better fit the upcoming demands:

45

Business Goal Definition

Resource Analysis

Value Transformation View

Available Relevant Services Ident.

Formulation of a Business Process

Parameterization of Services Service Composition

Development of Generic Service Components

Bu
si

ne
ss

 V
is

io
ne

r
Ar

ch
ite

ct

D
ev

el
op

er

Fig. 5. Vision on some actual software development tasks and roles.

As it can be seen from the Figure, the role of a Business Visioner is becoming
more important and far reaching - Business Visioners are defining a business goal and
this goes often irregardless of the technology to be used, it is just an abstract goal
statement. There is another activity that in our opinion is to go in parallel with the
mentioned one: resource analysis (it is impossible to realize even a very small
business goal without resources - resources are to be analyzed in order to justify the
adequacy of the business goal). What is nevertheless of significant importance in our
view is the definition of the desired value transformations: how we transform our
available resources in order to achieve the business goal. This gives already a rough
view on the business process to be addressed but how to move from the value
transformation view to a specification of a business process, is a challenge and we
still have not seen a definitive transformation vision. It is to be mentioned that
technology is applied not for the sake of applying technology but as a way to improve
effectiveness, efficiency, and quality. We need a business-level motivation or
justification that a web service is a better ‘fit’ in a particular business model than a
human service, for example. For this reason, the decision to use web service(s) has
business-level roots. Services should be identified for knowing how they can be used
with regard to the business process. For this reason, the Business Process formulation
relies not only on Business Visioners’ value transformation view but also on
Architect's service-related view. Moreover, after there is a business process that is
(partially) implementable through web services that are basically known as type, the
particular service selection may start (what is the best service solution or the cheapest,
and so on). Once the services are selected for being used, they would need to be
parameterized and possibly composed (service composition is a topic that will not be
discussed in this paper). These all are responsibilities of the Architect. Finally, the
Developer must have implemented the components which realize the actual services.

Considering distributed systems and typical distributed architectures and inspired
by previous research, we propose a layered design architecture illustrated in Fig. 6:

46

N
et

w
or

k
La

ye
r

Pl
at

fo
rm

La

ye
r

A
pp

l.
La

ye
r

B
us

in
es

s
La

ye
r

Refinement

Se
rv

ic
e

pr
ov

is
io

n

…

General Structured Elaborated

appl. architecture must allow usage of SOA infrastructure

appl. architecture must fit within the business context

User Context

Fig. 6. Proposed layered architecture.

As it can be seen from the Figure, we distinguish 4 service provisioning layers,
namely Network Layer (concerned with networking protocols), Platform Layer
(concerned with (IT) infrastructures), Application Layer (concerned with the
application logic), and Business Layer (concerned with the business logic that is not
delegated to the application layer).

Further, we consider 3 ‘degrees’ of refinement, namely General (‘black-box’)
view, Structured (high-level ‘white-box’) view, and Elaborated (detailed ‘white-box’)
view.
Next to that, we enforce two relevant desired properties (requirements):
- The service(s) provided by the Application Layer must fit within the business
context;
- The architecture of the Application Layer must be SOA compliant.
Furthermore, we consider end-user’s context as crosscutting at least with regard to the
Platform, Application, and Business layers since in different context situations,
different business steps and solutions are to be considered which leads in turn to
different services and they in turn are projected on platforms. Nevertheless, for the
sake of brevity, we will not discuss in more detail the proposed architecture.

In the following Section, we partially illustrate our presented views.

5 Illustrating Example

To illustrate partially our views, we consider the ‘derivation’ of an Education
Mediator (EM) that would support customers in a number of ways, in an e-learning
context. By ‘customers’, we mean the users of EM’s services; those could be students
and teachers (in the simplest case). Furthermore, we address (for the sake of brevity)
only EM’s advice provisioning service: a customer can receive from EM advice
which of the Student/Teacher entities (registered in the system) best satisfy a need (for
example, which is the best teacher with respect to a particular student demand). To
receive advice from EM, the customer approaches EM’s ADVISOR (an entity that is
internal with regard to EM, which is responsible for handling the advice
provisioning). It should be nevertheless noted that the Advisor may be shielded from
the customer by the EM and in such a case the customer would be ‘talking’ to the EM

47

and the EM would in turn route requests to (and results from) the Advisor.
Approaching the Advisor, the customer should specify a request: course type (e.g.
lecturing course or experimental course), preferences (e.g. closest to a particular
subject), and so on. Based on this (and acting ‘through’ the Match-maker, to be
introduced further on in this paragraph), EM’s REQUEST HANDLER (an entity that is
internal with regard to EM also; this entity processes requests) generates a
standardized request specification, appropriately synthesizing some of the information
provided by the customer. This is delivered then to EM’ MATCH-MAKER (an entity
that is also internal with regard to EM; this entity is responsible for finding a match
using the standardized request and considering what is currently available); the
Match-maker realizes matches driven by particular criteria, chosen by the customer
(and represented in the standardized request), for instance: a preference for a teacher
from a particular country or institution or the earliest available teacher. In order to
realize a criterion-driven match, the Match-maker applies relevant rules and
procedures, nevertheless needing input from EM’s DATA SEARCHER (an entity that
is also internal with regard to EM; this entity is responsible for searching). The Data
searcher searches through the information concerning the available (Student/Teacher)
entities and also applies procedures to it. This hence supports the identification of
candidate matches relevant to the particular customer’s request. The Match-maker
applies its rules and procedures to realize a final match, passing this information to
the EM’s Advisor.

Considering the above-presented briefing, a business entity model is built (Figure
7), with a notation that is inspired by DEMO [6].

i3

i4

i1

EM

i2

C A

MM
R

D

Fig. 7. Business entity model for the EM case.

The identified entities are presented in named boxes – these are Customer (C),
Advisor (A), Match-maker (MM), Request handler (R), and Data searcher (D).
Interactions i1 – i4 are identified as follows: between C and A (i1), between A and
MM (i2), between MM and R (i3) and between MM and D (i4). As for the
delimitation, C is positioned in the environment of the education mediation system
EM, and A, MM, R and D together form the EM system.

We model then interactions using the notations of UML Activity Diagram [16]: i3
and i4 are to be progressing in parallel and only after they have been exhausted (the
standardized requests and candidate matches have been delivered) the match-making
can be done (i2) followed by the advice (i1) – this is illustrated in Figure 8 (upper
part). This is the business process level, as labeled in the Figure, and it is assumed that
human-driven roles (and responsibilities) stay behind each of the interactions and as it
is about human activities, much is driven by complex organizational (and societal)
norms, much is actually done using best practices, and much is done in an intuitive
way. IT services nevertheless require many explicit definitions. That is why the IT
services that correspond to the business-process-level interactions, are considered

48

together with other related issues, as it is shown in Figure 8 (lower part), depicting the
IT service level, as labeled in the Figure.

Service 4

i4

i3

i2 i1

search
algorithms

security
engine

access
manager

repository analysis
engine

translation
tool

Service 3 Service 2 Service 1

bu
si

ne
ss

 p
ro

ce
ss

 le
ve

l
IT

 s
er

vi
ce

 le
ve

l

… … … …

Fig. 8. Service derivation for the EM case.

As it is seen from the Figure, searching requires search algorithms, request
processing requires an adequate supportive security engine and access control
facilities, match-making needs repositories with candidate matches and match
criteria, the delivery of an advice requires an analysis engine and sometimes, a
translation facility, just to name a few.

We need to further extend this model, particularly with respect to ‘IT Services
level’, by considering an adopted service pattern proposed in [11] according to which
a coordination service (supported by an information service) orchestrates the work of
the other services. Hence, the final EM service model is presented in Figure 9:

Service 4

search
algorithms

security
engine

access
manager

repository analysis
engine

translation
tool

Service 3 Service 2 Service 1

… … … …

coordination service

information service

Fig. 9. Service model for the EM case.

As it is suggested by the Figure, the coordination service orchestrates the work of
the other services, namely Service 1, Service 2, Service 3, and Service 4. Taking into
account the case information and the considered domain, we label these 4 services in
the following way:
- Service 1: Educational Mediation Service;
- Service 2: Educational Broker Service;
- Service 3: Educational User Agent Service;
- Service 4: Educational Resource Discovery Service.

This example, although simplified, partial and incomplete, illustrates the view on the
paradigm shift, as discussed in Section 3, implicitly suggesting that business entities
are not to be considered any more exclusively as source for identification of software

49

components but it could often be that the models of such entities are just valuable to
actually give the right restrictions with regard to the services to be composed.

6 Related Work

In this paper, we have presented a service-orientation and context-awareness –rooted
vision on software development, as a proposal for a desired reinforcement of
traditional software development approaches and methodologies.

With regard to considering related work, among the work that is focusing on core
service-orientation and partially on context awareness concerns are [15,16,17], driven
mainly by consideration of particular key problems, such as service composition and
web service technologies, overlooking nevertheless the issue of requirements-
functionality alignment. On the other hand, there is reported research concerning the
requirements-functionality alignment, mainly related to relevant methods, such as
Catalysis [7], Tropos [8], and SDBC [5] which however lack the proper service-
orientation focus.

7 Conclusions

In this paper, have discussed traditional software development approaches, putting the
discussion in the perspective of some of the important current challenges related to
software development, such as service-orientation and context awareness. Also, based
on an analysis of the change brought to the desired vision on software development
by these actual challenges, we have considered the impact of this change influencing
already the ways software is developed. Finally, we propose a partial vision on how
these new influences can be incorporated in software development, through some new
software development tasks and roles. We have partially exemplified our vision.

Hence, the contribution of this paper represents an explicit proposal concerning
the development of software and limited to proposed enrichments inspired by the
consideration of the mentioned challenges.

As further research, we plan partial re-work of the SDBC approach, in the
direction of service-orientation and adaptability.

References

1. Encyclopedia Britannica (Home), http://www.britannica.com
2. Software Engineering Institute (Home), http://www.sei.cmu.edu
3. Shishkov, B., Dietz, J. L. G., Liu, K.: Bridging the Language-Action Perspective and

Organizational Semiotics in SDBC. In ICEIS’06, 8th Int. Conf. on Enterpr. Inf. Systems
(2006)

4. Liu, K.: Semiotics in Information Systems Engineering. Cambridge University Press,
Cambridge (2000)

5. Shishkov, B.: Software Specification Based on Re-usable Business Components. Delft, The
Netherlands: Sieca Repro (2005)

50

6. Dietz, J.: Enterprise Ontology, Theory and Methodology. Springer-Verlag, Berlin
Heidelberg (2006)

7. D’Souza, D. F. and A.C. Willis: Object, Components, and Frameworks with UML, the
Catalysis Approach. Addison-Wesley, USA (1998)

8. Tropos Project (Home). http://www.troposproject.com
9. Object Management Group (OMG): MDA – Guide, V1.0.1, omg/03-06-01 (2003)
10. Papazoglou, M. P.: Web Services: Principles and Technology. Pearson Pr. Hall (2008)
11. Shishkov. B. and Van Sinderen, M. J.: Service-Oriented Coordination Platform for

Technology-Enhanced Learning. In: I-WEST’09, 3rd International Workshop on Enterprise
Systems and Technology. INSTICC Press (2009)

12. Leymann, F.: Combining Web Services and the Grid: Towards Adaptive Enterprise
Applications. CAiSE Workshops (2005)

13. Van Sinderen, M. J.: From Service-Oriented Architecture to Service-Oriented Enterprise.
In: I-WEST’09, 3rd International Workshop on Enterprise Systems and Technology (2009)

14. Shishkov. B. and Van Sinderen, M. J.: On the Design of Context-Aware Applications. In: I-
WEST’08, 2nd Int. Workshop on Enterprise Systems and Technology. INSTICC Press
(2008)

15. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services, Concepts, Architectures and
Applications. Springer-Verlag, Berlin-Heidelberg (2004)

16. Bosworth, A.: Developing Web Services. In: 17th Int. Conference on Data Engineering
(2001)

17. Pasley, J.: How BPEL and SOA are Changing Web Services Development. Internet
Computing, IEEE (2005)

51

