
CASE STUDY: A SEMIOTIC APPROACH
TO META-PROGRAMMING IN OPERATIONAL RESEARCH

Martin Wheatman and Kecheng Liu
Informatics Research Centre, University of Reading, Whiteknights, Reading, RG6 6WB, U.K.

Keywords: Semiotics, Meta-Programming, Operational Research, Discrete Simulation.

Abstract: This paper is a case study of how semiotics is applied to the meta-programming of application provision in a
Operational Research setting. As a text representing instructions, software source code is a syntactic layer of
an organisational sign system. In that meta-programming generates source code, it is sign system which acts
at a pragmatic level generating other sign systems, and has its own norm-base. The case study illustrates
how a meta-programming norm-base can be directed towards the provision of specific application
components, but that direction itself can be programmable.

1 INTRODUCTION

Meta-programming is a sign-system for creating
other sign-systems. This case study highlights meta-
programming as a translational process – the
automatic production of software from a set of
intentional parameters. It shows how simple meta-
programming techniques can be relatively
straightforward, but their norm-base is highly static
and directed towards the production of application
specific components. These techniques have also
been adapted in this case study to generate other
intentionally dependent components: composing in
an inductive manner, along with other ancillary
functionality, a norm-base directed towards a
specific outcome.

This paper starts with a description of the
context of this case study: why meta-programming is
used an Operational Research (OR) environment
(Kelton and Law, 2000). It then contains a brief
introduction to the Semiotics and reasoning of C. S.
Peirce, and its application to IS. It continues with the
rational for the use of semiotic approach in OR in
general and in particular its associated IS; a
description of the web based solution; and, finally
the shortcomings of such a solution, again from a
semiotic perspective.

2 META-PROGRAMMING IN
OPERATIONAL RESEARCH

This is a case study of a program created to
support the discrete simulation modelling of the
nuclear decommissioning processes involved at
Sellafield Sites Ltd., though it could be applied to
modelling any manufacturing process, or indeed any
discrete state simulation. As a large, multi-billion
pound organisation with a strong ethical policy and a
potentially large environmental impact, decisions
have to be supported by evidence. While OR cannot
predict the future, it can allow analysts to illustrate
particular scenarios.

The Sellafield OR Group (SORG) supports the
decision-making process by modelling operational
activity, using discrete modelling tools such as
(Witness) and (FlexSim). This paper concentrates on
the use of the latter, which is based on two forms of
datafile: a model file and one or more model data
files, or scenarios.

A model is constructed in FlexSim by an analyst
as a .fsm file which provides a three-dimensional
view of a factory. The analyst can add processes,
modelled by conveyor-belted machines, and items
being processed, modelled as either as one of many
predefined 3D items or customised items which can
be specified by the analyst. To this basic model,
other predefined or custom processes can be added,
such as cranes, conveyors, forklifts or storage

47
Liu K. and Wheatman M.
CASE STUDY: A SEMIOTIC APPROACH TO META-PROGRAMMING IN OPERATIONAL RESEARCH.
DOI: 10.5220/0003254400470051
In Proceedings of the Twelfth International Conference on Informatics and Semiotics in Organisations (ICISO 2010), page
ISBN: 978-989-8425-26-3
Copyright c© 2010 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

systems, to effectively represent that being
modelled.

Figure 1: A FlexSim model showing (l to r) a source, a
queue, an operator at a processor and a sink.

Models also have the ability to be programmed
in a C++-like script language called FlexScript. This
can, amongst other things, be used to load scenario
data.

A scenario, along with its results once it has
been run, is typically stored as a spreadsheet, which
can be directly written by (or “exported to”), or read
by (or “imported from”), FlexSim. Scenarios
comprise all the parameters which are attributed to
the items within the model, such as arrival times of
item to be processed, time to process items, etc.
Each scenario is run to ascertain the best model to be
implemented, and hence affect decision making. The
current use relationship between FlexSim .fsm files
and .xls files is illustrated below.

Figure 2: The existing relationship between FlexSim and
Excel.

Practical problems have emerged with such use
of spreadsheets: the file can easily be several
hundred megabytes in size, which is neither easy to
load nor easy to compare. Further, with the fact that
analysts may have several models, even of each
factory, and several hundred scenarios of each

model; each of which might differ by only a few
bytes. Moreover, with the need to archive data for
several decades, it is not seen as being an efficient
use of disk space. Plus there is the inability to
efficiently compare results in separate files.

The solution has been to move to a database
system which stores all scenarios as the differences
from some baseline scenario. Working prototypes
have being developed, using a WAMP Stack
(Apache, CakePHP, MySQL). The solution is
illustrated below: it is effectively the same
information system but with a different
implementation.

Figure 3: The proposed solution of using a database and
web-browser architecture.

For this solution to be practical, though, existing
scenario spreadsheets have to be converted into
databases. This involves several processes which can
be combined into one, largely dependent on the
database schema and analyst intentions. To describe
the semiotic perspective of this case study, some
introduction to semiotics is needed.

3 SEMIOTICS

Charles Sanders Peirce developed the notion of a
triadic sign model (Peirce, 1935-58), where a sign
and the object to which it refers are connected only
through an interpretant: a tangible reaction to the
sign by an interpreter. It is therefore a model of
subjective signs. He defined as “semiosis”: the use
and evolution of signs, how they lead to the creation
of further signs, potentially endlessly. He also
presented a triadic model of reasoning based on his
sign model: hypothesis, guessing of the initial sign
configuration given objects and interpretants or
norms; deduction, determining the correct object

ICISO 2010 - International Conference on Informatics and Semiotics in Organisations

48

from signs; and, induction, the creation of norms
from signs and objects.

Charles Morris organised the basic Peircean sign
model into three layers of Syntax, Semantics and
Pragmatics (Morris, 1938). His Pragmatic layer is
concerned with the sign's life cycle: the creation,
use, repeated use and destruction of signs, and their
intentions. Stamper extended this model for IS,
initially to a four layer model (Stamper, 1973) with
and Empirical layer to cover the mechanisms
involved in IS; then to a six layer model of signs
(Stamper, 1991) with the addition of the Social and
Physical layers.

Signs are the essential components of
information systems (Stamper, 1985). Further, signs
are modelled as being composite - macro-signs
being composed of micro-signs (Gomez et al.,
2002), and the resolution of their transformations
into translations is the concept behind developing
software (Wheatman, 2009). An overview of
semiotics in information systems can be found in
(Liu, 2000).

Semiotics, however, is not a method of
producing software, but affords a framework for
conceptualisation. If a formal description of
functionality in software were required, techniques
from UML toolbox could quite easily be employed
to illustrate the design. This has an understanding of
its own, through its own semiotic. So some rational
for the use of the term “semiotic approach” in OR is
required.

4 A SEMIOTIC APPROACH

The relationship between Semiotics and OR exists at
several levels. It can be found in the comparison of
modelling to semiotics in (Minsky, 1968): “To an
observer B, an object A* is a model of an object A,
to the extent that B can use A* to answer questions
that interest him about A.” Further, (Egesoy and
Topaloğlu, 2009) notes that the terms object, model
and observer are interchangeable with object, sign
and interpretant, where interpretant/observer (what
termed as a ‘filter’ (Minsky, 1968)). This approach
is not pursued further in this paper.

Further, and from a wider perspective of an OR
group within a larger department, the organisation of
SORG falls into the organisational model, defined in
(Stamper, 1991). This approach is also not pursued
further in this paper.

The main application of semiotics is applied to
the production of software source code. The concept
of a model being composed of a model file and

many scenarios composed of many tables is a
Pattern which it is assumed can be applied to many
OR applications. A Design Pattern is a
representation of signs (Noble and Biddle, 2002),
which implies that this should have its own life cycle
– creation, (repeated) use, and destruction of
(models and) scenarios.

However, the difficulty in producing the solution
in this case study has been the lack of account taken
of the pragmatics of meta-programming – that the
meta-programming software chosen in this project is
not flexible enough to support all required code
generation. The contention here is that the
configuration of a meta-programming solution
amounts to an interpretant.

5 NORM-BASE INDUCTION

Prior to the work in this case study, creating scenario
databases and all ancillary coding had been
performed manually in a systems administrator role,
as a transformation of the spreadsheet. Without deep
analysis to the level of the computability of this
process, it is possible to envisage automation of
individual components. This automation is a
semiotic transformation of a manual translation into
an automated translation, parametrised by a few
intentional details dependent on schema.

There is insufficient room in this paper to
provide a complete breakdown of the design options
open to scenario conversion. In practice, the working
prototypes show that the chosen solution is valid –
based on outcomes, rather than process. Expressing
this as a formal sign system, in source code,
provides an organisational norm-base which can be
appended.

The fundamental process of transferring scenario
data from spreadsheet to database, by reading named
tables using an ODBC link and using the MySQL
ODBC driver to write to database, is fairly
straightforward and had already formed part of the
manual process. There are many off-the-shelf
components which will do such conversions;
however, there is some extra information stored per
row concerned with the versioning of the scenario.
This is intentional, and details need to be supplied
by the operator converting the scenario. To this
norm-base, other processes can be added.

Further, the translation of a scenario also
includes: creating the FlexScript to Import and
Export to the database; driving CakePHP to generate
the database application to support the model data in
the database. Further processes may be included in

CASE STUDY: A SEMIOTIC APPROACH TO META-PROGRAMMING IN OPERATIONAL RESEARCH

49

future. Scenario conversion means much more than
data conversion, but its meaning in terms of action a
singular meaning into which many ancillary
processes may be subsumed.

The resultant tool, SM Import, sits behind a web
front-end, and is illustrated below.

Figure 4: The SM-Import tool interface.

6 META-PROGRAMMING OF A
DATABASE USER INTERFACE

CakePHP was selected early on for the generation of
the database front-end, and has been used in creating
all prototypes since, as a Model View Controller
pattern. Its Bake process has been used manually to
create interfaces for all tables in the database. This is
a script based process which elicits intentions, e.g.
database parameters, from the user from the
command line. However, it generates code for an
existing database – this is not necessarily the case
for the SM-Import tool: the open source nature of
CakePHP allowed it to be developed further in-
house for the SM-Import process.

In creating the SM-Import tool, it was decided
that the CakePHP code could be integrated into the
SM-Import web application. Because the coding of
the Bake class is relatively straightforward, this task
mainly involved removing the prompting/script
based methods from the class, and keeping the code
generation methods. These methods can use the
schema which is read during the conversion of the
named tables to database data. The code generation
methods mostly contain code which appends code to
a string which is eventually written to a file, such as:
$add_file.="<div class=\"submit\">\n";
$add_file.="<?php echo \$html->”.
 “submit('Add');?>\n";
$add_file .= "</div>\n";

Therefore, they are directed towards generating
code for specific tasks. This code is easy to modify,
especially in that the resultant database does not
need to record relationships between tables been
generated.

6.1 Meta-programming of a FlexScript
Database Interface

The other main function of SM-Import is the
generation of the Custom Import and Export
FlexScript code, which is similarly dependent on the
schema; however, this has had to be written from
scratch. This again was a relatively simple process
of writing specific code portions for each table
found in the spreadsheet, in statements such as:

fwrite($fh, "//clean up\n");
fwrite($fh, "dbclose();\n");
fwrite($fh, "pt(\"End Import\");
fwrite($fh, "pr();\n");

From a syntactic point, the two code examples
above are dissimilar, but their intention – the
creation of source code – is the same technique. The
reason for this syntactic dissimilarity is historic: the
Import/Export code was written before it was
decided to include the CakePHP code portions
within SM Import.

Note that the code in the string constants, in both
examples, needs special characters to be escaped by
a ‘\’ character. This is interference between the
generating and generated syntaxes. Further, the
escaping of the escape character can be alleviated by
either the nesting of single and double quotes in
languages such as PHP, or by the use of a meta-
syntax, such as is used in HTML.

7 CONCLUSIONS

OR and Semiotics are both concerned with a defined
representation of things and particularly with the
action resulting from these representations. The
repeated use of such concepts defines patterns.
Meta-programming is a key technique to producing
patterned solutions such as in this case study. The
open availability of the CakePHP source code is
vital to the implementation of an automated solution,
as this allows its norm-base to be enhanced as
necessary. The shortcoming is that CakePHP is
geared towards producing web front ends: the norm-
base is stored as hard-coded strings. Other code
translational parts, while employing similar
techniques, are less well supported.

ICISO 2010 - International Conference on Informatics and Semiotics in Organisations

50

This paper has outlined the author's work in
designing and implementing an OR based web
application, as a semiotic transformation of a manual
sign translation process into an automated one. This
transformation is constrained by the organisational
norms determining SM-Import as a sign system in
itself. One advantage of such automation is enabling
the dissemination organisational norms, both
throughout the organisation and to third party
suppliers. Such descriptions necessitate at least the
implicit use of the notions of semiosis: signs and
their creation. Indeed, meta-programming is
implicitly a sign translation process instigated at a
pragmatic level.

A generic source code generator should therefore
be useful in such applications. A Model Driven
Architecture (MDA) approach could have been a
starting point; however, since the prototypes already
work this approach may require remodelling to fit it
to an MDA framework. The solution as described
has taken a lightweight approach as it requires a very
straightforward code generation. A templated
generator, such as the Java Emitting Template
(Steinberg et al., 2008), might prove fruitful – as the
template can be created from the prototype;
however, this appears to output Java which outputs
the template, rather than it outputting the raw text.

ACKNOWLEDGEMENTS

The authors would like to thank Sellafield Sites Ltd,
and the staff of the Sellafield OR Group for the
opportunities expressed in this paper. Particular
thanks go to Simon Hughes and Daniel Braund, and
Janet Davison for supplying the example model.

REFERENCES

Apache, see http://www.apache.org/
CakePHP, see http://cakephp.org/
Egesoy, A., Topaloğlu, Y. (2009) A Bottom-up Model of

Computational Semiotics, Information Systems in the
Changing Era: Theory and Practice, Proceedings of
the 11th International Conference on Informatics and
Semiotics in Organisations, 11-12 April, 2009, pp26-
32.

Flexsim, see http://www.flexsim.com/
Gomez, A., Gudwin, R., Queiroz, J., Towards Meaning

Processes in Computers from Peircean Semiotics,
SEED Journal (Semiotics, Evolution, Energy and
Development) 2002, pp69-79

Kelton, W. D., Law, A.M. (2000) Simulation Modelling
and Analysis 3rd Ed., McGraw-Hill

Liu, K., Semiotics in Information Systems, Cambridge
University Press, 2000

Minsky, M.L., Matter, Mind and Models: Semantic
Information Processing, ed. Marvin Minsky, MIT
Press, 1968

Morris, C. W., Foundations of the Theory of Signs,
Encyclopaedia of Unified Science, 1(2), University of
Chicago, Chicago, 1938

MySQL, see http://www.mysql.com/
Noble, J., Biddle, R., Patterns as Signs, ECOOP

Proceedings, 2002
Peirce, C.S., Collected Papers of Charles Sanders Peirce,

Eds., Hartshorne, C. and Weiss, P., 1935-58
Stamper, R. K., Information in Business and

Administrative Systems, BT Batsford, London, 1973
Stamper, R. K., Towards a Theory of Information:

Information: Mystical Fluid or a Subject for Scientific
Discourse?, The Computer Journal, British Computer
Society, 28(3), pp195-199, 1985

Stamper, R.K., The Semiotic Framework for Information
Systems Research, Information Systems Research:
Contemporary Approaches and Emergent Traditions,
Eds: Nissen, H.E., Klein, H.K., and Hirschheim, R.,
1991, pp515-527

Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.
EMF: Eclipse Modeling Framework - 2nd Ed.,
Addison-Wesley, 2008.

Wheatman, M.J., Semiotic Translation and
Transformation in Source Code Development,
Information Systems in the Changing Era: Theory and
Practice, Proceedings of the 11th International
Conference on Informatics and Semiotics in
Organisations, 11-12 April, 2009, pp 56-62

Witness, see http://www.lanner.com/

CASE STUDY: A SEMIOTIC APPROACH TO META-PROGRAMMING IN OPERATIONAL RESEARCH

51

