
KEY MANAGEMENT PROCESS ON THE HARDWARE
CRYPTOGRAPHIC MODULE IN THE CLOUD COMPUTING

John Manuel Delgado Barroso, Luis Joyanes Aguilar
Universidad Pontificia de Salamanca nucleo Madrid, Paseo de juan xxiii, 3. 2804, Madrid, Spain

Pablo García Gundín
Universidad Pontificia de Salamanca nucleo Madrid, Paseo de juan xxiii, 3. 2804, Madrid, Spain

Keywords: Key Management, Cloud Computing, RSA PKCS, Cryptographic performance, Hardware Cryptographic
Module (HSM).

Abstract: Cloud computing has multiple applications, from a standpoint of growth performance computing
capabilities and data processing also offers a number of operational models, leaving out no items related to
the scalability of the platform but with data security that it is managed and therefore the information in it are
processed. The purpose of this paper is to implement a novel key management protocol on a platform of
hardware cryptographic module to provide a solution to the management model, generation and use of
cryptographic keys in the vicinity of cloud computing.

1 INTRODUCTION

Service providers can supply basic plans to ensure
the development and service-based applications in
the cloud, or they can leave all these protection
measures at the discretion of the client.

As service providers in the cloud progress
towards a stronger key management hosting, more
work and research must be performed to overcome
the potential obstacles in its adoption. Emerging
standards should solve this issue in the near future,
but they are still works in progress. Within the
Cloud Computing, different issues and challenges
related to key management must be resolved.

Access to key stores should be limited to entities
that specifically require particular keys. Also, there
should be policies that govern the key stores that use
function separation to help access control. An entity
that uses a particular key should not be the same
entity which maintains it.

In relation to key backup and recovery, a key
loss inevitably entails the loss of data which was
protected by such key. Although this is an effective
way to destroy data, an accidental loss of a key may
result in the disappearance of protected data which
was critical for the business attainment. In order to

avoid this, solutions for data backup and restoring
must be implemented in a safe manner.

There are a number of standards and information
for guidance that are applicable to key management
in the cloud. This paper proposes a prototype of key
management supported over storage cryptographic
devices that can be deployed on transactional or not-
transactional Cloud Computing oriented processes.

2 CRYPTOGRAPHIC ACCESS
SERVICE DEVELOPMENT

2.1 From the Command Process Point
of View

A key generation has been implemented within an
interoperable key management standard for the
cryptographic service development. Such standard
and attributes are shown in the following command:

Structure generation process consists of the
following trace:

493Manuel Delgado Barroso J., Joyanes Aguilar L. and García Gundín P..
KEY MANAGEMENT PROCESS ON THE HARDWARE CRYPTOGRAPHIC MODULE IN THE CLOUD COMPUTING.
DOI: 10.5220/0003142304930496
In Proceedings of the International Conference on Knowledge Engineering and Ontology Development (KEOD-2010), pages 493-496
ISBN: 978-989-8425-29-4
Copyright c
 2010 SCITEPRESS (Science and Technology Publications, Lda.)

Figure 1: Input trace structure for key generation process.

And command to be sent is shown as:

Figure 2: Input trace to the cryptographic key management
service.

And the returned command can be defined by the
following trace:

Figure 3: Output trace from the cryptographic key
management service.

Implementation model has been designed following
the next class deployment:

es.openkmip.attributes: are comprised by attributes
that the objects within the application should have.
Many of them are closely linked with the key
deployment in business environments.
es.openKmip.baseobject: These are the objects that
comprise most of the commands integrated in the
deployment of the key interoperability protocol. In
this section, the credential display for the
identification of who executes the action is
implemented, as well as the associated cryptographic
tasks permissions.
es.openKmip.ManagedObject: These are the
templates that integrate objects which are managed
in the protocol deployment.
es.openKmip.messajecontents: These are all
necessary labels for providing attributes to the key
generation processes.
es.openKmip.operations: All operation supported by
key management protocol. These operations are
designed for carrying out administrative tasks.
es.openKmip.pkcs11Bridge: This is a bridge that
links attributes transmitted by the proprietary
protocol commands, and are transferred to a generic
interface (educational implementation) called IAIK.

This library has been designed for Java applications
and is a cryptographic functions provider for Java
classes working with information security. Among
the many operations that IAIK performs, are
included those related to key generation, both
symmetrical and asymmetrical, data encryption and
decryption, hash functions, certificate generation

3 SERVICE DEPLOYMENT
PERFORMANCE STUDY

It has been performed a multi-thread server base on
a Runnable interface programmed in Java language,
this interface is implemented on a server that runs
several tasks:

a) Command recognition function has been
implemented.
b) Structural analysis model, based on the
definition in the KMIP protocol has been also
implemented.
c) Attributes provided from client have been
associated to be set as attributes belonging to the
RSA PKCS#11 key generations.

420075010000012042007401000000384200670100000020420068020000000400
000001000000004200690200000004000000000000000042000D0200000004000
000010000000042000F01000000D842005A050000000400000001000000004200
7601000000C04200550500000004000000020000000042008E01000000A842000
8010000003042000A070000001743727970746F6772617068696320416C676F72
6974686D0042000B05000000040000000300000000420008010000003042000A
070000001443727970746F67726170686963204C656E6774680000000042000B0
2000000040000008000000000420008010000003042000A070000001843727970
746F67726170686963205573616765204D61736B42000B02000000040000000C
00000000

Object Type=’00000002’ (Symmetric Key),
Key Atributes:
Cryptographic Algorithm =’00000003’ (AES),
Key length =’128’
Mask Use performed by the Key =‘0000000C’

Tag: Request Message (0x420075), Type: Structure (0x01), Data:
 Tag: Request Header (0x420074), Type: Structure (0x01), Data:
 Tag: Protocol Version (0x420067), Type: Structure (0x01), Data:
 Tag: Protocol Version Major (0x420068), Type: Integer (0x02), Data:
0x00000001 (1)
 Tag: Protocol Version Minor (0x420069), Type: Integer (0x02), Data:
0x00000000 (0)
 Tag: Batch Count (0x42000D), Type: Integer (0x02), Data: 0x00000001 (1)
 Tag: Batch Item (0x42000F), Type: Structure (0x01), Data:
 Tag: Operation (0x42005A), Type: Enumeration (0x05), Data: 0x00000001
(Create)
 Tag: Request Payload (0x420076), Type: Structure (0x01), Data:
 Tag: Object Type (0x420055), Type: Enumeration (0x05), Data: 0x00000002
(Symmetric Key)
 Tag: Template-Attribute (0x42008E), Type: Structure (0x01), Data:
 Tag: Attribute (0x420008), Type: Structure (0x01), Data:
 Tag: Attribute Name (0x42000A), Type: Text String (0x07), Data:
Cryptographic Algorithm
 Tag: Attribute Value (0x42000B), Type: Enumeration (0x05), Data:
0x00000003 (AES)
 Tag: Attribute (0x420008), Type: Structure (0x01), Data:
 Tag: Attribute Name (0x42000A), Type: Text String (0x07), Data:
Cryptographic Length
 Tag: Attribute Value (0x42000B), Type: Integer (0x02), Data:
0x00000080 (128)
 Tag: Attribute (0x420008), Type: Structure (0x01), Data:
 Tag: Attribute Name (0x42000A), Type: Text String (0x07), Data:
Cryptographic Usage Mask
 Tag: Attribute Value (0x42000B), Type: Integer (0x02), Data:
0x0000000C (Encrypt, Decrypt)

42007801000000C042007701000000484200670100000020420068020000000
400000001000000004200690200000004000000000000000042008F09000000
08000000004AC0731C42000D0200000004000000010000000042000F01000
0006842005A0500000004000000010000000042007C0500000004000000000
000000042007901000000404200550500000004000000020000000042009107
0000002434366563613930612D346232302D343233632D623936382D37353
066323939663063613700000000

KEOD 2010 - International Conference on Knowledge Engineering and Ontology Development

494

d) Request has been processed, generating a key
based on the proposed request generation KMIP
protocol model, development is completely service
oriented and compatible with the key generation
cloud computing scenario.

All previous tasks, designed to be concurrent
processes, were made using Cryptoki provider
library, therefore, executions are fully compatible
with the provided standard client executions with
their own performance measures.

For the performance test execution process, they
have been structured four test operations:

a) 196 bits 3DES key length generation supported
by a single execution thread in 100 iterations.
b) 196 bits 3DES key length generation supported
by two simultaneous execution threads in 100
iterations.
c) 196 bits 3DES key length generation supported
by 10 simultaneous execution threads in 100
iterations.
d) 196 bits 3DES key length generation supported
by 50 simultaneous execution threads in 100
iterations.

Performance Remarks. The four selected
behaviors have been separated in two great groups;
the first one is related to performance oriented of
non-transactional access, where sequential accesses
can be evaluated and the second one, which
evaluates concurrent transactional operations.

Table 1: Performance descriptive statistics for
transactional group (A) and non transactional group (B)
(data in ms).

Considering the second group, responsible for
implementing stress operations, oriented to
transactional processes, is very important note that
those operations are performed when Login process

is done in the cryptographic device so, service only
access to key generation functions, once key
attributes have been assigned.

3.1 Considerations between
Transactional and Non
Transactional Operations

Average performances have been observed and
those that those belonging to non-transactional
group are slightly different, this proves the evidence
that cryptographic device performance are constant
indeed but it has not the ability to perform
simultaneous operations directly.

From the point of view of the transactional
group, such evidence is notoriously visible.
Performance differences between cryptographic
module access processes against simultaneous
processes are clear. Simultaneous processes are
greatly penalized key generation from the key
management interoperability protocol. But
regardless of tghe process is running, is guaranteed
that those keys are being generated and stored in a
secure environment, where all objects are encrypted
by their cryptographic module.

Approximations have been made using high
degree polynomials, in order to have a mathematical
structure that represents the behaviour of the key
generation performances because they need to be
verified independently in which environments are
deployed. The performance figures for non-
transactional processes are:

Figure 4: Table of performance returned with a thread in
100 iterations.

Figure 5: Table of performance returned with two
simultaneous threads in 100 iterations.

Both figures presents polynomial representation
structures in order to replicate performance models,
unfortunately, R2 study has provided a very low

KEY MANAGEMENT PROCESS ON THE HARDWARE CRYPTOGRAPHIC MODULE IN THE CLOUD
COMPUTING

495

trust level in relation to the predictive model. This
phenomenon can be credited to the initial warming
process, more specifically at the time of opening
port process in its initial phase. Once this initial
connectivity mechanism has been made, port
connections model is involved in a pool of active
connections, and initial exchange is not needed.
Other important elements performed at the time of
the KMIP service startup process, is that initializes
the cryptographic storage model, as well as module
authentication process , leaving it with an active
session, so that KMIP protocol commands are sent
and directly processed, no authentication commands
that makes impossible unassisted operations are not
required in this case.

Transactional processes performance figures are:

Figure 6: Table of performance returned with 10
simultaneous execution threads in 100 iterations.

Figure 7: Table of performance returned with 50
simultaneous execution threads in 100 iterations.

By homologous to the non transactional
performance study done, we can note that study
performed to obtain a mathematical structure that
provides the way to estimate the performance for a
specific number of simultaneous threads; the
analysis for 10 simultaneous threads has obtained a
low R2, while for 50 simultaneous threads it can be
obtained a structure with an approximate capacity of
99,46%, being this one of the most important
elements of this study because it can be sized and
predict performances based on the most
transactional study case reviewed in this research
project.

4 CONCLUSIONS

This research project has presented a set of criteria

and guidelines, which have provided the following
original results; first study about performance of the
interoperable key accessibility (KMIP-OASIS),
where it can be seen, by doing a division of
substantiated evidences based on the transactional
nature of each scenario and each performance
returned. Develop a high degree polynomial, in
which R2 is minimal in order to have an approach
model of the accessibility key protocol conditioning
to a specific number of concurrent connections and
integrate a recent key management technology using
a standard cryptographic hardware access protocol.

REFERENCES

Marchini R. 2010, Paper, Cloud Computing: a practical
introduction to the legal issue, BSI Standards.
Avaliable at: http://www.whsmith.co.uk/
CatalogAndSearch/ProductDetails.aspx?ProductID=97
80580703225, Last Update: Undefined.

Martin Luther. 2008, Article, Key Management
Infrastructure for Protecting Stored Data, IEEE
Computer. Avaliable at: http://www.tschofenig.priv.at/
wp/wp-content/uploads/2008/05/r6secu1.pdf, Last
Update: Undefined.

Mather T, Kumaraswamy S. 2009. Book, Cloud security
and Privacy, O’Reilly Media.

Oasis, 2009. Oasis Members Form Key Management
Interoperability Protocol (KMIP) Technical
Committee, Available: www.oasis-open.org, Last
Update: Undefined.

Oasis, 2009, KMIP: Key Management Interoperability
Protocol., WP. Avaliable at: http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=kmip
Last Update: Undefined.

Fajardo Ed. And R. Marin-Lopez, 2009 , RFC 5609 -
State Machines for the Protocol for Carrying
Authentication for Network Access (PANA), Network
Working Group., Available: http://datatracker.ietf.org/
wg/pana/charter/,. Last update: undefined.

Rittinghouse J,. 2009, Cloud Computing: Implementation,
Management and Security, CRC Press, Available:
http://www.crcpress.com/product/isbn/978143980680
7 , Last update: undefined.

Rungren A,. 2008, KeyGen2 Presentation, V0.31,,
Available: http://webpki.org, Last update:Undefined.

KEOD 2010 - International Conference on Knowledge Engineering and Ontology Development

496

