
Using SCXML to Integrate Semantic Sensor Information
into Context-aware User Interfaces

Álvaro Sigüenza
1
, José Luis Blanco

1
, Jesús Bernat

2
 and Luis A. Hernández

1

1 ETSI Telecomunicación - Universidad Politécnica de Madrid, 28040, Madrid, Spain

2 Telefónica R&D, 28043, Madrid, Spain

Abstract. This paper describes a novel architecture to introduce automatic an-
notation and processing of semantic sensor data within context-aware applica-
tions. Based on the well-known state-charts technologies, and represented using
W3C SCXML language combined with Semantic Web technologies, our archi-
tecture is able to provide enriched higher-level semantic representations of us-
er’s context. This capability to detect and model relevant user situations allows
a seamless modeling of the actual interaction situation, which can be integrated
during the design of multimodal user interfaces (also based on SCXML) for
them to be adequately adapted. Therefore, the final result of this contribution
can be described as a flexible context-aware SCXML-based architecture, suita-
ble for both designing a wide range of multimodal context-aware user interfac-
es, and implementing the automatic enrichment of sensor data, making it avail-
able to the entire Semantic Sensor Web.

1 Introduction

The rapid development of sensors and sensor networks makes it possible to capture an
increasing number of physical contexts for modeling real world situations and enabl-
ing localized interaction [1]. As “context is any information that can be used to cha-
racterize the situation of an entity” [2],a countless number of context-aware applica-
tions are being proposed to assist users in everyday life activities. The environment
itself becomes an essential part of the user-interface [3] and new ways of adaptation
to the context are possible [4]: content presentation, content delivery and service
adaptation.

But information gathered by sensors can be of distinct nature and is generally de-
veloped as particular solutions to customized applications. Thus, application-specific
procedures are also required to design and develop context-aware user interfaces,
making it difficult to extend or reuse them for evolving toward different application
scenarios and services. Three main issues should be addressed:

1. Heterogeneous sensor data should be represented in a homogeneous way to
make it available to different application domains.

2. Sensor data describing different contexts should be processed to identify spe-
cific contexts and situations relevant to the user, and from which applications
could take advantage of.

Sigüenza A., Blanco J., Bernat J. and A. Hernández L..
Using SCXML to Integrate Semantic Sensor Information into Context-aware User Interfaces.
DOI: 10.5220/0003116100470059
In Proceedings of the International Workshop on Semantic Sensor Web (SSW-2010), pages 47-59
ISBN: 978-989-8425-33-1
Copyright c 2010 SCITEPRESS (Science and Technology Publications, Lda.)

3. Situations identified as relevant should be available to the Interaction Man-
ager, i.e. the agent in charge of controlling the behavior of the user interface.

In this work, we present a framework to include information from heterogeneous
sensor data into user interfaces based on two mayor components: 1) Semantic Web
technologies: to enrich raw sensor data with semantic information; and 2) State-Chart
machines: as a general process control mechanism for the orchestration and combina-
tion of different sources of information.

Semantic Web technologies, as an evolving extension of the current web, are in-
tended to provide well-defined and machine accessible information, shareable across
applications. Based on Ontologies, or formal descriptions of concepts and their rela-
tionships, applications may benefit from a shared semantic representation of sensor
data [5]. At present, most widely used ontology languages are W3C recommenda-
tions: Resource Description Framework (RDF), Resource Description Framework
Schema (RDFS), and Web Ontology Language (OWL), all based on XML.

The use of Semantic Web in user interfaces is not new. It has been mainly pro-
posed for representing user profiles and preferences [6], or to provide a general model
of the physical environment [7], but only little attention has been paid to sensor-based
user interface adaptation [8]. Furthermore, just by defining ontologies, what is itself a
complex task, is not enough to take full advantage of sensor data. Mechanisms are
needed to process low-level data, generate higher levels of context information and
finally identify relevant user’s situations. To this end, two complementary tasks need
to be addressed [9]: 1) Semantic Sensor data annotation: embedding semantic infor-
mation into sensor data; 2) Semantic sensor data processing: process sensor data so
that high-level information can be generated and shared among different applications.

Several approaches have been already proposed to implement these two tasks in an
automatic way. In Noguchi et al. [10] raw sensor data is described in RDF to imple-
ment behavior detection services for validating automatic generation and connection
of program components for sensor data processing in network middleware. The Se-
mantic Web Architecture for Sensor Networks (SWASN) presented in [9] proposes
the use of rules, based on local ontologies, to annotate domain-specific sensor data
while a global sensor ontology is used for querying and inference. Also relevant are
some international projects working on open architectures for smart environments as
FP7 SENSEI [1] or Artemis SOFIA [11] EU projects. Differently from these ap-
proaches, as we are interested in the integration of semantic sensor data into user
interfaces, our approach is based on the use of the general process control mechanism
provided by state-chart machines. So far, in our approach, state-chart machines will
be the framework to both semantic sensor data annotation and processing.

The rationale for this approach is that State-Charts are being successfully used to
design and implement Interaction Management for the integration of different interac-
tion modalities (keyboard, mouse, speech, vision, ink, haptics, etc.) in multimodal
Human-Machine Interfaces (HMIs) [12]. What we propose here is to extend these
capabilities of state-charts for representing, processing and integrating several input
and output modalities, towards the annotation and processing of semantic sensor data.

In particular, we will explore the possibilities of the W3C standard, State Chart eX-
tensible Markup Language, SCXML [13], which provides a generic event-based state-
machine execution environment based on Harel statecharts [14]. SCXML is intended
to keep application’s interaction management flow and both presentation and interpre-

48

tation processes independent one from the others. Accordingly, when designing mul-
timodal user interfaces, application developers can have a great flexibility by orches-
trating several state-charts to process and combine different modalities of user inputs
and outputs. In our architecture we will also use SCXML to semantically annotate
sensor data, process it and provide specific user’s contexts or situations to the Interac-
tion Manager. The final result will be a flexible SCXML-based architecture suitable
for both the design of a wide range of multimodal context-aware HMI interfaces, and
the automatic enrichment of sensor data making it available to the Semantic Sensor
Web.

The rest of the paper is organized as follows: Section 2 presents SCXML as a tech-
nology to implement multimodal HMI applications. In Section 3, we propose a
SCXML-based high-level architecture to semantically annotate and process sensor
data. Section 4 analyses a use case to illustrate how the proposed Semantic Sensor
Web architecture can be used to implement a context-aware user interface for an in-
car driving scenario. Finally, conclusions and future work are discussed in Section 5.

2 SCXML for Multimodal HMI

A simplified view of a multimodal HMI is depicted in Figure 1. Several input modali-
ties from the user (mouse, keyboard, ink, speech recognition …) are processed and
combined by an Input Handler, while the Presentation component combines several
output modalities (graphics, images, speech synthesis…) to the user. Based on both
input and output semantic representations the Interaction Manager will control the
interaction flow with the user.

Fig. 1. Simplified view of a multimodal HMI depicted as a combination of state-chart
machines.

Conventionally, interaction management for user interfaces are conceived as set of
possible states, in which different information is presented to the user, while the tran-
sition onto the next state is based on the actual user’s input information. There are
different approaches to the development of interaction managers, which can be broad-
ly classified into: deterministic, based on rules for interpreting each user input and
updating the interaction state, or stochastic, where state transition probabilities are
estimated using machine learning techniques [15].

49

In this work we will follow the deterministic approach, so, as in [12], based on
SCXML the multimodal interaction is decomposed into a finite sequence of states
(and consequently in a finite number of transitions), so a complete interaction will be
the result of concatenating consecutive interaction turns in a proper way. Using
SCXML, each state represents a different interaction situation that is reached through
the recognition of events coming from the Input Handler. To give an example, the
XML below describes a use case in which part of an in-car phone call application is
implemented. By now we will not pay attention to the driver, car or driving contexts.

 <?xml version=”1.0”?>
 <scxml xmlns=”http://wwww.w3.org/2005/07/scxml” version=”1.0” initial-

state=”init”>
 <state id=”init”>
 <transition event=”machine.initiated” target=”selectAction”/>
 </state>
 <state id=”selectAction”>
 <transition event=”action.selectContact” target=”selectContact”/> …
 <transition event=”action.selectNumber” target=”selectNumber”/>
 <transition event=”action.addContact” target=”addContact”/>
 </state>
 <state id=”selectNumber”>
 <transition event=”action.call” target=”phoneCall”/>
 <transition event=”action.sendSMS” target=”sendSMS”/>
 </state>
 <state id=”selectContact”/>
 <state id=”addContact”/>
 <state id=”phoneCall”/>
 <state id=”sendSMS”/>
 </scxml>

In this example the application starts when the user decides to check his/her con-
tact list. This action is mapped to a “machine.initiated” internal event within the state
machine, which causes a transition onto “selectAction” state. By entering this state,
the application displays a list of available actions the user may perform. The user can
then select a specific action, causing the input handler to generate the corresponding
event for this action. So, it fires the “action.selectContact” event to select a contact
from the list, the “action.selectNumber” to dial a phone number, or rather the “ac-
tion.addContact” event to add a new contact to the directory. Finally, suppose the
user decides to choose a phone number, then the flow would enter the “selectNumber”
state, so the user can do a phone call or send a SMS to this particular number.

Besides of using SCXML to control the interaction, several functionalities beyond
general finite-state machines makes SCXML suitable to integrate different sources of
information in a rather straight-forward way. SCXML allows defining state charts in a
hierarchical way, so a state-chart can itself be a state within another state-chart (i.e.
states composition). Also several state charts can run in parallel (i.e. simultaneous
states) so it can process different sources of information at the same time. As Figure 2
illustrates, this hierarchy and concurrency can be used to program the Input Handler
of a HMI for processing and combining different input modalities. In that way, when
the Input Handler obtains a high-level semantic representation of the input, it is fired
as an event towards the interaction-manager state-chart, shall force it to role.

Once the machinery has been set into motion, a number of evaluations and internal
transitions might follow while deciding the next action to be taken. But in the end, a
stable state is to be entered in which the system shall remain until a new input arrives.

50

By that time, the following action is sent to the Presentation module while the Interac-
tion Management system waits. The multimodal Presentation module, also in
SCXML, decides which modality (or combination of modalities) must be used. It is
worth noting that, although not specifically considered in this work, state-charts can
also be used for controlling actuators or actuation processes. In fact, the new Voice-
XML version [16] is said to be implemented on top of this SCXML framework;
which is just another sample to prove SCXML versatility.

Fig. 2. Input Handler of a Multimodal HMI where state-chart machines are hierarchically com-
bined to produce a high-level semantic representation of the user’s multimodal input.

3 Semantic Sensor Web using SCXML

Current Sensor Web initiatives, such as OGC SWE Semantic Web Enablement [17],
provide ubiquitous access to huge amounts of sensor data on the Web. Sensor Web
usually lacks of semantic-level representation making it difficult to interoperate
across different applications’ domains. In order to address this problem, Sensor Web
and Semantic Web technologies are being combined into what is called Semantic
Sensor Web, as is proposed in recent initiatives such as the W3C Semantic Sensor
Network Incubator Group [18]. The resulting capabilities of the Semantic Sensor Web
for enriching sensor data with semantic annotations offer a great potential for design-
ing real world context-aware applications and services.

In this work we propose the use of SCXML technology as a mechanism to enrich
and process low-level heterogeneous (Sensor Web) data producing higher semantic
representations of context information (Semantic Sensor Web). In that way semantic
sensor data and context information will also be easily integrated into multimodal
HMI interfaces described in the previous Section.

3.1 High-level Architecture

Figure 3 represents the high-level description of our architecture ranging from the
Sensor Web and the Semantic Sensor Web, and toward a context-aware HMI de-
signed, by using SCXML.

51

Fig. 3. High-level architecture for Semantic Sensor annotation and processing using SCXML.

Beginning from our lower layer, Domain-Specific Sensor Annotation layer
(DSSA), heterogeneous sources of sensor data, from Sensor Web infrastructures, are
processed by domain-specific SCXML machines. These are designed relying on local
ontologies so they can semantically annotate events related to specific sensor data. In
a second layer, Semantic Sensor Processing layer (SSP), the hierarchy and concurren-
cy functionalities supplied by SCXML are used to process information from different
local domains generating higher levels of semantic information. As in the lower
DSSA layer, in SSP layer state-charts machines also need to be designed on top of
specific ontologies, although in this level they must represent more global or wide
domains. Three main outcomes can be provided by the SSP layer:

1. Semantically annotated sensor data: as the SSP layer processes sensor data
already annotated in the DSSA layer, one possible outcome in the SSP layer
can be just to extend the already semantically embedded information in
DSSA with higher-level semantics from SSP.

2. Semantically annotated virtual sensor data: as SSP can integrate or process
semantic sensor data from different local domains in DSSA level, it can pro-
duce new real-world related information that can be considered as virtual
sensor data.

3. Detection of specific situations: as a result of processing information from
the DSSA layer, the particular states of the SCXML machines at the SSP
layer can be interpreted as specific higher-level situations derived from local
domains. Thus, certain patterns can be identified within the actual situation,
which are meaningful in themselves.

As shown in the Figure, semantic annotation at DSSA and SSP layers (outcomes 1
& 2) can be considered a mechanism for exposing sensor data from Sensor Web to the
Semantic Sensor Web. While outcome 3, context and situation detection, represents a
valuable source of high-level information easily integrable into HMI interfaces based

52

on SCXML. This annotated semantic sensor data could also be useful for interfaces or
applications implementing strategies based on semantic queries or inference engines.

3.2 Semantic Sensor Data Annotation and Processing

SCXML is a general process control language [13], so it is suitable for processing,
however it is still to be stated how semantic annotated data can be managed. SCXML
provides a standard way to define a data model to represent and store common data
used by several state machines. This data model can be used to evaluate guard condi-
tions when a transition in the machine is required. The data model consists of a <da-
tamodel> label containing several elements which define variables, each one con-
taining specific information expressed in a XML format. In our architecture, as it will
be detailed in Section 4, raw sensor data represented in XML is initially stored in the
SCXML data model, and, as a result of state-chart processing, semantic annotations
are embedded in the original data and stored again in the data model to enrich it. This
process is implemented at both DSSA and SSP layers so that the SCXML data model
may include different levels of semantic representations.

Another important implementation issue to consider is how semantic sensor data
annotation and processing are managed as events drive most SCXML transitions.
When a sensor experiences a change in its context, it sends events to communicate it
to the architecture. In its first DSSA layer, these events drive a set of state machines,
able to model the local context they are related to. Once a state machine reaches a
certain state, it invokes a process which is in charge of annotating this data with se-
mantic information referencing an ontology about the domain represented by the state
machine, and storing the data in the SCXML datamodel. Thus, a semantic link be-
tween data and a universal representation of this data is established, allowing applica-
tions and other state machines to automatically understand data from a great variety of
heterogeneous sources, and enable them to process and infer new semantic data.

Changes occurred in the lowest domains are communicated to the next level by
sending an event indicating its datamodel has been updated. The following level, the
SSP layer, is able to take advantage of SCXML guard conditions to specify inference
rules that allow inferring higher semantic data. Using these rules it is possible to inte-
grate low-level information domains into high-level domains, defining new “virtual
sensors” that were not available in the physical world.

Finally, taking advantage of the SCXML parallel and hierarchical processing capa-
bilities, state machines are continually merging data and building higher-semantic
context domains. Those are recursively merged until we are capable of describing full
context situations which could be useful to the context-aware interactive applications
we are to design.

4 Use Case Analysis

In this Section, a context-aware user interface for an in-car driving scenario will be
used as a motivating example to illustrate the specific SCXML mechanisms we have
implemented. A series of intrinsic peculiarities have been identified within the

53

in-vehicle scenario, which appears to be quite suitable for the proposed architecture:
• A great variety of heterogeneous data sources are available in the driving en-

vironment (vehicle, road, traffic, weather…). There are multiple in-vehicle
sensors which represent different context variables, but also other external
sensor sources are available, provided by the Sensor Web. The integration of
both types of sources constitutes a true challenge for present architectures.

• New infotainment and interactive in-vehicle multimodal systems have re-
cently appeared. Managing these systems requires adapting their behavior
according to the actual driver’s context.

• Driving is a suitable environment to integrate contextual information (both
local and external) with interaction information.

First the interface adaptation is described (subsection 4.1) and then the composition
of sensor data at different semantic levels is discussed (4.2).

4.1 User Interface Adaptation

Following the example introduced in Section 2, if contextual information about driv-
ing situation is available, a context-aware user interface could be adapted. According
to this, new context information will reach the Interaction Manager, besides the
user’s input information. Therefore the basic HMI scheme of Figure 1 is extended to
the one depicted in Figure 4.

Thereby, while the Interaction Manager is working, an event from the Input Han-
dler arrives, indicating the user wants to carry out a selectNumber action. Meanwhile,
a “dangerous driving situation” is likely to appear in the Context Situation state ma-
chine, which will cause the corresponding event to be fired. If such situation appears,
following with the Nishimoto’s studies addressed in [19], the Interaction Manager
should halt the interaction, at least until this dangerous situation disappears.

.

Fig. 4. General view of a context-aware multimodal HMI system, based on the combination of
multiple state-chart machines.

Thus, the state machine must include a set of new states describing the expected curse
for the interaction flow once such situations arise. We now include a snippet about the

54

new interaction specification, as an extension to the one shown in Section 2.
In this example, when a “dangerousDriving.situation” event arises, the Interaction

Manager shall move into the interruptInteraction state to indicate the Presentation
Manager that no content should be presented to the user. Once the dangerous situa-
tion disappears (as the “normal.situation” event arrives) the state machine shall go
back to the previous state (the history element is a SCXML element which allows
saving the identifier for last state before the last transition).

 <scxml xmlns=”http://wwww.w3.org/2005/07/scxml” version=”1.0” initial-

state=”init”>
 <state id=”init”>
 <transition event=”machine.initiated” target=”selectAction”/>
 </state>
 <state id=”selectAction”>
 <transition event=”action.selectContact” target=”selectContact”/>
 <transition event=”action.selectNumber” target=”selectNumber”/>
 <transition event=”action.addContact” target=”addContact”/>
 <transition event=”dangerousDriving.situation” target=”interruptInteraction”/>
 </state>
 <state id=”selectNumber”/>
 <state id=”selectContact”/>
 <state id=”addContact”/>
 <state id=”interrumptInteraction”>
 <transition event=”normal.situation” target=”history”/>
 </state>
 </scxml>

4.2 Situation Description

In the driving context multiple sensors are available. The literature identifies three
independent domains describing the global context for the driver-vehicle interaction:
driver, vehicle and environment [20]. In our example, we focus on the traffic and
weather sensors (provided by external Sensor Web resources) and the road type and
vehicle sensors (virtual and physical local sensors).

To annotate the collected sensor data we have followed the Sensor Web Enable-
ment initiative [17]. SWE is a group formed by the Open Geospatial Consortium in
order to specify interfaces and meta-data encodings with the aim of integrating het-
erogeneous sensor data so that they could be accessible and controllable via Web. We
have selected the Observations & Measurements language (O&M) [21] which defines
a XML schema for describing and encoding real-time observations and measurements
of sensor data. According to it, observation is an act of observing a property or phe-
nomenon, with the goal of producing an estimate of the value of a feature of interest
[21]. The standard also defines a large number of terms needed to describe
measurements and the relationships among them. The following snippet represents an
<swe:DataRecord>

 <swe:field name=”WindSpeed”>
 <swe:Quantity definition=”urn:ogc:def:property:OGC:WindSpeed”>
 <swe:uom code=”mph”/>
 <swe:value> 90.0 </swe:value>
 </swe:Quantity>
 </swe:field>

 </swe:DataRecord>

55

annotated measure from a wind speed sensor.
When there is a change on a certain feature of interest, a sensor fires an event to-

wards the framework, encoded using O&M. This data updates the state machines
representing the three previously presented independent domains forming the DSSA
level: driver, vehicle and environment. Each domain contains other domains (and
therefore other state machines) which are paired with the sensors defined in the con-
text. Thus, the vehicle domain is formed, for instance, by a velocity state machine and
a steering wheel angle state machine, while the environment domain is defined by a
traffic road state machine and a weather state machine (see SCXML example below).
Each machine was previously registered to the events coming from certain sensors
related to the local context, so they only receive data associated to subscribed events.

<parallel id=”context”>
 <parallel id=”driver/>
 <parallel id=”vehicle”>
 <state id=”velocity”/>
 <state id=”steeringWheelAngle”/>
 </parallel>
 <parallel id=”environment”>
 <state id=”trafficRoad”/>
 <parallel id=”weatherConditions”>
 <state id=”speedWind”/>
 </parallel>
 <state id=”roadType”/>
 </parallel>
</parallel>

Taking the speed wind state machine as example, we could specify it by introduc-
ing the following SCXML code.

 <state id=”speedWind”>
 <initial/>
 <state id=”StrongWind”>

 <invoke targettype=”semanticAnnotation” src=”StrongWind”/>
 </state>
 <state id=”ModerateWind”>

 <invoke targettype=”semanticAnnotation” src=”ModerateWind”/>
 </state>
 <state id=”LightWind”>

 <invoke targettype=”semanticAnnotation” src=”LightWind”/>
 </state>
 <transition event=”wind.change” cond=”speedWind lt 30” target=”LightWind”/>
 <transition event=”wind.change” cond=”speedWind gt 30 and lt 60” tar-

get=”ModerateWind”/>
 <transition event=”wind.change” cond=”speedWind gt 60” target=”StrongWind”/>
 </state>

Here, the state machine examines the value of the speed wind measure when a new
event arrives. According to its value a transition to the corresponding target (Strong-
Wind, ModerateWind or LightWind) might follow. So it enters a new state, where an
external process is invoked to annotate the received O&M sensor data using a do-
main-specific ontology associated to that particular state machine.

We use RDFa (or Resource Description Framework –in- attributes) to embed se-
mantic annotations into XML data. RDFa [22] is a W3C Recommendation that allows
embedding rich metadata within Web documents. Thus, RDF attributes can be easily
added to O&M data to provide the desired semantic annotations. We use the RDF
about attribute to establish which resource is referenced by means of an ontology. In

56

the next example, we demonstrate how the windSpeed data is said to be related to a
weather ontology associated to the weather state machine domain.

 <swe:DataRecord>
 <swe:field name=”WindSpeed”>
 <swe:Quantity definition=”urn:ogc:def:property:OGC:WindSpeed”

rdf:about=”http://www.csd.abdn.ac.uk/research/AgentCities/WeatherAgent/we
ather-ont.daml#windSpeed”>

 <swe:uom code=”mph”
rdf:about=”http://www.csd.abdn.ac.uk/research/AgentCities/WeatherAgent/we
ather-ont.daml#mphSpeed”>

 <swe:value> 90.0 </swe:value>
 </swe:Quantity>
 </swe:field>
 </swe:DataRecord>

When the annotation process is completed, the state machine fires an event indicat-
ing the nature of the wind speed (strong, moderate or light), and stores the enriched
data labels within the SCXML datamodel so that applications may consult them, and
use them to their own benefit. The same process will be carried out when the lowest
domains (DSSA layer) detect a high vehicle velocity or a dense traffic condition.

Above the DSSA, the SSP layer is in charge of providing higher or more abstract
information by integrating data from different domains and/or by detecting specific
situations that could be useful for the context-aware interface. The following SCXML
fragment is an example of the implementation of SSP layer.

 <state id=”normalDriving”>
 <transition cond=”Data(environment, weather/speedWind) eq ‘strong’ and

Data(environment, roadType) eq ‘lane’ and Data(vehicle, velocity) eq ‘exce-
sive’” target=”dangerousDriving” />

 </state>
 <state id=”dangerousDriving”>
 <onentry>
 <send event=”dangerousDriving.situation”/>
 </onentry>
 </state>

Here, the SSP level is composed by two states representing two different and ex-
clusive situations: normalDriving and dangerousDriving. The state machine will
remain in the normalDriving state until the transition condition is fulfilled. Just before
that, the DSSA layer will update the datamodel fields about speedWind, roadType and
velocity and send an event to the SSP layer signalling a change in one of its variables.
When the condition is met, a transition to the dangerousDriving state occurs and
causes an event to be fired in order to inform the context-aware applications. Finally,
this new situation is annotated in the datamodel according to an ontology, and the
whole framework waits for the situation to change.

5 Conclusions and Future Work

Due to the development of new Sensor Web initiatives, access to our physical
contexts becomes easier and the number of context-aware applications increases.
However, sensors and sensor networks are undoubtedly heterogeneous, just as the

57

information to be sensed. On the other hand, human-machine interfaces have been
traditionally developed based on the user and the application, but have frequently
missed the dramatic influence of context while interacting. New paradigms in pro-
gramming and applications’ design have shed some light at this point, and suggested
to bring both context and application together into the so called context-aware appli-
cations.

In this paper we have presented a novel architecture, based on the SCXML frame-
work, which focuses on this particular issue by considering the semantic annotation
and processing of sensed data in order to provide higher-level semantic information,
which can be easily used at the higher HMI level. By reviewing the conventional
finite-state interaction flow model to be implemented according to the SCXML stan-
dard, we have pointed out how easy it is to design an application. Introducing
SCXML designs to handle both inputs and outputs seems also a simple process, and
guarantees full compatibility across HMI components in the framework. SCXML
formal conception also includes a set of relevant properties and structures, from which
we take advantage for the annotation and processing of sensor data. At this level, the
proposed scheme relays on the ontological description of specific domains to annotate
data (DSSA layer). The subsequent annotation process becomes knowledge intensive
as semantic relations weave a complex network by combining information from vari-
ous domains (SSP layer). The final result is locally stored to outline the actual context
image, and so that context-aware applications can freely access the whole set of anno-
tations. Furthermore, particularly relevant situations can be identified within the ac-
tual situation, and pushed up to the application layer. The proposed architecture has
been implemented on top of the OSGi framework, and proved to be extremely flexi-
ble and robust. The use case described in Section 4 is in fact a real scenario we have
considered, though further tests must be performed to validate the interaction strate-
gies introduced.

Future work shall discuss the limitations imposed by state-chart schemes, i.e. the
difficulty in both managing and designing, particularly as no graphical development
environment is yet available for SCXML. Combining multiple sources of information
is also a tough task, especially when the number of sources and the amount of infor-
mation is potentially very big. Scalability is therefore extremely important for this
kind of infrastructures and applications, as well as granting access to the Semantic
Sensor Web both to retrieve and share information. This is especially intriguing for
in-vehicle frameworks, as quality of service is not always granted.

Acknowledgements

The activities described in this paper were funded by the Spanish Ministry of Science
and Technology as part of the TEC2009-14719-C02-02 project.

References

1. Presser, M., Gluhak, A., Krco, S., Hoeller, J. and Herault, l.: SENSEI - Integrating
the Physical with the Digital World of the Network of the Future, 17th ICT Mobile Summit,

58

Stockholm, Sweden, 10-12 June (2008)
2. Dey,A.K., Abowd, G.D., and Salber, D.: A conceptual framework and a toolkit for support-

ing the rapid prototyping of context-aware applications. Human-Computer Interaction, 16,
97-166 (2001)

3. FIDIS deliverable, D7.3: “Report on Actual and Possible Profiling Techniques in the Field
of Ambient Intelligence”, Editors: Wim Schreurs, Mireille Hildebrandt (VUB, Belgium),
Mark Gasson, Kevin Warwick (Reading University, UK), August (2005).

4. Sathish, S.: Using Declarative Models in Multi-device Smart Space Environments, Work-
shop on Declarative Models of Distributed Web Applications, Dublin, Ireland,
http://www.w3.org/2007/02/dmdwa-ws/talks/sathish.pdf June (2007)

5. Berners-Lee, T., Lendler, J. and Lassila, O.: The Semantic Web, Scientific American, vol.
284, no. 5 (2001)

6. Angioni, M., Demontis, R., Deriu, M., De Vita, E., Lai, C., Marcialis, I., Paddeu G., Pintus,
A., Piras, A., Sanna, R., Soro, A., and Tuveri, F.: A Collaborative, Semantic and Context-
Aware Search Engine. In -, editor, Proc. Of ICEIS 2007 - Software Agents And Internet
Computing. Volume 1, (2007)

7. Mohamed A. F., Mounir M., Ismail K. I.: A Novel Approach for Ontology Distribution in
Ubiquitous Environments, International Journal of Web Information Systems, Vol. 2 Iss:
3/4, pp.225 – 231 (2007)

8. Bell, D., Heravi, B. and Lycett, M.: Sensory semantic user interfaces (SenSUI), 2nd Inter-
national Workshop on Semantic Sensor Networks 2009, Washington, October (2009)

9. Huang, V. and Stefanov, S.: Semantic Sensor Information Description and Processing,
Proceedings of the Second International Conference on Sensor Technologies and Applica-
tions, pp. 456-461 (2008)

10. Noguchi, H., Mori, T., and Sato, T.: Automatic Generation and Connection of Program
Components based on RDF Sensor Description in Network Middleware, IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pp. 2008-2014 (2006)

11. SOFIA project – Smart Objects For Intelligent Applications, funded through the European
Artemis program, http://www.sofia-project.eu/

12. Wilcock, G. and Jokinen, K.: SCXML, Multimodal Dialogue Systems and MMI Architec-
ture, Workshop on W3C Multimodal Architecture and Interfaces, Fujisawa, Japan (2007)

13. W3C: State Chart XML (SCXML): State Machine Notation for Control Abstraction,
http://www.w3.org/TR/scxml/, W3C Working Draft 13 May (2010)

14. Harel, D. (1987). StateCharts: A visual Formalism for Complex Systems. In: Science of
Computer Programming 8, North-Holland.

15. Young, S.: Cognitive User Interfaces" IEEE Signal Processing Magazine,27(3): 128-140,
(2010)

16. W3C: Voice Extensible Markup Language (VoiceXML) Version 2.0, W3C Recommenda-
tion 16 http://www.w3.org/TR/voicexml20/ March (2004)

17. OGC® Open Geospatial Consortium, Inc. : Sensor Web Enablement (SWE),
 http://www.opengeospatial.org/ogc/markets-technologies/swe
18. W3C Semantic Sensor Network Incubator Group, http://www.w3.org/2005/Incubator/ssn/
19. Nishimoto, T, Shioya, M., Takahashi, J., and Daigo, H.: A study on Dialogue Management

Principles Corresponding to the Driver’s Workload. Advances for In-Vehicle and Mobile
Systems:251 -264. (2007)

20. Amditis, A., Kussmann, H., Polynchronopoulos, A., Engström, J., and Andreone, L.: Sys-
tem Architecture for integrated adaptive HMI solutions. In: Intelligent Vehicles Sympo-
sium. Tokyo, Japan (2006)

21. OGC® Open Geospatial Consortium, Inc.: Observations and Measurements (O&M),
http://www.opengeospatial.org/standards/om

22. W3C: RDFa Primer. Bridging the Human and Data Webs. W3C Working Group Note 14
October 2008http://www.w3.org/TR/xhtml-rdfa-primer/

59

