
A METHOD FOR INTEROPERABILITY BETWEEN
STRUCTURED DATA SOURCES USING SEMANTIC ANALYSIS

David L. Brock and Jyotsna Venkataramanan
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, U.S.A.

Keywords: Interoperability, Knowledge representation, Schema, Semantics, Structure data, XML.

Abstract: The vocabulary and hierarchical organization of heterogeneous XML schemas were examined using
semantic analysis and the correspondence between disparate data elements estimated. A prototype
implementation was developed, and a number of large, real-world schemas automatically analyzed.

1 INTRODUCTION

The Extensible Markup Language has become the
standard for exchanging structured information over
the Internet. Industry and government have been
steadily building and deploying network centric
solutions using XML as the communication
standard. Many hundreds – if not thousands – of
XML-based languages have been developed and
encoded as XML schema. This, however, is the
essence of the problem. While these languages cover
a wide range of applications and domains, the
generality and flexibility of the Extensible Markup
Language has made the integration and exchange of
data between domain specific implementations very
challenging.

The disparity of representation has made the task
of combining data from multiple structured sources
difficult, error-prone and expensive. This paper
presents a new approach to structured data
interoperability by processing disparate XML data
representations to an encompassing generic model.
By examining this underlying knowledge model we
built a correspondence between schemas and
facilitated comparison and interoperability.

2 BACKGROUND

Interoperability of structured data has been research
academically and developed commercially.
However, most of these solutions are mainly manual
and while it is tedious to manually compare and
match across disparate schemas, automated solutions

have proven difficult to develop (Lakshmanan and
Sadri, 2003).

Previous research into data integration and
schema matching has led to a number of different
approaches. Most of these solutions involve a global
schema that, similar to our solution, integrates
different data sources to one universal model. As an
example, the NIEM (National Information Exchange
Model) developed by the United States government
integrates schema from a vast variety of sources
(NIEM, 2010)

A global schema however, differs from our
solution in that it is not an abstraction and merely,
melds many different data sources. The
disadvantage, however, is that without a governing
abstraction, such as the one proposed here, global
schemas are manually tedious, unwieldy, difficult to
manage and hard to expand.

Another approach is to start with a small core
and to incrementally add domain specific data
models. Dublin Core implemented in XML, for
example, provides a small set of semantic elements
to describe and catalog information resources
(Powell and Johnston, 2010) and Electronic
Business XML (ebXML), and its derivatives, were
built on multiple layers from a common core (Kotok,
2001). Another United States government standard,
the Universal Core (UCore), describes a small set of
essential data along with the provision for domain
specific enhancements (UCore, 2010).

The difficulty with this approach is the
compatibility between multiple disparate extensions.
These integration problems, in fact, mirror the
difficulty in structure data interoperability in
general.

234 Brock D. and Venkataramanan J..
A METHOD FOR INTEROPERABILITY BETWEEN STRUCTURED DATA SOURCES USING SEMANTIC ANALYSIS.
DOI: 10.5220/0003105402340239
In Proceedings of the International Conference on Knowledge Management and Information Sharing (KMIS-2010), pages 234-239
ISBN: 978-989-8425-30-0
Copyright c 2010 SCITEPRESS (Science and Technology Publications, Lda.)

There are commercial solutions available that
facilitate the integration of XML sources. The XML
Schema Mapper, for example, from Stylus Studio
provides a visual development environment to
quickly generate element-to-element schema
mappings (Stylus Studio, 2010). The IBM schema
mapping management system, Clio, derives likely
mappings by analyzing the schemas and the
underlying data using a Naïve-Bayes-based
matching algorithm (Fagin, 2009). However these
solutions lack an encompassing abstraction and
sometimes do not combine semantic understanding
with their matches. This is a disadvantage that
requires manual input from a knowledgeable user to
correct.

If we could automate this process of mapping the
schema to semantically sound concept abstractions,
the applications that can be produced will be faster,
more efficient and more fully comprehensive.

3 CONTENT MODEL

Despite their differences, nearly all XML documents
store information hierarchically and use element and
attribute names derived from human language. So it
should be possible to discover the intended meaning
of an XML schema using semantic analysis, so that
the XML documents on which they are based may
be understood and integrated.

Our approach to an abstraction was to transform
disparate representations into a neutral format using
a common data structure and a shared vocabulary.
Relying on the hierarchical nature of XML the
generic content model consisted of a hierarchical
organization with well-defined parent-child
relations. And to enforce this structure we developed
and implemented a common vocabulary. The
hierarchical model and the dictionary are the two
elements of a generic model, which forms the basis
for the integration of different schema.

3.1 Data Model

XML languages are composed of a nested structure
of tags (W3C, 2008) and therefore a hierarchy is an
obvious choice for a basic data model. In lieu of tags
XML can also be represented as a hierarchy of
concepts. The model defines ontologically the
expected relationships between a parent and child
tag.

A concept represents one discrete idea behind the
tags. To simplify this hierarchy and make it easier to
process we have restricted these concepts to be a

single word or a compound phrase.
The parent-child relationship in the data model

maps almost directly to the relationship between tags
within the XML hierarchy. Within the data model
hierarchy the parent-child relationship can be one of
three kinds:

 ‘type-of’ relationship – The parent concept is a
generalization of the child node

 ‘part-of’ relationship – The child is a subset of
the parent.

 ‘has-a’ relationship – The child is an attribute of
the parents’.

This information can be derived from the

structure of the XML tags and used to constructing a
generic, hierarchy representation of the data.

3.2 Common Vocabulary

In order to harmonize disparate data representations,
a common set of terms was required. This set of
terms served as a ‘target’ vocabulary into which
proprietary terminology could be mapped.
Furthermore, this vocabulary contained
unambiguous definitions, so that any particular entry
would have one and only one meaning.

Our first dictionary, originally derived from
WordNet, was modified by assigning numeric
extensions to unique definitions (WordNet, 2010).
With over 200,000 entries, the dictionary provided a
comprehensive base for semantically representing
schema elements.

A number of issues, however, emerged from this
initial implementation. Firstly, the dictionary entries
were not organized by frequency or domain of use.
Thus common words mingled with domain specific
terms. Secondly, noun phrases, such as ‘Asian
country’ could not participate in the ontological
hierarchies. Finally, we could not easily
accommodate the many proprietary and domain

 Color

 Red

 Green

<Color>
 <Red>
 <Green>
...

<Car>
 <Bumper>
 <Headlight>
...

 Car

 Bumper

 Headlight

<Employee>
 <Name>
 <Salary>

 Employee

 Name

 Salary

A METHOD FOR INTEROPERABILITY BETWEEN STRUCTURED DATA SOURCES USING SEMANTIC
ANALYSIS

235

specific dictionaries.
Therefore, we developed a new dictionary

organized by usage frequency subsets and domain of
use. Words were gleaned from various sources
including children’s literature and Simple English
articles for the core vocabulary, news articles and
Wikipedia entries for common terms and domain
specific terms from engineering, science and
governmental sources.

Ontological relationships in this dictionary
included connections both within and across
vocabulary subsets. In the example shown in Fig. 1,
the words frog and animal were located within
the same subset, and were linked by a simple typeof
relation. Another subset containing an expanded
vocabulary included the word amphibian, which
was linked the words in the first subset. Finally, a
domain specific vocabulary, in this case scientific
classification terminology, linked terms both within
and across subsets using typeof, partof and
attributeof.

Figure 1: The common dictionary segregated words into
varying levels of complexity as well as different usage
domains. Ontological relations linked words across
multiple word sets.

4 SCHEMA MAPPING

XML schemas from different sources typically have
different data models, structures, vocabularies and
formats. The model defined in Section 3 transforms
disparate xml schemas into a generic model that tries
to appease these differences. To reduce the complex
structure of XML schema to this form we
implemented an approach to translate tag names into
words or word phrases formed from the shared
vocabulary. Then, we simplified the schema using
reduction and normalization techniques. And finally,
we compared the resulting schema and identified
regions of overlapping data representations.

4.1 Tokenization

Naming conventions within XML documents run a
full gamut from single words to complex phrases
composed of words, acronyms, abbreviations and
prepositions, as shown in Figure 2. The first phase in
schema interoperation was to decompose tag names
into discrete tokens.

In order to accomplish this task, we first
‘dereference’ the XML schema. XML Schema often
import subsets of vocabulary from other schema to
be used in conjunction with natively developed
terms. This heterogeneous mix of phrases provides
the basis for data representation.

Tag names assume a variety of forms, again
shown in Figure 2. Capital and camel case notation
is often used in conjunction with underscore
formats, and all of these employing various
combinations of words, acronyms, abbreviations and
prepositions.

The basic tokenization algorithm is quite simple.
We tokenized based on underscore characters (if
any) and case transitions. In practice, however,
tokenization rules are not strictly followed by
schema designers. Thus we were therefore required
to validate tokens against concept maps, which are
discussed in the next section.

AFCT_EQPT_CODE_TYPE
SSN
HasDestinationOf
IVrate

Figure 2: Schema tags cover a wide range of formats from
simple words to complex phrases containing words,
acronyms, abbreviations and prepositions.

4.2 Concept Mapping

Once tokens from the schema were determined, they
were mapped to terms in the common dictionary.
We executed this mapping in multiple phases.
Initially, we specify the domain from which the
schema originates, such as ‘medical’, ‘business’,
‘governmental’, etc. Future algorithms may
automatically derive context from the token corpus.

Secondly, schema tokens were matched if they
were identical to words in the common dictionary
assuming the same context. If a match was not
found, we attempt to match against know
abbreviations. In practice, this is a common method
for generating tokens for an XML tag name. If
neither a word nor abbreviation were found,
common acronyms from the appropriate domain
were tested.

Level 1 Level 2 Scientific

frog

amphibian

aruna

amphibia

chordata

animalia

KMIS 2010 - International Conference on Knowledge Management and Information Sharing

236

If a match still was not found, our algorithm
extracts the tag documentation (if any) and
generated permutations of character strings formed
from key words within the text. Specifically, we
formed string combinations using words, syllables,
syllables with vowels removed and first letters.
Many schemas in fact used such methods for tag
name generations.

If all the above techniques failed to assign a
token to one or more words in the common
dictionary, the system reverted to manual
intervention. In practice few such words were
encountered.

Figure 3: XML tag names were tokenized and mapped to
words or phrases from the common dictionary by
matching words, abbreviations, acronyms or synthetic
strings formed from word fragments.

4.3 Tag Phrases

After converting tags to a normalized form we can
start to fold it into the concept model we defined by
utilizing the dictionary. In the model proposed, the
hierarchy was composed of simple or compound
words. However most XML tags consist of word
phrases, such as <AccidentSeverityCode>,
which represented a hierarchy of concepts

<AccidentSeverityCode>

 Accident

 Severity

The above example was easy to place in a hierarchy
since severity is an attribute of the accident. The
word ‘code’ in this instance implied the data value
was an enumeration. In the context of the concept
hierarchy this was not relevant, but in the translation
of data value will be critical.

Some tag phrases described relationships. For
example <AgentEventRelationshipType>
described the relationship between an agent and an
event. The model shown below illustrates the
difficulty in automatic conversion.

<AgentEventRelationshipType>

 <AgentRef>

Employee

Type

Agent

Event

Automating the creation of a hierarchy had
particular challenges. Many words were irrelevant
and were eliminated. Extraneous words were
identified and removed while maintaining the
integrity of the concept hierarchy as in (Heflin and
Hendler, 2000). In our implementation, any tokens
not critical to the semantic description of the data
were eliminated.

Schemas typically provided different levels of
resolution. In the example below, <loc> implied
‘latitude’ and ‘longitude,’ but were not explicitly
stated in the schema

<loc>42.35909 -71.09341<\loc>

Location

Latitude 42.35909

Longitude ‐71.09341

Our current implementation did not examine
instance data together with the schema analysis.
Such an approach could correlation through the
normalization of information resolution. One of
challenges in automatically constructing the
hierarchy was the properly ordering the concepts
from the word phrase. Parent-child relationships
were defined as one of three types ‘type-of’, ‘part-
of’ and ‘has-a’. Thus once the words in the tag were
separated and redundancies eliminated, the word
order was determined by testing sequences against
the proposed parent-child relations and by
comparing to the stored word associations in the
dictionary the correct hierarchical relationships can
be validated.

4.4 Schema Reduction

Once the schema elements were mapped to phrases
using terms from the common dictionary, we
performed a number of additional steps to reduce
schema variability.

First, we normalized elements and attributes. In
XML schema, the use of elements and attributes is
somewhat arbitrary and many designers choose one
over the other to describe identical data. For
example, an event location described by two

AFCT_EQPT_CODE_TYPE

aircraft equipment code type

SSN

social_security_number

HasDestinationOf

has destination of

IVrate

intravenous rate

A METHOD FOR INTEROPERABILITY BETWEEN STRUCTURED DATA SOURCES USING SEMANTIC
ANALYSIS

237

different schemas was encoded as follows

<position lat=”42.36”
 lng=”-71.09”
 time=”2010-06-04T14:15” />

<event>
 <point>

 <latitude>42.36</latitude>
 <longitude>-71.09</longitude>

 </point>
 <time> 2010-06-04T14:15</time>
</event>

Without definitive rules on the use of elements
versus attributes, we converted all attributes to
subordinate elements of the parent tag.

Second, synonymous terms were mapped to a
single ‘class’ word representing a particular
synonym set. For example, point, location
and position were mapped to the single term
position.

Third, prepositional phrases, such as
LocatedAt, HasDestinationOf, and
EmployedBy were converted to either single
words or simple noun phrases, such as position,
destination, and employer.

Finally, generic terms, such as data or
information, were simply removed. The resulting
simplification provided the basis for schema
comparison described in the next section.

4.5 Schema Comparison

Once the tag names were converted and the structure
simplified, as described above, the schemas were
reconstructed using only terms from the common
dictionary. The provided the foundation for
comparison and data translation. Using the original
examples discussed in Section 4.4, they are both
transformed to identical structures as shown below.

<event>
 <position>
 <latitude>42.36</latitude>
 <longitude>-71.09<longitude>
 </position>
 <time>2010-06-04T14:15</time>
</event>

Our objective was to find common data
representations among the disparate schema using
our semantic analysis. As an upper bound, we first
considered correlations between any two elements
from the XML schemas. For example, ‘name’ from
a first schema matched ‘name’ from a second, even
though they may refer to different entities. In the
following, the first instance ‘name’ refers to a vessel

while in the second the pilot of a vessel

<vessel name=”Calypso”>

<vessel>
 <pilot>
 <name>John Smith</name>
 <pilot>
 </vessel>

For our upper bound, we also considered

matches valid if they occurred inside tag phrases.
For example, aircraft identification from
one schema matched identification from
another. Even with these generous assumptions,
there was surprising little overlap among the various
schemas tested.

As a lower bound on schema correlation, we
considered a valid ‘match’ only if an element name
and every predecessor in the element hierarchy
matched. Using these two extremes, we bounded
the extent of possible overlap and identified areas of
correlation.

5 IMPLEMENTATION

To test the approach presented in the last section, we
designed and built an automatic schema comparison
tool. The desktop application and visual interface,
shown in Figure 5, allowed the user to select two
XML schemas – one in each panel. The tool
automatically applied the techniques described in
this paper and produced a quantitative measure of
the upper and lower bounds of possible correlation,
and identified elements of potential correspondence.

The tool allowed the user to view each step in the
process and manually intervene, if desired, to adjust
the mappings assigned by the algorithm. The
changes were recorded and then used in subsequent
executions of the program.

Figure 4: An automatic schema comparison tool was
developed based on the schema normalization techniques
described in this paper. The application read one or more
XML schema files and generated comparison statistics and
indicated areas of overlapping description.

KMIS 2010 - International Conference on Knowledge Management and Information Sharing

238

6 RESULTS AND DISCUSSION

We tested the schema comparison tool on a number
of governmental and commercial schemas including
the Universal Core (UCore), a governmental schema
for sharing digital content, Cursor on Target (CoT) a
simple schema for recording geospatial positions,
National Information Exchange Model (NIEM),
Keyhole Markup Language (KML), Geographic
Markup Language (GML) and many others.

Applying the analysis described in the previous
section, the schema comparison tool identified
matching elements within pairs of input schema.
Considering only semantic correspondence
irrespective of hierarchical position, a large quantity
of prospective matches would be expected.

Relatively few matching elements, however,
were actually identified, even though the schemas
describe ostensibly similar data. As shown in Figure
6, the quantities represent the percent of data
elements from the schema in the left-hand column
contained in the schema on the top-row.

 UCI CoT UCore KML

UCI 5 2 2

CoT 22 5 7

UCore 9 6 7

KML 13 9 7

Figure 5: The percentage of overlap between disparate
schemas was surprisingly small. While the general
assumption was schema from similar domains only
requires transformed between representations, these results
suggest that related schema represent different views of
similar data.

Examining the corresponding elements, at least
four types of matches were identified. Firstly
identical elements from identically imported schema
produced obvious matches. Secondly, generic
element names, such as id, type or name were
common among disparate schema. Thirdly, generic
high-level complex types, such as unit,
organization or address were present in
different schema. Finally, simple types including
latitude, organization or last_name
were found across multiple schemas.

The key result is the identification of high-level
and data value elements that represent ‘bridge’ or
‘nexus’ points between disparate data sources. In
other words, these elements provide the means to
link dissimilar data.

7 CONCLUSIONS

The techniques developed here attempted to
transform multiple, disparate XML sources into a
common concept representation while retaining the
underlying information. Through this process it
became clear that schema from similar domains
encoded different aspects of the same data. The
future objective should therefore be the assimilation
disparate data into a comprehensive knowledge
representation that connect these different realms of
data through their sparse ‘touch’ points. Based on
this research, our current effort is the development
of such a knowledge representation that accrues
information from many disparate sources and
provides tools for data manipulation, storage and
presentation.

REFERENCES

Lakshmanan, L. V., Sadri, F., 2003. Interoperability on
XML Data. In Proceedings of the 2nd International
Semantic Web Conference (ICSW ’03).

Rahn, E., Bernstein, P. A., 2001. A Survey of Approaches
to Automatic Schema Matching. Very Large Database
(VLDB., 10(4):334-350.

National Information Exchange Modelhttp://www.niem.
gov/, Accessed June 2010.

Powell, A. and Johnston, P., Guidelines for implementing
Dublin Core in XML.

http://dublincore.org/documents/dc-xml-guidelines/Access
ed June 2010.

Kotok, A, et al., ebXML: The New Global Standard for
Doing Business on the Internet, Sams 1st edition, 2001.

UCore|Universal Core 2.0 http://www.ucore.gov,
Accessed June 2010.

Stylus Studio, XML Schema Mapper http://www.stylus
studio.com/xsd_to_xsd.html, Accessed June 2010.

Fagin, R., et al., Clio: Schema Mapping Creation and Data
Exchange, appearing in Conceptual Modeling:
Foundations and Applications, Springer 2009.

W3C, 2008, Extensible Markup Language (XML).
http://www.w3.org/TR/REC-xml/.

WordNet http://wordnet.princeton.edu/, Accessed June
2010.

Heflin, J., Hendler, J., 2000. Semantic Interoperability on
the Web. In Proc.of Extreme Markup Languages.
Graphic Communications association, 2000, pp.111-
120.

A METHOD FOR INTEROPERABILITY BETWEEN STRUCTURED DATA SOURCES USING SEMANTIC
ANALYSIS

239

