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Abstract: Decision trees and decision rules are usually applied for the classification problems in which legibility and 
possibility of interpretation of the obtained data model is important as well as good classification abilities. 
Beside trees, rules are the most frequently used knowledge representation applied by knowledge discovery 
algorithms. Rules generated by traditional algorithms use conjunction of simple conditions, each dividing 
input space by a hyperplane parallel to one of the hyperplanes of the coordinate system. There are problems 
for which such an approach results in a huge set of rules that poorly models real dependencies in data, is 
susceptible for overtfitting and hard to understand by human. Generating decision rules containing more 
complicated conditions may improve quality and interpretability of a rule set. In this paper an algorithm 
taking a set of traditional rules and aggregating them in order to obtain a smaller set of more complex rules 
has been presented. As procedure uses convex hulls, it has been called Convex Hull-Based Iterative 
Aggregation Algorithm. 

1 INTRODUCTION 

Rules-based data models can be applied for the 
classification (Furnkranz, 1999), description (Fayad 
et al., 1996), or both the aims simultaneously. In the 
case of description or both description and 
classification, the possibility of interpretation of 
created rules-based data descriptions, thus the ability 
to understand and to use dependencies represented 
by rules, is their significant feature. Due to the 
specificity of the language of classification rules, 
defining simple rules-based descriptions is 
impossible for many problems (Fig. 1). It turned out 
that if the language of rules representation is slightly 
more complicated, simple and still intuitive 
descriptions can be found for many of the problems 
(Fig. 2). Therefore a lot of methods search for rules 
which premises contain linear combinations of 
conditional attributes. This enables to get so-called 
oblique descriptors. The majority of the methods 
make a decision trees induction (oblique decision 
trees) (Murthy et al., 1994), (Bennett, Blue, 1997), 
and then transform determined trees into rule sets. 
The algorithm ARED (Seunghyun, Ras, 2008) 
makes the rules induction with oblique descriptors. 
However the efficiency of the algorithm was not 
verified on a bigger number of datasets. 

 
Figure 1: Example classification problem. Rules covering 
decision regions have been induced using JRip which is an 
implementation of the RIPPER algorithm (Cohen, 1995) 
contained in Weka software (Hall et al., 2009). One can 
see that the simple decision rule language is insufficient to 
model the data properly. 

Recently, an increasing number of hybrid rules 
induction methods has been observed. Joining rules 
induction algorithms with support vector machines 
(SVM) is the most popular approach (Barakat, 
Bradley, 2006), (Martens et al., 2009), (Nunez et al., 
2008). In the papers, SVM are usually used to 
concentrate training examples on boundaries of 
decision regions or to separate coherent regions in 
the features space, and then describe them by rules 
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with higher dimensional curves (e.g. ellipsoids) in 
their premises. 

 
Figure 2: Using a more complicated description language 
allows to model classification problem nicely. 

Each of the mentioned methods has advantages 
as well as disadvantages. The fact that diagonal or 
nonlinear descriptors occurring in rules apply all 
conditional attributes without offering any pruning 
strategies is the disadvantage in the majority of the 
methods. The pruning is meant as simplifying multi-
dimensional expressions by eliminating conditional 
attributes forming them. Possibility of interpretation 
of unpruned rules is then strongly limited. 

In the paper, a method of aggregating traditional 
classification rules obtained by any standard rule 
induction algorithm is presented. The procedure tries 
to join rules sequentially, by twos, finding a set of 
hyperplanes which bound a region covered by rules 
being joined. 

The presented method is a generalization of rules 
joining algorithms which merge rules without 
changing their representation language (Sikora, 
2005), (Latkowski, Mikołajczyk, 2004) or operate 
on a very specific representation (Pindur et al., 
2004). 

In the next part of the paper, an algorithm for 
rules aggregation and rules postprocessing, as well 
as the results of experiments are presented. The last 
chapter includes the summary of obtained results 
and directions of further works. 

2 BASIC NOTIONS 

Some basic notions used later in the paper have been 
introduced here. 

Let's assume we have a set of objects O which 
can be divided into c disjoint classes labelled by 
elements of a set 1,  2,   … ,   . Information about 

assignment of a given object o∈O to a decision class 
is included in a value of a decision variable y: 

: 1, 2,   … ,   . (1) 

Let's additionally define a d-element set of attributes 
    , ,   … , . To each object    we 

can assign a d-dimensional vector  
,   containing values of 

these attributes. One can see, that it has been 
assumed that all the attributes from A are 
continuous. This simplification is because the 
current version of the algorithm ignores categorical 
features in the aggregation process. However, a 
generalization for categorical attributes is possible 
and has been described later on. 
A training set can be defined as follows: 

, . (2) 

A classification task consists in finding a function ϕ 
which approximates the function y on the basis of a 
training set T (which is equivalent to generalising a 
knowledge represented by a training dataset). 

Rules-based classifiers can be distinguished by 
classification strategies they exploit. Described 
algorithm is based on a rules hierarchy. This is 
because RIPPER algorithm (Cohen, 1995) which 
served to generate input rules uses this scheme as 
well. The idea is that rules are ordered. During the 
classification process the first rule covering an 
object being currently checked is picked. Hence, 
reordering rules affects classification performance 
(which is not the case in different aggregation 
strategies like voting rules). 
A decision rule can be defined as follows: 

: , (3) 

where  is a premise consisting of a conjunction of 
conditions  (descriptors), and  is a conclusion (a 
class label). Majority of decision rules induction 
algorithms generates simple descriptors like  
or . Such conditions divide an input space 
into two parts by a hyperplane parallel to one of 
hyperplanes of the coordinate system. Aggregation 
algorithm covered in this paper generates oblique 
descriptors, which are linear combinations of 
attributes:  

0. (4) 

Such descriptor divides a feature space by some 
hyperplane, not necessarily parallel to coordinate 
system hyperplanes. It is assumed, that inequalities 
in all descriptors have the same direction (one can 
always multiply expression by -1 to obtain this). 
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Several measures that reflect a quality of 
decision rules of the form (3) can be computed 
(Furnkranz, Flach, 2005), (Guillet, Hamilton, 2007), 
(Sikora, 2010). If the rule r is denoted as ϕ→ψ, then 
nϕ=nϕψ+nϕ¬ψ=|Oϕ| is the number of objects that 
recognize the rule; n¬ϕ= n¬ϕψ+n¬ϕ¬ψ=|O¬ϕ| is the 
number of objects that do not recognize the rule; nψ= 
nϕψ+ n¬ϕψ=|Oψ| is the number of objects that belong 
to the decision class described by the rule; n¬ψ= 
nϕ¬ψ+ n¬ϕ¬ψ=|O¬ψ| is the number of objects that do 
not belong to the decision class described by the 
rule; nϕψ=|Oϕ∩Oψ| is the number of objects that 
support the rule. Values nϕ¬ψ, n¬ϕψ, n¬ϕ¬ψ are 
calculated similarly as nϕψ. It can be noticed that for 
any rule ϕ→ψ  the inequalities 1≤nϕψ≤|Oψ|, 
0≤nϕ¬ψ≤|O¬ψ| hold. Hence, a quality measure is a 
function of two variables nϕψ and nϕ¬ψ, and can be 
defined as follows  (Sikora, 2006): 

ϕ→ψ : 1, . . , | ψ| × 0, . . , | ¬ψ| → . (5) 

Two basic quality measures are accuracy and 
coverage: 

acc(ϕ→ψ) = nϕψ/nϕ, (6) 
cov(ϕ→ψ) = nϕψ/nψ. (7) 

The accuracy measure and two other measures are 
used for evaluation of joined rules in the aggregation 
algorithm. The first measure called RSS is empirical 
and enables to evaluate the accuracy and coverage of 
a rule simultaneously, taking into consideration 
examples distribution among the decision class 
indicated by the rule and the other decision classes.  

)( ψϕ →Rssq =

1−
+

+
+ ¬¬¬

¬¬

¬ ψϕψϕ

ψϕ

ϕψϕψ

ϕψ

nn
n

nn
n

. 
(8) 

Making an analysis of the formula (8) it can be 
noticed that the measure proposes the method of rule 
evaluation analogous to the method of classifiers 
sensitivity (first component of the sum) and 
specificity (second component of the sum) 
evaluation. The measure takes values from the 
interval [-1,1] and values equal to zero are achieved 
when a rule has the same accuracy as it implies from 
the positive and negative examples distribution in a 
training set. 

The other measure used in a rule evaluation 
process is Laplace estimate (9).  

 

)( ψϕ →Laplaceq =
cnn

n
++

+

¬ψϕϕψ

ϕψ 1
 

(9) 

The basic idea of the Laplace estimate is to assume 
that each rule covers a certain number of examples a 
priori. The estimate computes the accuracy, but 
starts to count covered positive or negative examples 
at a number greater than 0. The positive coverage of 
a rule is initialized with 1, while the negative 
coverage of a rule is initialized with a number of 
decision classes c. 

3 CONVEX HULL-BASED 
ITERATIVE AGGREAGTION 
ALGORITHM 

In the following paragraph an algorithm for 
aggregation decision rules has been presented. It has 
been called Convex Hull-Based Iterative 
Aggregation Algorithm. Iterative, because it 
sequentially tries to merge decision rules in order to 
model the problem more properly than the input rule 
set. Convex Hull-Based, because a procedure of 
aggregating two particular decision rules uses 
convex hulls. On the Fig. 3 one can see a full 
flowchart of the algorithm. In the sections below all 
steps of the procedure are covered in details. 
Example dataset from the Fig. 1 has been used as an 
illustration. One must keep in mind that it is 
assumed, that input rule set R contains rules 
corresponding to a single decision class. 

3.1 Hyperrectangular Rules 

The idea of the aggregation procedure is based on 
the assumption that a decision rule can be 
considered as some convex area in a feature space. 
The algorithm tries to merge these areas into larger 
ones. However, rules generated by traditional 
induction algorithms rarely determine convex areas - 
to obtain this, a rule should by bounded from both 
sides in each dimension forming a hyperrectangle: 

, … , . (10) 

This is why the first step of the algorithm consists in 
bringing an input rules into a hyperrectangular form. 
This can be done by adding missing descriptors with 
coordinates of the extreme points from a training set. 
It will not affect classification results of unseen data 
because these synthetically added descriptors will be 
removed after aggregation procedure has finished. In 

KDIR 2010 - International Conference on Knowledge Discovery and Information Retrieval

218



 

addition, hyperrectangular  rules have a very nice 
feature - one can easily find vertices of the 
corresponding hyperrectangles. This is a crucial 
issue because in the following steps algorithm uses 
these vertices in the merging procedure. The 
implication of the proposed approach is that a rule r 
can be represented in a dual way:  

• as a set of hyperplanes , 
• as a set of vertices . 

Keeping integrity between the hyperplane 
representation used directly for classification and the 
vertex representation which takes part in the 
aggregation procedure is a very important task the 
algorithm must handle.  

3.2 Aggregation Loop 

As our aim is to reduce a number of rules in the 
entire rule set meeting some classification accuracy 
conditions, it must be decided which rules in which 
order should be picked for the aggregation 
procedure. The simplest approach is to use an 
exhaustive paradigm to check all possible rule 
permutations and pick the best one. However, the 
brute-force method is computationally too expensive 
to be used in practice. This is why some greedy 
heuristics for searching aggregation candidates has 
been proposed. 

At the beginning we take the first rule as the 
current one and try to merge it with following rules 
(let's call those rules aggregation partners) creating a 
candidates for new rules. Method of joining two 
particular decision rules has been explained in the 
following section. For each candidate we check if it 
meets quality criterions. 
Quality control consists of two elements. At first 
algorithm checks how quality of the rule candidate is 
related to the better rule from the pair being 
aggregated. If it is below some threshold, the 
candidate is rejected. Parameter indicating 
maximum drop of the quality is called 
ruleQualityDrop and is expressed in percentages. 
However, checking only this condition may result in 
an accumulation of the quality drops and big 
classification error of the final rule set. This is why 
an additional criterion has been introduced. 
Algorithm checks how aggregation of two particular 
rules affects classification accuracy obtained by the 
entire rule set. If an accuracy  decrease exceeds 
rulesetAccuracyDrop parameter (which is given in 
percentages as well), the candidate is rejected. One 
must remember, that these two parameters are 
evaluated on a training set. Adjusting them gives full 
control  on how  the algorithm works. For example,  

 
Figure 3: Flowchart of the Convex Hull-Based Iterative 
Aggregation Algorithm. 

one can force the algorithm to operate in the way 
that classification accuracy obtained by a final rule 
set does not decrease (on a training set). 
If quality criterions are fulfilled, a rule candidate is 
accepted. We replace the current rule with the new 
one, and remove the partner from the rule set. The 
algorithm also checks if the new rule covers some 
other rules which follow the partner and removes 
them if possible. There is no need to check rules 
preceding the partner because they are the ones that 
hasn't been aggregated with the current rule (so there 
is no possibility that they are covered by the new 
rule). After all partners have been checked, we 
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change a current rule for the next one. Procedure 
stops when the current rule is the last one from the 
rule set. 

3.3 Merging Two Decision Rules 

This section covers in details how the algorithm 
merges two particular decision rules. Let's assume 
there are two rules  and  we would like to 
aggregate. Below steps of the basic aggregation 
procedure have been described. The modified 
version with some improvements has been 
introduced later. 

1. Create a new rule r such that 
. 

2. Calculate a d-dimensional convex hull of 
points belonging to the  using Qhull 
algorithm (Barber et al., 1996). This 
algorithm returns a set  describing all 
the facets of a convex hull. Each facet is 
represented by a set of d indices pointing 
some vertices from .  

3. For each face from  calculate a 
corresponding hyperplane equation. As we 
know vertices belonging to each face, this 
can be done easily by solving a system of 
linear equations. Obtained hyperplanes are 
stored in  set. 

Important advantage of the method is that it can be 
generalized for categorical attributes easily. Merging 
descriptors  and  simply produces 

. Another feature of the procedure is that 
it is based only on rule vertices and does not use a 
training set. 

However, the approach described above has its 
disadvantages. Most important one is that a number 
of vertices representing a rule grows exponentially 
with a number of dimensions. As hyperrectangular 
rules use all attributes in their premises, handling 
high dimensional feature spaces is computationally 
very expensive. This is why, a hull should be 
calculated only with respect to dimensions which are 
really used in aggregated rules. Therefore, for each 
input rule r, before bringing it to a hyperrectangular 
form, we store attributes present in a premise in a set 

. Additional improvement is to limit maximum 
number of dimensions that can appear in a rule being 
created. There is an algorithm parameter called 
maxDim. If number of attributes in a rule candidate 
exceeds this parameter, a rule is not created. This 
allows user to  control the  complexity of  obtained  

 
(a) 

 
(b) 

Figure 4: Two hyperrectangular rules separately (a) and 
after aggregation (b). 

descriptors (for example, he can limit number of 
dimensions to 3 in order to visualise hyperplanes) or 
to speed-up the algorithm. The modified aggregation 
procedure of rules  and  is as follows: 

1. Create a new rule r such that 
 and 

, | | . If , reject r 
immediately and skip the following steps. 

2. Calculate a k-dimensional convex hull of 
points from  with respect to the 
attributes belonging to . Following 
actions are the same as in the previous 
description. 

The result of aggregation of two example rules has 
been presented on the Fig. 4. 

3.4 Rule Tuning 

One can see on the flowchart that just after creation 
of a new rule candidate there is a step called rule 
tuning. It comes out that sometimes a rule candidate 
may be further improved.  This is very important 
from the point of view of the algorithm because 
quality influences if an aggregated rule is accepted. 
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Hence, each candidate is tuned to obtain as good 
result as possible. 

Rule tuning procedure has two phases. The first 
stage of tuning consists in joining coplanar facets 
and removing duplicated hyperplanes. As we 
mentioned before, in k-dimensional space each facet 
of a convex hull calculated by Qhull has  k vertices.  
This means that, for example, in 3-dimensional 
space, we obtain triangular facets. Such approach 
may result in coplanar facets. For example cube 
contains 6 square facets but Qhull returns 12 triangle 
ones. In fact, as our input rules have a 
hyperrectangular form, this situation will happen 
very often. More the dimensions, more coplanar 
facets appear. This is why the algorithm must merge 
coplanar facets and remove duplicated hyperplane 
equations. 

The second stage of tuning consists in adjusting 
hyperplanes equations to get the maximum quality 
of an aggregated rule. One can see on the Fig. 4 that 
the oblique line is not optimally situated (if  we 
move it slightly upwards it will cover same number 
of positive examples and less negative examples). 
Hence, we introduce a technique of hyperplane 
adjusting. For simplicity it is assumed that only 
hyperplane translations are possible (no rotations are 
performed). Below we described adjustment steps 
for a rule r created as the result of aggregation of 
rules  and .  

1. Find a hyperplane to adjust  such 
that      (there is no 
need to improve a boundary hyperplane or a 
hyperplane that could have already been 
improved in one of previous iterations).  

2. Find a face f corresponding to the 
hyperplane h and all vertices from  
adjacent to the face f. A vertex is adjacent 
to the face f if it belongs to some face g 
adjacent to f and it does not belong to f . 

3. Calculate equations of hyperplanes parallel 
to h going through vertices adjacent to f and 
choose the one closest to h (let's call it 
hclosest). Original hyperplane h and the 
closest one determine bounds of the 
searching area. This is to assure that no face 
vanishes in the adjustment procedure. 

4. Use Fibonacci search technique (Ferguson, 
1960) to find an optimal hyperplane h' 
parallel to h lying in the area bounded by h 
and hclosest (as these hyperplanes are 
parallel, Fibonacci is used to find an 
optimal value of a free term). Assumed 
quality measure is used as a criterion 
function in searching. 

5. Replace h with h' in , calculate new 
positions of vertices forming face f using h' 
equation and equations of adjacent faces. 
This can be easily done by solving a system 
of linear equations. 

An example of the adjustment procedure has been 
shown on the Fig. 5. 

 
Figure 5: Tuning of a rule from the Fig. 4b. Hyperplane h 
is the one being adjusted. Hyperplanes h and hclosest  
indicate boundaries of the searching area. Hyperplane h' is 
an optimal hyperplane found with Fibonacci method. 
Adjusted face has been marked with a thick line. 

3.5 Rule Set Pruning 

Rule set pruning is done at the very end of the whole 
procedure after the aggregation loop has finished. 
This phase consists of actions that either decrease 
rules quality (and should not be done in a tuning 
phase preventing from a premature rejection of 
candidates) or remove some data from a rule 
description so further aggregations become 
impossible. 

There are two stages of pruning, both are 
repeated for all rules in a rule set. First one consists 
in eliminating hyperplanes that correspond to the 
boundaries of the domain. As it has been said before, 
the first step of the Iterative Aggregation Algorithm 
is transforming input rules to the hyperrectangular 
form. This means that some hyperplanes had to be 
synthetically added. After the entire aggregation 
procedure has finished, we can remove them.  

The second stage of pruning consists in 
removing other hyperplanes that have no significant 
influence on classification results. Algorithm just 
iterates through all the hyperplanes and checks how 
deleting affects classifier performance. If a 
classification accuracy decrease evaluated on a 
training set does not exceed pruningAccuracyDrop 
parameter (given in percentages), a hyperplane is 
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removed.  Below one can see a comparison between 
some rule before and after pruning procedure. 
Before pruning:  
(-a1+0.602 >= 0) and  
(-a1+0.432*a2+0.196 >= 0) and  
(-a1+0.63*a2+0.022 >= 0) and  
(-0.975*a1+a2-0.277 >= 0) and  
(-0.491*a1+a2-0.329 >= 0) and  
(-0.991*a2+1 >= 0) and  
(+a2-0.348 >= 0) and  
(+a1+0.01 >= 0) => class = positive 

After pruning:  
(-0.975*a1+a2-0.277 >= 0) =>  
class = positive 

As one can see, the reduction of descriptors number 
is significant. 

Actions described here cannot be done in the rule 
tuning phase. This is because the hyperplane 
adjustment procedure uses equations of adjacent 
hyperplanes to calculate new positions of face 
vertices. If one removed some hyperplanes from 

, it would become impossible.  
Final results of the algorithm for the example 

input rule set has been shown on the Fig 6. 

4 EXPERIMENTS 

In order to evaluate results of the algorithm some 
experiments have been performed. Benchmark 
datasets have been chosen mainly from the UCI 
Machine Learning Repository. The only exceptions  

 
Figure 6: Final results of the Convex Hull-Based Iterative 
Aggregation Algorithm performed on the rule set 
presented on the Fig 1. 

are synth2D (Fig. 1.) and synth3D datasets, which 
have been synthetically generated and sc503 which 
is the real dataset containing a microseismic hazard 
assessment in a coal mine. Input rules have been 

generated using JRip (Hall et al., 2009). Majority of 
the experiments have been run in 10-fold cross 
validation (only segment dataset has been tested in 
the train and test mode). Tests have been performed 
with four sets of parameters (from a very 
conservative to a very aggressive aggregation 
strategies) for the accuracy, RSS and Laplace quality 
measures. In each experiment it has been checked 
which measure leads to the best accuracy of an 
obtained rule set and the best reduction of a number 
of rules. Results are presented in the Table 1. One 
can see that accuracy is the best quality measure if 
we aim in the highest classification accuracy. If one 
would like to reduce a number of rules, he should 
pick RSS instead. 

Table 1: Percentages indicate how often given quality 
measure leads to highest accuracy and highest rule 
reduction rate. 

 accuracy RSS Laplace 
Highest accuracy 41% 29% 30% 
Highest reduction 

rate 
24% 50% 26% 

From all tested parameter sets we have chosen two 
which haves been called safe and aggressive 
aggregation strategies (see Table 2 for more detailed 
description). Tables 2a and 2b present results of 
classification for these parameter sets for accuracy 
and RSS quality measures respectively. This is due 
to fact that these measures gave the best results from 
the point of view of a classifier performance and a 
rule set reduction. Results for Laplace have been 
omitted, because they are located between accuracy 
and RSS. One can see that results for the safe 
strategy are similar for both quality measures. 
However, in the aggressive strategy RSS leads to 
lower accuracy and higher reduction of rule sets. 

Below one can see a comparison between input 
and output rules for “R” decision class for the 
balance-scale data set. Aggressive parameter set has 
been used with hyperplane dimensionality limitation 
equal to 3. RSS has been set as a rule quality 
measure. 
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Table 2: Results of classification for the example datasets. Input rule set, and rule sets obtained by the safe and aggressive 
aggregation strategies has been evaluated. Corresponding algorithm parameters are 20%-2%-1% and 20%-8%-2% 
(ruleQualityDrop-rulsetAccuracyDrop-pruningAccuracyDrop). To speed up the calculations maximum number of 
hyperplanes has been limited to 5. Accuracy (table a) and RSS (table b) have been used as quality measures. 

(a) 

Dataset 
Input rule set Safe strategy Aggressive strategy 

accuracy 
[%] 

rules 
count 

desc. 
count 

Δ(acc) 
[%] 

Δ(rc) 
[%] 

Δ(dc) 
[%] 

Δ(acc) 
[%] 

Δ(rc) 
[%] 

Δ(dc) 
[%] 

vehicle 67 16,7 42,1 2,3 -7,8 -32,5 0,6 -9 -37,5
wine 90,6 3,7 4,5 1,3 0 -2,22 1,3 0 -8,89
glass 65,4 7,2 14 1,3 -2,8 -7,86 1,5 -4,2 -12,1
iris 92,7 3,7 3,7 0,7 -5,4 -21,6 0,7 -5,4 -21,6
australian 84,1 4,7 8,7 1 -4,3 -14,9 1 -36 -67,8
pima 73,9 3,7 6,3 -0,4 -8,1 -19 -2 -19 -33,3
balance-scale 77,4 11,9 32,6 4,7 -81 -76,1 4,6 -81 -78,2
ionosphere 89,8 4,8 5,2 1 -10 -15,4 -1 -17 -25
heart-statlog 74,4 4 6,1 3 -40 -37,7 3 -43 -42,6
pendigits 86,7 30,8 75,1 -2 -12 -16,6 -4 -14 -18,6
ecoli 83 9,5 16,7 0,7 -6,3 -17,4 0,4 -7,4 -24,6
yeast 57,8 16,7 39,3 1,5 -14 -36,9 -0 -22 -47,8
segment 94,4 13 26 -0,5 -7,7 -15,4 -2 -7,7 -15,4
synth2D 95 10,9 19,8 2,3 -72 -86,4 1,7 -72 -87,9
synth3D 95,8 7,8 19,6 -1 -51 -61,2 -3 -60 -73,5
sc503 90,2 4,1 6,2 0,6 -22 -30,6 -1 -27 -40,3

Average 1,0 -21,5 -30,7 0,1 -26,5 -39,7

(b) 

Dataset 
Input rule set Safe strategy Aggressive strategy 

accuracy 
[%] 

rules 
count 

desc. 
count 

Δ(acc) 
[%] 

Δ(rc) 
[%] 

Δ(dc) 
[%] 

Δ(acc) 
[%] 

Δ(rc) 
[%] 

Δ(dc) 
[%] 

vehicle 67 16,7 42,1 2,6 -16 -37,3 -3 -23 -48,5
wine 90,6 3,7 4,5 1,3 0 -2,22 1,3 0 -8,89
glass 65,4 7,2 14 0,6 -4,2 -9,29 -4 -11 -20
iris 92,7 3,7 3,7 0,7 -5,4 -21,6 0,7 -5,4 -21,6
australian 84,1 4,7 8,7 1 -6,4 -18,4 1 -36 -67,8
pima 73,9 3,7 6,3 -0,9 -11 -23,8 -2 -32 -50,8
balance-scale 77,4 11,9 32,6 6,5 -82 -76,7 5,6 -83 -79,1
ionosphere 89,8 4,8 5,2 0 -4,2 -7,69 -2 -19 -26,9
heart-statlog 74,4 4 6,1 3 -40 -37,7 3 -43 -42,6
pendigits 86,7 30,8 75,1 -2 -15 -16,5 -8 -23 -23,6
ecoli 83 9,5 16,7 0,7 -11 -20,4 -2 -17 -32,3
yeast 57,8 16,7 39,3 1,2 -28 -43,5 -1 -38 -60,1
segment 94,4 13 26 -0,5 -7,7 -15,4 -5 -23 -42,3
synth2D 95 10,9 19,8 2,2 -72 -86,9 2,1 -72 -87,9
synth3D 95,8 7,8 19,6 -1 -51 -57,7 -6 -71 -76,5
sc503 90,2 4,1 6,2 0 -27 -33,9 -1 -27 -38,7

Average 1,0 -23,8 -31,8 -1,3 -32,7 -45,5
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Input rule set:  
(right-weight >= 3) and (right-distance 

>= 3) and (left-weight <= 2) => 
class=R 

(left-distance <= 2) and (right-weight 
>= 3) and (right-distance >= 3) => 
class=R 

(left-weight <= 3) and (left-distance 
<= 2) and (right-weight >= 2) and 
(right-distance >= 2) => class=R  

(left-weight <= 1) and (left-distance 
<= 3) and (right-distance >= 3) => 
class=R 

(left-distance <= 1) and (right-weight 
>= 3) and (left-weight <= 4) => 
class=R 

(left-weight <= 1) and (right-distance 
>= 2) and (right-weight >= 2) => 
class=R  

(right-distance >= 4) and (right-weight 
>= 4) and (left-weight <= 3) => 
class=R 

(right-weight >= 5) and (right-distance 
>= 4) and (left-weight <= 4) => 
class=R 

(left-distance <= 3) and (right-weight 
>= 3) and (right-distance >= 4) => 
class=R 

(left-distance <= 3) and (right-weight 
>= 4) and (right-distance >= 2) 
and (left-weight <= 3) => class=R  

(left-distance <= 1) and (right-weight 
>= 2) and (right-distance >= 2) => 
class=R 

(left-weight <= 3) and (left-distance 
<= 1) and (right-distance >= 4) => 
class=R 

Output rule set: 
(-0.5*left-distance+1 >= 0) and 

(+0.5*right-weight-1 >= 0) => 
class=R 

 (-0.5*left-weight+0.75*right-distance-
1 >= 0) and (+0.5*right-weight-1 
>= 0) => class=R 

 (-0.333*left-distance+0.666*right-
weight-1 >= 0) and (+0.5*right-
distance-1 >= 0) => class=R 

 (-0.333*left-distance+1 >= 0) and 
(+0.5*right-distance-1 >= 0) and 
(+0.25*right-weight-1 >= 0) => 
class=R 

 (-left-distance+1 >= 0) => class=R 
 (-0.25*left-weight-0.25*left-

distance+1 >= 0) => class=R 

One can see that rule reduction rate is significant. 
The appearance of oblique descriptors allowed to 
decrease the number of rules describing the training 
data set and to reflect better dependences occurring 

in the “R” decision class. Determined rules are 
consistent with the balance scale dataset  specificity.  

In the case of the 2D synthetic dataset rules such 
as in Fig. 6 were managed to obtain. It clearly shows 
that the almost perfect description of the dataset has 
been obtained. Obtaining the perfect one (as in the 
Fig. 2) would be possible in the case of rotation of 
one oblique descriptor by a certain angle. Such 
tuning procedure will be the subject of further works 
with the purpose of improving the algorithm. 

5 CONCLUSIONS 

The proposition of an algorithm for classification 
rules aggregation that enables to introduce oblique 
descriptors in rules premises is presented in the 
paper. The aim of the algorithm is rules aggregation 
in order to obtain less number of rules describing 
decision classes. At the same time, the decrease of a 
rules number should not influence negatively the 
generalization abilities of the rules-based classifier. 

Research results presented in tables 2a and 2b 
show that the algorithm operates according to the 
assumptions. Reduction of a number of rules and 
descriptors occurring in their premises is the result 
of the algorithm. The decrease of descriptors number 
is obviously caused, among others, by the fact that 
descriptors of aggregated rules can be linear 
combinations of several attributes, so they are more 
complicated than input ones. However, as the 
example of the synthetic dataset presented in the 
previous section shows, the change of descriptors 
representation can be helpful in better understanding 
dependencies in data.   

The procedure tries to join rules sequentially, by 
twos, finding a set of hyperplanes which limit a 
region covered by rules being joined. Boundary 
conditions added synthetically to premises of 
aggregated rules are used in the hyperplanes 
searching only. 

The algorithm can be parameterized by using 
various rule quality measures and various threshold 
values connected with a quality of joined rules and 
their classification abilities. As tables 2a and 2b 
show, values of parameters are important for the 
efficiency of the algorithm.  

Further works on improving the algorithm 
performance will concern developing more 
advanced tuning strategy of joined rules. Beside the 
method of a hyperplane translation, a strategy of its 
rotation around a given point by a given angle will 
be worked out. Probably, authors will take 

KDIR 2010 - International Conference on Knowledge Discovery and Information Retrieval

224



 

advantage of experiences described by Murthy et al. 
(1994). 

The algorithm sources (written entirely in 
MATLAB) can be provided after sending a request 
to one of the authors. 
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