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Abstract: Substantial evidence suggests that nervous systems simplify motor control of complex body geometries by 
use of higher level functional units, so called motor primitives or synergies. Although simpler, such high 
level functional units still require an adequate controller. In a previous study, we found that kinematic inter-
joint couplings allow the extraction of simple movement synergies during unconstrained 3D catching 
movements of the human arm and shoulder girdle. Here, we show that there is a bijective mapping between 
movement synergy space and 3D Cartesian hand coordinates within the arm’s physiological working range. 
Based on this mapping, we propose a minimal control schema for a 10-DoF arm and shoulder girdle. All 
key elements of this schema are implemented as artificial neural networks (ANNs). For the central 
controller, we evaluate two different ANN architectures: a feed-forward network and a recurrent Elman 
network. We show that this control schema is capable of controlling goal-directed movements of a 10-DoF 
arm with as few as five hidden units. Both controller variants are sufficient for the task. However, end-point 
stability is better in the feed-forward controller. 

1 INTRODUCTION 

The complex biomechanics of limbs like the primate 
arm facilitates the generation of a remarkable variety 
of dexterous and context-dependent behaviors. 
However, the large number of degrees of freedom 
(DoFs), e.g. ten DoFs of the human arm and 
shoulder girdle, complicates the required neural 
control. This issue is known as motor redundancy 
problem (Bernstein, 1967). 

Central nervous systems (CNS) seem to easily 
overcome this problem. One proposed mechanism 
used by the CNS for the solution of the redundancy 
problem is the combination of several DoFs into a 
small set of higher level functional control units, 
typically referred to as movement synergies or 
primitives. There is substantial evidence that this 
general concept is realized in vertebrate nervous 
systems in one way or another (for reviews see Flash 
and Hochner, 2005, and Ting and McKay, 2007). 
Because the complexity of the control problem 
depends on the number of controlled variables, these 
synergies can simplify the control of the limb. Here, 
we propose and evaluate a synergy-based and 

closed-loop control schema that can be implemented 
as a modular artificial neural network. 

Classical studies on human reaching movements 
tended to search for global optimization parameters 
like speed (Atkeson and Hollerbach, 1985), jerk 
(Flash and Hogan, 1985), or torque change (Uno, et 
al., 1989). Most, if not all of these studies were 
based on well-controlled but strongly constrained 
movement paradigms, such as center-out tasks with 
planar movements and fixed shoulder position. 
Although these studies identified movement 
invariants, they did not specify models of how the 
brain could use them to overcome the problem of 
redundancy. Furthermore, these invariants are based 
on predictive strategies, i.e. global parameters that 
are optimized offline and prior to the actual 
movement. In these strategies sensory feedback 
during an ongoing movement plays only a minor 
role. 

In contrast, current concepts of goal-directed 
behavior favor prospective strategies that (a) 
explicitly take into account sensory feedback during 
ongoing behavior and (b) define motor goals in a 
task space that is then mapped to motor output 
(Todorov, 2004). Both of these aspects are realized 
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in the approach we propose here: (a) It relies on 
continuous sensory feedback and (b) exploits a small 
set of movement synergies, which can be viewed as 
a set of elementary motor tasks as each synergy by 
itself defines a valid movement. 

In a previous experiment (Bockemühl, et al., 
2010) we studied natural and unconstrained arm 
movements during a catching task in a large portion 
of the arm’s workspace and recorded 10-D joint 
angular time courses thereof. Using principal 
components analysis (PCA) for synergy extraction 
we found that the distribution of recorded postures 
that occur during movements can be described 
efficiently by linear combinations of a set of three 
inter-joint couplings. We also found that the 
individual contributions of these kinematic synergies 
varied systematically with catching position in 
external (Cartesian) hand coordinates. Together with 
the fact that three is the minimum number of 
synergies for control of end-effector position in 3D, 
this suggests that neural control of arm movements 
may exploit a simple mapping between synergy 
space and Cartesian space. Here, we show that the 
mapping between synergy space and hand position is 
bijective within a large physiological working range. 

Based on the three movement synergies that 
capture natural inter-joint couplings, we propose a 
simple closed-loop control schema for a 10-DoF 
limb consisting of shoulder girdle, upper and lower 
arm and hand. All elements of this schema are 
implemented as ANNs. We evaluate two alternative 
ANN variants as central controller: a multilayer 
feed-forward network and a recurrent Elman 
network. 

We show that both controller variants we 
examine here can generate physiological trajectories 
of goal-directed reaching movements, similar to 
those found experimentally. The networks are also 
capable of generating reaching movements towards 
novel targets, as well as smoothly interpolating 
between two different movements. Internal 
recurrence in the Elman controller improves learning 
of physiological training data. In contrast to the 
multilayer feed-forward network, however, the 
Elman controller shows a tendency to drift and fails 
to maintain a resting posture that keeps the hand at 
the target position. 

2 MATERIAL AND METHODS 

2.1 Kinematic Model 

We  use  a  10  DoF  kinematic  model  of the human 

upper limb, i.e., arm and shoulder girdle. The model 
comprises 4 segments corresponding to a collarbone 
that moves the shoulder joint with 3 DoFs, a 
shoulder joint that moves the upper arm with 3 
DoFs, an elbow and lower arm with 2 DoFs, and a 
hand with 2 DoFs. Segment lengths within the 
model are adjusted individually for each one of nine 
recorded human subjects (Bockemühl, et al., 2010). 
Consequently, each set of 10 joint angles is 
equivalent to a unique posture, and standard forward 
kinematics can be used to calculate the hand position 
(end-effector). 

2.2 Inter-joint Coupling Gives Rise to 
Movement Synergies 

The inter-joint couplings found in natural human, 
one-handed catching movements are equivalent to 
the first three principal components (PCs) of 10-D 
arm postures (Bockemühl, et al., 2010). Each PC 
constitutes a movement synergy so that each posture 
can be described by a linear combination of the 
mean posture of the original data set and a weighted 
sum of three movement synergies. Because the 
kinematic model, mean posture, and movement 
synergies are fixed for a given subject, any hand 
position in 3-D Cartesian space can solely be 
described by a 3-D vector of scores that scale the 
contribution of each synergy (see Equation 1). 
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Here, p(t) represents a 10-D posture at time t, m 
is the mean posture, si(t) is the score of the posture 
p(t) on the ith synergy, and vi is the ith synergy. 
Modulating the scores in a target-dependent manner 
therefore generates target-dependent hand 
trajectories. 

2.3 Control Structure and Artificial 
Neural Networks 

Given the current hand position and a target 
position, e.g., the position of a ball to be caught, our 
main goal is to generate an appropriate time series of 
postures that moves the hand from its current 
position to the target. Appropriate means that hand 
trajectories should match the measured ones. Since 
natural movements are marked by substantial inter-
joint couplings, we propose a control structure that 
exploits these natural inter-joint couplings (Fig. 1). 

This control schema contains an ANN module 
that implements motor synergies in the form of a 
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feed-forward network (called synergy network in 
Fig. 1). This module maps 3-D score vectors onto 
10-D posture vectors in analogy to Equation 1. 

The output of the synergy network can be 
described by 
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where wji is the weight matrix which is equivalent to 
the 3x10 loadings of the PCs and that are used as 
motor synergies here. The controller compares the 
target position vector with the current hand position 
and calculates the score changes necessary to 
minimize the difference. The result is added to the 
current 3D score vector, thus updating the arm 
posture for the next iteration. 

We evaluate two different ANN controller 
variants. The first is a two-layered feed-forward 
network; the second is a recurrent Elman network 
(Elman, 1990). Both ANNs are identical except for 
the additional recurrent connections comprising the 
context layer of the Elman network (Figure 1). 

Owing to the small number of synergies, input 
and output of the controller are minimal and 
equidimensional: both the two input position vectors 
and the output synergy scores are three-dimensional. 

The output Δs of the two-layered feed-forward 
network can be calculated by 
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Output of the recurrent Elman network can be 
calculated by the Equations 4 and 5. First, the 
intermediate output yhidden at time t has to be 
determined by 
 

6

,,7 ,
1 1

( ) ( ) ( 1)
n

hidden in in cont hidden
j i ijh j h h

i h
y t w w x t w y t

 
 
 
 
 
  

     (4)

 

Then, the output Δs at time t can be calculated 
according to 

 




 
n

h

hidden
hhk

out
nkk tywwts

1
,1, )()( (5)

 

The input vector x in Eq. 3 and 4 contains the 
coordinates of the target position, tp, and the current 
hand position, cp (see Fig. 1). σ(x) is a hyperbolic 
tangent function used as sigmoid activation function 
of the hidden layer. 

 

 

Figure 1: Control schema with inserts showing the synergy 
network (top insert) and two ANN controller variants 
(bottom insert). Black structures only: two-layer feed-
forward network. Black and gray structures combined: 
recurrent Elman network. For clarity, the number of 
hidden units is set to 3 (h1 to hn). 
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2.4 Network Training 

Training data consist of a series of eight goal-
directed hand trajectories recorded during 
experiments in which participants were instructed to 
catch an approaching ball (Bockemühl, et al., 2010). 
Each trajectory starts at one of two initial positions, 
ends at one of sixteen target positions, and contains 
25 time steps. Half of the data set (eight trajectories) 
is used for training, the other half is used for testing 
generalization (further eight trajectories). In order to 
account for end-point stability, each trajectory is 
extended by a leading initial phase of 5 time steps 
during which the hand remains at the initial position, 
and a trailing target phase of 10 time steps during 
which the hand remains at the catching position. In 
accordance, the target position tp is kept at the 
initial position for 5 time steps and is subsequently 
set to one of the 16 prospective catching positions 
for the remaining trial. 

The goal of the training is to find weight 
matrices for the controller ANNs that generate 
physiologically plausible hand trajectories towards 
the target. The root mean squared error (RMSE) 
between training trajectories and generated 
trajectories was used as the evaluation function. 
Weight matrix optimization was realized via the 
Levenberg-Marquardt algorithm (Levenberg, 1944, 
Marquardt, 1963) implemented in MatLab 7.10 (The 
Mathworks). To avoid local minima, the training 
was repeated 100 times, using different randomly 
initialized weight matrices. As a main objective of 
this study was to determine the minimal size of the 
hidden layer, we tested ANNs with 3, 4, 5, 6 or 10 
hidden units. 

3 RESULTS 

3.1 The Mapping between Synergy 
Space and Cartesian Space is 
Bijective 

As our movement synergies are principal 
components of the joint angle space, they describe 
correlations between joint angles. Owing to the 
PCA, these synergies are orthogonal to each other. 
However, the mapping of synergy space into 
Cartesian space involves non-linear forward 
kinematics of the controlled arm and, therefore, 
needs not be bijective: multiple postures, and 
therefore synergy combinations, could result in the 
same hand position. A bijective mapping is a 

prerequisite for simple control of arbitrary point-to-
point movements though. To ensure that the 
mapping allows arbitrary hand positioning within its 
working range (surjective mapping) and that any 
combination of synergies leads to distinct hand 
positions (injective mapping), Fig. 2 shows the 
mapping of a 3D grid of synergy combinations into 
Cartesian space of hand positions. Although the 
mapping is non-linear, it covers a substantial 
fraction of the physiological range of a human arm 
(surjective) and the warped grid in Cartesian space 
has no overlapping regions (injective). 
 

 

Figure 2: Mapping between synergy space (A) and 
Cartesian space (B, C and D) of the right human arm. B: 
Frontal view. C: View from the right. D: Top view. The 
kinematic model as well as a stylized head are depicted in 
gray. Colors in synergy space correspond to the equivalent 
color in Cartesian hand space and vice versa. 

3.2 Training and Generalization 
Performance 

We find that both controller variants are able to 
adapt to the training data. Figure 3 shows 
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representative results for training and generalization 
performance, using data from a single subject and 
initial position. 

During training, the networks with more than 
four hidden neurons reached RMSE values of less 
than 20 mm, regardless of network type. Elman 
networks with six or more hidden units even reached 
values as low as 5 mm. However, generalization 
performance leveled off at hidden layer sizes above 
4 units. As generalization is as important as learning 
performance on trained data, we used 5 hidden units 
for both controller variants in all other experiments. 
 

 

Figure 3: Performance of networks during training and 
during generalization. A: performance of feed-forward 
networks. B: performance of recurrent Elman network. 

 

Figure 4: Representative trajectories during 40 time steps 
generated by a feed-forward network (A and B) and an 
Elman network (C and D) containing five hidden units. A 
and C: trajectories to target positions encountered during 
training. B and D: trajectories to novel target positions. 
Red: trajectories generated by networks. Blue: trajectories 
measured during experiment. At the same time, blue 
trajectories seen in A and C are the training trajectories. 
View from the rear right side of the kinematic model. 

To illustrate overall controller performance, 
Figure 4 shows representative trajectories produced 
by a feed-forward network and an Elman network. 
Whereas trajectories of both controller variants are 
similar during the first half of the corresponding 
movements, differences occur toward the end of the 
trajectory. Here, the feed-forward network produces 
a small, terminal curvature in the vicinity of the 
target position. In comparison, the terminal 
trajectory of the Elman network shows less deviation 
from the physiological reference data, except for a 
small but distinct kink near the end. 

3.3 End-point Stability 

An important aspect of target-directed movement is 
the ability to keep the end-effector at the target after 
reaching it. We tested this ability of both controller 
variants by extending the presentation of target 
inputs by 70 time steps. A representative result is 
depicted in Figure 5. The prolonged holding phase 
emphasizes the differences in end-point stability. 
The feed-forward controller is much better in 
keeping the end-effector at the target, though the 
spirals at the end of high trajectories indicate 
damped oscillations of the posture, beginning with 
an overshoot followed by a gradual decline towards 
a stable endpoint. In contrast, the trajectories 
generated by the Elman controller tend to terminate 
in a drifting hand position, indicating a constant 
error output that slowly accumulates. The Elman 
controller seems not to be able to compensate for 
errors that occurr after the target is reached. 
 

 

Figure 5: End-point stability. A: Trajectories generated by 
a feed-forward ANN variant after 110 time steps (see also 
Fig. 4B). B: Trajectories generated by an Elman ANN 
variant after 110 time steps (see also Fig. 4D). 

4 DISCUSSION 

We have  shown  that  goal-directed movement  of  a 
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human-like limb consisting of arm and shoulder-
girdle can be modelled by a comparatively simple 
closed-loop control schema that comprises small 
neural network modules and physiological 
movement synergies. 

In classical studies, only artificial or reduced data 
have been used as a basis for the training of neural 
networks for motor control (e.g., Massone and Bizzi, 
1989, Kawato, et al., 1990, Massone and Myers 
1994, Karniel and Inbar, 1997). More recent efforts 
to model reaching movements based on ANNs do 
take a physiologically oriented approach (Koike, et 
al., 2006, Choi, et al., 2009) but still somewhat 
neglect the importance of motor primitives or 
synergies. 

In contrast, numerous studies find evidence in 
favor of a modular organization of the nervous 
system (e.g. Mussa-Ivaldi, et al., 1994, d'Avella, et 
al., 2006). Although these studies propose potential 
CNS structures that might be important for motor 
primitives, these studies often keep silent with 
regard to more concrete neural models and how 
exactly movement modules might be combined in a 
task- or goal-dependent manner in order to produce 
meaningful behavior. 

The approach presented here tries to 
accommodate both aforementioned aspects: We 
combine a connectionist approach based on ANNs 
with experimentally observed movement synergies 
during a natural reaching task. Combining several 
DoFs within one synergies and thereby reducing the 
complexity of the control problem allows us to 
exploit a bijective mapping between movement 
synergy space and task space. 

Comparative evaluation of the two controllers 
indicates that, for the present problem, the recurrent 
Elman network is less appropriate, owing to 
insufficient end-point stability. Given, that the 
context layer could be interpreted as an internal 
model, and that internal models are assumed to be an 
important computational element central to nervous 
motor control (Wolpert & Ghahramani, 2000), this is 
somewhat surprising. 

Another notable aspect of the control schema 
presented here is the low number of necessary 
neuronal units. A feed-forward network with five 
hidden units seems to be sufficient for the task of 
accurately controlling three movement synergies. 
There are two possible explanations for this: On the 
one hand, the dissociation of the neuronal substrate 
into two distinct modules, i.e. into a controller ANN 
and a synergy network, might be more efficient that 
a monolithic architecture of similar size. On the 
other hand, the approach described here is solely 

based on joint angle kinematics and neglects a 
further potential source of complexity: 
transformation of movement kinematics into a 
muscle activation pattern. Again, this transformation 
is a one-to-many mapping and might exacerbate the 
necessary computations. 
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