
Efficiency Requirements in PIM to PSM
Transformations

Dariusz Gall

Computer Science and Management Faculty, Wrocław University of Technology
Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

Abstract. In the paper, we provide extensions for MDA (Model Driven
Architecture), taking into consideration efficiency requirements. The scope of
the proposition is limited to the PIM (Platform-Independent Model) and the
PSM (Platform Specific Model) extension. Efficiency requirements are
maximal rates of users requests under which the system has to perform. We
extend the PIM to the model containing efficiency requirements. We introduce
a PSMSpec (PSM Specification) containing a system architecture, platform,
efficiency requirements, and a PSMInst (PSM Instance) defining a deployment
of the system. The PIM’s functional specification and efficiency requirements
are transformed to the PSMSpec’s system architecture and efficiency
requirements. Finally, efficiency characteristics are estimated and verified
against the efficiency requirements, the PSMInst is suggested.

1 Introduction

Efficiency requirements shall be handled during development process from the
earliest stages [1]. In order to make it possible, we have to specify the requirements
with constraints in quantitative way, provide a transformation of the requirements
from specification level to design/deployment level, provide verification of the
requirements, and introduce changes to design/deployment based on the requirements
verification [1], [2].

In the paper, we introduce handling of efficiency requirements in the development
process, by extending the MDA (Model Driven Architecture). The MDA is software
development approach, which is based on models and the concept of separation of
specification from implementation. The concept is applied by transforming platform-
independent models (PIMs) into platform specific models (PSMs), which in result are
transformed to a system implementation [3].

In the related papers [2], [4], [5] idea of supporting efficiency requirements using
MDD (Model Driven Development), in particular MDA, is introduced. Efficiency
requirements are not supported by the MDA [2], but are implemented in the MDA by
adding new efficiency models at platform independent, platform specific level and by
providing transformations of the efficiency models [2], [4], [5]. The efficiency models
are resolved and results are used for architecture/design refactoring, if required [2],
[4]. In [5], a necessity of differentiating platforms' performance influence to the
overall system performance is discussed, e.g. software and hardware platform

Gall D. (2010).
Efficiency Requirements in PIM to PSM Transformations.
In Proceedings of the 2nd International Workshop on Model-Driven Architecture and Modeling Theory-Driven Development, pages 93-98
DOI: 10.5220/0003044800930098
Copyright c© SciTePress

separation.
The paper is organized in the following way: in Chapter 2, requirements

transformation, extension of PIM and PSMs are discussed, in Chapter 3 we introduce
behavior metric and discuss a system’s efficiency estimation, an example of Payment
System is presented in Chapter 4, and the article is summarized in Chapter 5.

2 Extending MDA

In order to introduce efficiency requirements into the MDA, we have to include into
MDA models’ efficiency requirements, efficiency constraints, and transformations.

The PIM is platform independent model, which defines a software system’s
functional requirements [3]. We add to the PIM efficiency requirements. The
functional specification contains actors, use cases definition, and use cases’
scenarios. The use cases’ specification are defined by UML sequence diagrams in
terms of «boundary» and «logic» classes or «entity» classes [6].

The PIM’s efficiency requirements and efficiency constraints are defined for pairs
of an actor and an use case. We specify an efficiency requirement by defining a
maximal rate of an use case’s scenario executions by an actor. The constraints on the
requirements indicate most often executed scenarios of the use case. For each
possible scenario we define a weight, indicating execution rate. The efficiency
requirements and constraints are expressed using MARTE [7].

The PSM is a platform specific model defining a system architecture [3]. We
suggest to introduce two PSMs: PSMSpec (PSM Specification) and PSMInst (PSM
Instance). A PSMSpec consists of the software system architecture, deployment
specification, platform within the system is developed, efficiency requirements, and
efficiency constraints, required for a total computation effort calculation introduced in
Chapter 3. We define platform by UML structural elements [6] and efficiency
constraints, specifying computational complexity of platform’s operations. The
deployment specification defines system deployment on specification level [6] and
efficiency constraints [7], i.e. defines possible system deployments, e.g. number of
nodes’ instances, nodes efficiency constraints.

The PSMSpec’s efficiency requirements and efficiency constraints are mapped
from efficiency requirements and the constraints defined in PIM, expressed in terms
of the software system architecture. An efficiency requirement is defined in context of
the actor and the use case from PIM’s use cases.

A PSMInst is a platform-specific model, which contains an instance of the
PSMSpec’s deployment specification [6] with efficiency characteristics of nodes [7],
i.e. computation power of nodes. The PSMInst represents a particular deployment of
the system.

The PIM is transformed into a PSMSpec. Two kind of transformation are
performed. The first type is a transformation of the PIM’s functional specification into
PSMSpec’s software system architecture and deployment specification, within a
platform. The second type is a transformation of the PIM’s efficiency requirements
with constraints into PSMSpec’s efficiency requirements with constraints.

The PSMSpec is transformed into PSMInst. A particular deployment of the system
is stored in PSMInst. During the transformation, instances are created and

94

configurations of the instances are set. The transformation is made with respect to
results of the efficiency assessment introduced in Chapter 3.

3 Efficiency Assessment

Fulfilling the efficiency requirements is necessary to find such a system’s
configuration, i.e. the PSMInst, where computation power provided by node types is
more than the computation power required by node types for the all system use cases.
Thereby, we have to: assess a computation effort for each use case’s scenario for each
node’s type, assess the required computation power for all system’s use cases for
each node type, and check if it is possible to find the system’s configuration which
provided computation power that is sufficient.

In first step, we assess the use case’s computation effort. We define the behavior
metric, which value is used for assessing computation effort of a use case
implemented within a particular PSMSpec. The metric is defined in terms of average
number of virtual instructions for each node type required to execute a use case. We
assume that each virtual instruction has similar time of execution on a given node
type. The metric’s argument are: the UML sequence diagram representing scenarios
of the use case and average lengths of scenarios’ input and context arguments. Each
occurrence specification in a UML sequence diagram, e.g. operation invocation,
combined fragments, etc. is mapped to a set of virtual instructions. A value of the
metric for a given sequence diagram is a collection, in which for each node type, a
number of virtual instructions corresponding to elements of the sequence diagram
executed on the node type is given.

The mapping may differ for different platforms, we use herein Java platform,
thereby a virtual instruction corresponds to a Java bytecode instruction [8] [9].
Because the virtual instruction is a bytecode, we are able to compute the metric’s
values for Java platforms’ libraries operations and use the values in use case’s metric
calculation [9]. We assume herein that for all necessary Java’s library operations the
metric is computed.

We calculate a value of the metric for a given use case’s scenarios and attribute
values taking into consideration each node type on which the scenarios are executed.
We calculate the metric according to the following steps:
1. If a given operation or an use case has already calculated complexity, return the

value, taking into consideration node type on which operation is executed.
We assume that the value is already given for operations of platform’s libraries,

2. If a given operation or use case is defined by an UML sequence diagram than for
each occurrence specification, taking into consideration node type:
a. Calculate the metric for all called operations, i.e. repeat these steps from the

beginning for each operation,
b. If the occurrence specification is not inside any combined fragment then add

the occurrence specification metric’s value to the given operation or use
case total complexity,

c. If the occurrence specification is inside alternatives, option combined
fragment then add the occurrence specification metric’s value to the given

95

operation or use case total complexity multiplying it by weight attached to
appropriate combined fragment’s operand,

d. If the occurrence specification is inside loop combined fragment then add the
occurrence specification complexity to the given operation or use case total
complexity multiplying it by number of loop iterations attached to the loop.

In next step, we have to calculate a required computation power per node type for all
the system’s use cases taking into consideration the efficiency requirements. We
calculate it by summing for all pairs of an actor and a use case, multiplication of each
element of a collection of the use case metric’s value’s by a use case execution rate

Finally, we have to find a proper system configuration. For each node type in the
PSMSpec’s deployment specification, efficiency constraints on a computational power
are set. We check for each node type whether it is possible to create a proper number
of instance where computational power provided is more that computational power
required . If yes, then the condition is fulfilled, otherwise, we have to modify the
system architecture, or change the deployment specification constraints.

4 Payment System Example

We present the Payment System as an example of efficiency handling, which provides
a money transfer functionality. We present in the paper one use case with efficiency
requirements and constraints, which is the money transfer, see Fig. 1. The efficiency
requirement, defined by «gaWorkloadEvent» and pattern tag, is to provide the use
case execution’s maximal throughput. Weights of each possible scenario are defined
by «paStep» and a weight tag [7], see Fig. 1.

Fig. 1. PIM - The transfer money use case specification.

We transfer the PIM’s functional requirements to the PSMSpec, with respect to
client-server architecture pattern, adding the load balancer to provide system
scalability [10]. Because of the space limit, we do not present the platform’s model in
this paper. We present only transformation results in Fig. 2 and Fig. 3: i.e. the sequence
diagram of the implementation of use case, and deployment diagram with types of

96

nodes etc. The Fig. 2 and Fig. 3 already contain efficiency requirements and
constraints, however, none of them are added during the PIM’s functional
requirements transformation. The deployment specification diagram is annotated by
efficiency characteristics of nodes, using «gaExecHost» throughput tag, see
DeploymentSpecification in Fig. 3. Next PIM’s efficiency requirements and
constraints are mapped from the PIM to the PSMSpec with respect to the system’s
architecture, see Fig. 2.

Fig. 2. PSMSpec - The transfer money use case realization.

We assess a computation effort of the money transfer use case. Each lifeLine’s
instance on Fig. 2 is linked with comment pointing out a node type. The sequence
diagram on Fig. 2, contains the behavior metric’s values for operations, specified by
E(methodName). A computation effort per a node type for the use case is specified by
EP(nodeName). These values were calculated with respect to the steps introduced in
Chapter 3.

Fig. 3 . PSMSpec deployment specification and PSMInst deployment instance.

We assess the required computation power, taking into consideration the efficiency
requirement and the results are: RCP(LoadBalancer)=2000[1/s],
RCP(WebFrontEnd)= 30000/n[1/s] and RCP(TransactionService)=12800[1/s]. In
next step, we have to find such number of nodes instances to fulfill the efficiency
requirements. Taking into consideration the PSMSpec’s deployment specification

97

efficiency characteristics, we generate a PSMInst, see deployment instance on Fig. 3.
Sum of nodes’ provided computation power for a given type is less than the required
computation power for the node type, thereby the efficiency requirements is fulfilled.

5 Conclusions

We provide the MDA models and transformation extensions for handling efficiency
requirements in the MDA. The PIM is characterized by efficiency requirements and
constraints, the PSMSpec contains a software system architecture, a deployment
specification and the efficiency requirements, and the PSMInst represent a instance of
the deployment specification. In the paper, we provide the efficiency estimation, using
the behavior metric and illustrate the method with an example.

We only consider the efficiency requirements for the system throughput, however,
time constraints are another type of the efficiency requirements to be investigated. We
also consider only an “average case”, though we should also be able to consider worst
case, etc. In the future, it would be advisable to take into consideration several
platforms types, e.g. Java, .Net, etc. Moreover, the method provided in the paper does
not take into consideration the network communication overhead.

References

1. C. U. Smith and L. G. Williams. Performance Solutions: A Practical Guide to Creating
Responsive, Scalable Software. Addison-Wesley, 2002.

2. V. Cortellessa, A. Di Marco, P. Inverardi, “Software Performance Model Driven
Architecture”, Proc. of ACM SAC 2006, Model Transformation track, 2006.

3. The Object Management Group: MDA Guide. Ver. 1.0.1. http://
www.omg.org/docs/omg/03-06-01.pdf (2003).

4. V. Cortellessa, A. Di Marco, P. Inverardi, “Nonfunctional Modeling and Validation in
Model-Driven Architecture”, Proc 6th Working IEEE/IFIP Conference on Software
Architecture (WICSA 2007), Mumbai, India, 2007.

5. M. Woodside, G. Franks, D. C. Petriu, “The Future of Software Performance Engineering”,
Proc. of Future of Software Engineering'07, 2007.

6. The Object Management Group: Unified Modeling Language: Superstructure, Version 2.0,
OMG document formal/05-07-04 (2004).

7. The Object Management Group (OMG). UML Profile for Modeling and Analysis of Real-
time and Embedded Systems (MARTE), 2007. http://www.omgmarte.org.

8. B. Dufour, K. Driesen, L. Hendren, and C. Verbrugge. Dynamic metrics for Java. ACM
SIGPLAN Notices, pp. 149-168, Nov. 2003.

9. T. Lindholm, F. Yellin: The JavaTM Virtual Machine Specification. http://
java.sun.com/docs/books/jvms/ second_edition/html/VMSpecTOC.doc.html

10. F. Marinescu. EJB Design Patterns - Advanced Patterns, Processes, and Idioms, John Wiley
and Sons, 2002.

98

