
PURPOSE-DRIVEN APPROACH FOR FLEXIBLE
STRUCTURE-INDEPENDENT DATABASE DESIGN

Youri I. Rogozov, Alexander S. Sviridov, Sergey A. Kutcherov
Taganrog Institute of Technology, Southern Federal University

22 Chekhov Street, 347928, Taganrog, Russia

Wladimir Bodrow
Department Business Computing, University of Applied Sciences Berlin

8 Tresckowalle Street, 10318, Berlin, Germany

Keywords: Semi structured data, Relational database model, Database construction method, Structure-independent
database.

Abstract: This paper presents a purpose-driven approach for development of flexible databases outgoing from the
relational database concept. Based on carried out analysis of both relational and entity-attribute-value
database models the aspects essential for the described purpose-driven approach are defined. The necessary
requirements to be satisfied by structure-independent databases are derived and discussed in detail. Several
implementations of structure-independent databases using the suggested approach have been realized and
presented as well. The improvement of relational database model based on proposed structure-independent
database approach is formulated.

1 INTRODUCTION

The problem of storing changeable relational data
structures appears for instance as concomitant in the
research and development projects focused on
creating of CASE-tools for automated development
of inquiry and communication systems. In such
systems a database is to be designed under
conditions of full or partial uncertainty regarding
users’ data that will be stored in it. Due to this
vagueness the application of the relational data
model turns out to be difficult. The crucial point is
that the reflection of the stored data structure at
logical level to the relational database structure at
physical level results in the significant growing of
the labour intensity to maintain this physical
structure. Furthermore it leads to data surplus and
normalization rules violation. The complicated
daunting task which can be completed only by a
group of highly qualified database administrators
helps to face with such difficulties appearing in the
databases that are able to reach up to several
hundreds of tables. This contradicts the idea of
automated development of a flexible information

system presupposing the opportunity to enter
changes into the system by users themselves as
many times as necessary. Another defined ambition
is the reducing of the number of software
engineering and database specialists involved in the
particular project.

Among known approaches to solve the problem
it is possible to single out two main ones, i.e.:

1. Applying the techniques of storing semi
structured data, such as native XML databases,
Object-Exchange Model (Bourret, 2010,
Agrawal et al., 1995);

2. Creating and using database static physical
relational structures independent from the stored
data logical structure (Paley, 2002, Tenzer,
2001, Bannikov, 2010, Polishchuk and
Thcernykh, 2009).

The initial purpose of similar technologies for
dealing with changeable data is in accordance with
the first approach. The list of existing concepts may
tend to an independent research of their efficiency
for solution of the mentioned task. It’s worth being
noted that the basic technologies of this field, e.g.

356
I. Rogozov Y., S. Sviridov A., A. Kutcherov S. and Bodrow W. (2010).
PURPOSE-DRIVEN APPROACH FOR FLEXIBLE STRUCTURE-INDEPENDENT DATABASE DESIGN.
In Proceedings of the 5th International Conference on Software and Data Technologies, pages 356-362
DOI: 10.5220/0003044103560362
Copyright c© SciTePress

XML, are a modified hierarchical data model. Thus
the basic technologies contain the disadvantages of
this model (Date, 2008). The relational database
model eliminates these disadvantages.

The second approach is based on the
differentiation concept of database at physical and
logical levels. It helps to use all the optimization
method diversity worked out for years of the
relational tables application. The used set of static
tables at the physical level allows keeping the
relational technologies. The consequent database
differentiation at physical and logical levels allows
simultaneously working with different database
models; as relational model, object-oriented model,
hierarchical model etc. The evident shortcomings of
this approach are the insignificant efficiency
decrease and the complication of data access
mechanisms.

Presented research describes the purpose-driven
approach for the storage of data structures with high
degree of ability to be changed. It is based on
generation and use of static physical relational
database structures that are independent from the
stored data at logical level. The approach allows the
realization of different structurally independent
databases using the relational database models
according to the particular application declared by
developer. It is based on the implementation analysis
of the relational model at physical level and entity-
attribute-value model which allows the
specifications revealing of the structure-independent
database. The following steps lead to compliance
with identified requirements and describe the
implementation of the physical database structure.

2 DATA MODELS ANALISYS

The start point of the proposed approach is the
implementation analysis of the independence of
physical database structure from the logical structure
of the stored data. To make the peculiarities
obvious, one can consider every model
implementation through the three-dimensional
matrix images in the basis “entity – attribute –
instance”.

2.1 Relational Model

The basis of the relational model (Codd, 1970)
implementation consists in storing data in the form
of tables (entities) with a finite set of fields
(attributes) both at the logical and physical levels.
The set of tables and their interconnections are

specified at the design stage. The continuous line
represents the growth of data amount in the database
(instances), entailing changes in the physical
structure (entities), and the dotted line signs the
absence of any change.

The relational model implementation can be
spatially represented applying the taken symbol and
the basis “entity-attribute-instance” as a three-
dimensional random figure (Fig. 1). This figure cells
contain attribute values for the entity instances as
follows.

A
ttr

ib
ut

es

Enti
tie

s

Figure 1. Spatial representation of the relational data
model implementation in the “entity-attribute-instance”
basis.

Figure 1 allows the conclusion that in relational
model physical database structure is independent
from the quantity of entity instances. It is justifies by
the obvious storage of metadata denoting the ones
stored earlier in table with field titles and tables ties.
The relational model rejects the metadata change at
any moment of the database use without physical
interference. This provides its being inapplicable for
storing changeable data structures.

2.2 Entity-Attribute-Value Model

Unlike the relational model, the entity-attribute-
value (EAV) data model (Stead, 1982, Nadkarni,
2010) allows to change metadata partially (entity
attributes) during the process of database utilization.
Decisive database growth directions according to
this model can be visualized based on extended
image used before in the “entity – attribute –
instance” basis (Figure 2).

The additional cells presented by dotted lines
visualize the possibility of dynamical extension of
attributes as for entities as for instances. In the
conclusion Figure 2 underlines that the physical
database structure doesn’t depend on quantity of
attributes or entities and can be changed based on
instance quality. This implementation ability is
anchored direct within the changeable metadata

PURPOSE-DRIVEN APPROACH FOR FLEXIBLE STRUCTURE-INDEPENDENT DATABASE DESIGN

357

Figure 2. Spatial representation of the EAV data model
implementation in the “entity-attribute-instance” basis.

inside the database. A special table is generated for
storing attributes and their descriptions, the
attributes values are kept apart (Dinu and Nadkarni,
2007, Brandt et al., 2002). In addition to that
different instances of the same entity can contain
variable quantity of attributes. In other words,
“instance – attribute” basis is a sparse matrix
containing only really needed attribute values.

At the same time the EAV database is positioned
as one of stringent specification and so is often used
in fields with predetermined unchangeable number
of entities and parts of their attributes, e.g. in
medical information systems or e-commerce
systems. The fitting of the physical database
structure to the stored data structure justifies the
reasonability of the EAV model characteristics its
applicability for structure-independent database
development focused on purposes in particular
project.

2.3 Requirements to Structure-
Independent Databases

The data structure representation as a sparse matrix
provides its dynamic change. Direct storage of
structural metadata in the database permits its
independence at both physical and logical levels of
implementation. The discussion above allows the
development concept for structure-independent
database using the three-dimensional representation
in the “entity-attribute-instance” basis (Figure 3).

According to the Figure 3 the structure-
independent database do not need the description of
the subject domain beforehand, it is ready for being
used even without precise definition of all entities or
attributes. This way the full differentiation of the
physical and logical implementation levels is
achieved:

Figure 3. Spatial representation of structure-independent
database in “entity-attribute-instance” basis.

 logic structure characterizing user data is
described not by the physical database
structure, but by the stored metadata;

 the physical database structure is fixed and
relational technologies can be applied for its
development.

The data models analysis lets form the
requirements for the structure-independent
database, implemented in accordance with the
relational technologies:

1. Metadata that define the logical database
structure are stored directly in the database as
data sets in the relational tables and build a
metadata substructure. Independence between
the logic and physical structure is provided by
refuse from metadata explicit determine as table
titles, fields and table links;

2. Data are grouped in tables with respect to
types. Tables contain attributes indicating
membership in a reference to the metadata
tables and compose a certain subsystem. The
field title where values are stored are not
attribute title;

3. The structure of the database is represented by
a sparse matrix. The logical structure of data is
generated afterwards according to the project
purposes. It contains only entities and attributes,
really used in the application. The logical data
structure can be added or changed anytime;

4. The total number of database tables at the
physical level is fixed and depends just on
metadata tables number and used data types,
but it doesn’t depend on the logical structure of
the stored data. The restricted number of tables
on the physical level is the key to
implementation productivity. It decreases the
complexity requirements for the database,

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

358

which is important for the maintenance during
the exploitation of the solution.

Analysis of certain structure-independent
database models with applying relational technology
(Paley, 2002, Tenzer, 2001, Bannikov, 2010,
Polishchuk and Thcernykh, 2009) reveals that the
models meet the declared application requirements.
Consequently the realized implementation depends
on project and/or developer’s purposes. This allows
the formulation of an approach for the development
of flexible structure-independent database models
based on relational technologies according to the
project purposes. (Provided that developer follows
exact the project purposes and owns the professional
skill for its adequate translations into the database to
be realized.)

3 APPROACH OF STRUCTURE-
INDEPENDENT DATABASE
CONSTRUCTION

Irrespective of the developer's professional skill the
sequence of steps leading to the reception of a
necessary set of connected relational tables can be
formulated. This sequence meets the requirements
stated above and is described in detail below. The
given set of tables is a physical level of the
structure-independent database. The sequence of
steps represents an approach of structure-
independent databases construction based on
relational technology.

3.1 The Approach Formulation

It's most convenient to formulate an approach,
through its division into some steps with respect to
defined above requirements to be complied. To
meet the both first requirements it is necessary:

1. To define a set of the metadata necessary for the
description of logic structure of a database;

2. To define structure of metadata and to realize
them in the form of a fixed set of the connected
relational tables which make a subschema of
the metadata. The given step includes:

 division of the figured out metadata set into the
groups based on accessory (for example,
describing entity and the attributes, describing
communications between entities etc.);

 creating a separate relational table for each
group;

 specification of links between tables (for
example, between the table of
communications and description tables of
entities and attributes);

To fulfill the following two requirements it is
necessary:

3. To define types of data which will be used for
storage of attributes' values;

4. To develop a subschema of data, in the form of
a final set of the same relational tables not
connected among themselves for storage of
attributes' values. The quantity of tables
corresponds to the quantity of used types of
data. It is expedient to store values in the form
of the triplet "entity-attribute-instance", where
the first two elements represent the reference
links to records in tables of the metadata. It
allows to present data structure in the form of
sparse matrixes;

To construct a structure-independent database
finally it is necessary:

5. To implement the database physical structure
based on definition and specification of the
communications between tables of metadata
subschema and a data subschema;

Fulfillment of the third and fourth requirements is
a consequence of fulfillment of the both first:

 Representation of the stored data structure in
the form of sparse matrixes is realized due to
the storage of values in the form of the triplets
(the sparse matrix of instances) and storage of
metadata in a database (the sparse matrixes of
entities and attributes);

 Independence between physical and logic level
is realized due to storage of the metadata in
the same database.

This sequence of the realization steps anticipates
working out of user's (logic) structures of data,
executed according to the technology defined by the
developer of a database.

3.2 Utilization of the Approach

The described approach supports the construction of
flexible structure-independent database based on
relational technologies depending on particular
purpose to be achieved in the project. For the
validation of the proposed approach we will consider
an example with known data structure on its basis
and also we will result own variant.

PURPOSE-DRIVEN APPROACH FOR FLEXIBLE STRUCTURE-INDEPENDENT DATABASE DESIGN

359

Example 1. Let's imagine that project purpose is the
creation of universal relational structure for
processing and storage of semistructured data in
terms of object-oriented technology – in the form of
classes and objects. According to the approach the
reception of the given structure looks as follows:

1. We allocate a metadata set:
 Names of classes’ objects and attributes;
 Hierarchies of classes;
 Links between objects;
 Relations between objects and classes.

2. We form the structure of metadata tables
according to the logic accessory of metadata:

 The attributes reference table – tbl_attdef table;
 The object classes reference table – the

tbl_classdef table;
 The links between objects reference table – the

tbl_links table;
 The objects reference table – the tbl_obj table.

3. At the conceptual level it is enough to specify
only one type of the data – line. The other types
of data use will lead to increase of identical data
tables quantity;

4. The data subschema is realized in the form of
one table – tbl_attval;

5. Communications between subschema tables of
metadata and the data will be arranged
according to key values of unique id.

Thus, on the basis of the formulated approach the
model of the database structure (Fig. 4), realizing the
specified purpose and meeting the formulated
requirements is constructed.

Figure 4. Model of database structure for storing objects.

A similar structure named the expanded
relational scheme for processing of quasi-structured
data, is come across in references (Paley, 2002).
Remaining within the limits of purpose of data
storage in terms of object-oriented technology, it is
possible to obtain a set of various structures – each
developer chooses the metadata according to his

understanding of the project purpose. In references
(Tenzer, 2001) and (Bannikov, 2010) the authors
result the models of the structurally-independent
database distinct from resulted above, but based on
specified purpose.

Example 2. The project purpose is the creating of a
universal relational structure for storing XML-data
in terms of object-oriented technology. According to
the presented approach the given structure is
produced the following way:

1. Singling out a metadata set: objects and
attributes class names; enabled links between
the classes, links between objects.

2. The metadata table structure is to be formed
according to the logical metadata attachments:

 The object class reference table – the Classes
table;

 The reference table of enabled links between
classes – the link_types table;

 The reference table of links between objects –
the obj_link table.

3. All the data can be stored as XML-objects. To
do this developer may pick the BLOB or XML-
data if the DBMS used allows it;

4. The data subschema is implemented in the form
of a single table – objects – with the following
set fields: a unique id, an object id, a value;

5. The connections between the metadata and data
subschema tables are arranged according to the
unique id key values.

Thus, on the basis of the described approach we
receive a database structure (Fig. 5) implementing
the project purpose and meeting the formulated
demands.

Figure 5. Model of database structure for storing XML-
objects.

The model of database structure termed as a
data-storage model using the XML-schema is
described in the paper (Polishchuk and Thcernykh,
2009).

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

360

4 SIDB

Within the framework of presented research project
purposes are considered as a central component for
storage of relational data structures with a high
degree of changeability in databases with a static
physical structure. In this chapter we view the
suggested approach applied to construction of the
model for structure-independent databases (SIDB).
1. The metadata necessary for SIDB model include:
entities and attributes names, entity-attribute
connections, entity-entity connections, unique
synonyms, attributes and entities brief description,
logical deletion feature, order applied by the users'
sorting, entities and attributes structure hierarchy.
2. Metadata can be subdivided into the following
groups with the corresponding tables:

 The hierarchical reference table including all
metadata except for those determining the
“entity-attributes” and “entity-entity”
connections. The metadata can be effectively
applied both to entities and attributes, so they
can be represented with one table –
tSprDicrionary;

 The entities’ attributes reference table which
records will refer to the hierarchical reference
table connectible elements – table tEntityAttr;

 The entity instance reference table referring to
the hierarchical reference table elements –
tEntity table.

The speciality of the metadata describing the
entity-entity connection lies in their appearance
when the direct connection between entities’
instances appears. It is advisable to enter the
appropriate data type - a reference to entity and to
keep this kind of metadata in the data subschema.
3. A set of data types dealt with by SIDB, includes:
string, number, date, BLOB and the «Entity» data
type which is an entity reference link used as
metadata.
4. To store data it is appropriate to use “entity-
attribute-instance” triple sets (in papers Paley, 2002,
Tenzer, 2001, Bannikov, 2010) the “object-attribute-
value” triple sets are used). In this case entities and
attributes are set implicitly as the hierarchical
reference table element links. The subschema
encompasses the “tEntityData*” tables;
5. The connections between the metadata subschema
tables are arranged by the unique id key values.

The SIDB model obtained as a result of applying
the purpose-driven approach (Fig. 6.) enables to
store highly changeable data relational structures of
any complexity.

Figure 6. Model of SIDB database structure.

5 CONCLUSIONS

The approach described in this paper enables to
construct SIDBs for storage data with changeable
structures applying relational technology. There are
considerable advantages of worked out SIDBs:

 Limiting the structural complexity of database
queries by means of fixing the amount of
relational tables at the physical level;

 Enhancing the speed of data operations by
using relational technology;

 The lack of the database interdependence at
physical and logical level provides the
significant increasing of its flexibility;

 Low maintenance cost without involving any
professional database specialists.

Applying the approach presented in the paper a
number of various SIDBs can be developed via
relational technology. The implementation of each
stage depends on a project purpose and its
understanding by developer. It is not confined to the
examples treated in the paper and can be applied to
models implementation analysis outgoing from the
independence between the physical database
structure and the stored data logic structure. To
make the particularities obvious, developer has to
consider every model implementation through the

PURPOSE-DRIVEN APPROACH FOR FLEXIBLE STRUCTURE-INDEPENDENT DATABASE DESIGN

361

three-dimensional matrix images in the basis “entity
– attribute – instance”.

REFERENCES

Bourret, R., 2010. XML and Databases. //
http://rpbourret.com, Last call 2010

Agrawal, R., Gehani, N., Srinivasan J., 1995. OdeView:
The Y. Papakonstantinou, H. Garcia-Molina, and J.
Widom. Object Exchange Across Heterogeneous
Information Sources. Proceedings of the Eleventh
International Conference on Data Engineering, pp.
251-260, Taipei, Taiwan

 Paley, D., 2002. Quasistructure Data Modeling // Open
Systems. № 09, pp. 57-64.

 Tenzer, A., 2001. A Database as an Object Storage //
Computer-Press. №8, pp. 144-145.

Bannikov, N., 2010. The “Universal Database” Project //
www.stikriz.narod.ru, Last call 2010

Polishchuk, Yo.V. , Thcernykh, T.A. 2009. The Modeling
of Information storage subsystems for Storing
Quasistructured objects // Modern Technology,
Information Technology. №1, pp. 66-71

Date, C.J., 2008. An Introduction to Database Systems,
Eighth Edition. ISBN 0321197844

Codd, E.F., 1970. A Relational Model of Data for Large
Shared Data Banks// Communications of the ACM,
Volume 13, Number 6

Stead, W.W., Hammond, W.E., Straube, M.J., 1982. A
Chartless Record—Is It Adequate? // Proceedings of
the Annual Symposium on Computer Application in
Medical Care, pp. 89–94.

Nadkarni, P., 2010. An Introduction to Entity-Attribute-
Value Design for Generic Clinical Study Data
Management Systems // Center for Medical
Informatics, Yale University Medical School.
http://med.yale.edu/., Last call 2010

Dinu,V., Nadkarni, P., 2007. Guidelines for the effective
use of entity–attribute–value modeling for biomedical
databases. Elsevier, Ireland. International journal of
medical informatics № 76. pp. 769–779.

Brandt, C., Morse, R., Matthews, K., Sun, K., Deshpande,
A., Gadagkar, R., Cohen, D., Miller, P., Nadkarni P.,
2002. Metadata-driven creation of data marts from an
EAV-modeled clinical research database. Elsevier,
Ireland. International journal of medical informatics №
65. pp. 225–241.

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

362

