Semi-automatic Dependency Model Creation based on
Process Descriptionsand SLAS

Matthias Winklet, Thomas Springér Edmundo David Trigdsand Alexander Schill
! SAP Research CEC Dresden, SAP AG, Chemnitzer Str. 48, 01187 Dresden, Germany

2 TU Dresden, Faculty of Computer Science, Institute for Systems Architecture
Computer Networks Group, Nthnitzer Str. 46, 01187 Dresden, Germany

Abstract. In complex service-oriented business processes the composed ser-
vices depend on other services to contribute to the common goal. These depen-
dencies have to be considered when service compositions should be changed.
Information about dependencies is only implicitly available from service level
agreements and process descriptions. In this paper we present a semi-automatic
approach to analyze service dependencies and capture information about them
explicitly in a dependency model. Furthermore, we describe a system architec-
ture which covers the whole process of dependency analysis, dependency model
creation and provisioning. It has been implemented based on a healthcare sce-
nario.

1 Introduction

According to the Internet of Services vision services traded via open marketplaces are
composed to business processes. Services are provided fully automatically (credit card
check) or involve manual steps (healthcare services). The composed services have to
collaborate to achieve a common goal. Thus, the composition creates different types of
dependencies between involved services, e.g. with respect to produced and consumed
resources, timing, quality of service (QoS), and pricing. Dependencies occur between
atomic services (horizontal dependency) or between atomic services and the composi-
tion (vertical dependency).

Explicit knowledge about dependencies is needed for the management of service
level agreements (SLA) in service compositions. SLAs are negotiated between the ser-
vice provider and consumer to regulate service provisioning. During the negotiation
process it is necessary to ensure that all SLAs of the composition enable the proper col-
laboration between the different services and the fulfillment of all SLAs. Furthermore,
dependency information is also needed for the handling of SLA violations or explicit
SLA renegotiation requests by the different stakeholders. SLA violations as well as the
renegotiation of SLAs may affect other services and lead to the violation of other SLAs.
Thus, information about service dependencies is needed for SLA management by com-
posite service providers. Required information about service dependencies is usually
not explicitly available but is implicitly contained in SLAs and process descriptions.
From these sources it has to be extracted to be available at runtime.

Winkler M., Springer T., David Trigos E. and Schill A. (2010).

Semi-automatic Dependency Model Creation based on Process Descriptions and SLAs.

In Proceedings of the 4th International Workshop on Architectures, Concepts and Technologies for Service Oriented Computing, pages 16-28
DOI: 10.5220/0003042900160028

Copyright © SciTePress

94

In previous work we presented an approach to managing depeigs in service
compositions [1], where dependencies are analyzed atrdésig, dependency infor-
mation is captured in a dependency model [2], and dependefarynation is used at
runtime to evaluate effects of SLO violations and SLA reriegion requests on other
services. This paper extends our work by two major contidimst Firstly, we detalil
our work on dependency model creation by a process desarif@econdly, we present
an architecture for managing dependencies. The remairideisgpaper is structured
as follows: In Chapter 2 we describe the dependency modaticreprocess followed
by the presentation of the architecture of the approach iap@n 3. We evaluate our
work in Chapter 4 and discuss it with respect to related worklapter 5. Finally, we
conclude this paper with a discussion and outlook on futukwn Chapter 6.

2 Dependency Mode Creation

In order to manage the dependencies between services Hwoouthe lifecycle of a
composite service, we developed an approach which captepsndencies in a depen-
dency model at design time and which uses this informati@vétuate effects of SLO
violations as well as SLA renegotiation requests at runtivkie developed a lifecycle
for managing and using dependency information. This liééegonsists of four phases:
creation and recalculation, validation, usage, and mag. In this chapter we will de-
tail the first lifecycle phase focusing on the model creatiod its integration into the
development process of the composite service. In Fig. 1epemdency model creation
process is depicted. This semi-automatic process istitiby the composite service
modeler. As pre-requisite for executing the process tweetsphave to be fulfilled:

1. The composite service workflow has been modeled (e.g. BRkiess). It pro-
vides information on temporal relationships between sewvi

2. SLA offers for all services are available specifying mfation regarding execu-
tion time and location, handled resources, supported QuEsarvice price. This
information is needed for dependency model creation.

As a result a dependency model is created, which still neztte tvalidated with re-
spect to the negotiated SLAs. This is necessary in orderdim aonflicts between the
proposed SLAs (e.g. with respect to time and QoS attributes)

The creation process of a dependency model was realizedeasisagtomatic ap-
proach consisting of automatic dependency discovery améxplicit modeling of de-
pendencies. The discovery of dependencies automatesfphe dependency model
creation process. It also helps to reduce the chance ofsestmh as false or missing
dependencies introduced by manual modeling. The manuahgixin and modification
of the generated dependency model enables the expressiep@fidencies which can-
not be discovered automatically. However, it also intraaiuthie chance of errors being
added to the dependency model. In the following sectionslgpendency discovery
and dependency modeling are explained in more detail.

95

START

Dependency
odel exists?

Yes

Create

No—»| dependency
model

Load composite|
service workflow[™

v

Create Create
workflow paths calculation
formulas

Create
service pairs

Analyze input

and output

parameters
A 4 A 4 v v \ 4

Create horizontal| Create vertical Create horizontall Create vertical Create QoS /
time time resource resource price
dependencies dependencies dependencies dependencies dependencies

[I I I]

Refine
dependency
model manually

END

Fig. 1. Dependency model creation process.

2.1 Dependency Model Creation Process

As a first step in the process of creating a dependency mod®hanodel instance is
created if it does not already exist. After that two paratbeks are started for the dis-
covery of dependencies. This includes the creation of tinterasource dependencies
on the one hand and the creation of aggregation formulas d& &tributes and price
information on the other hand. For the creation of time astuece dependencies the
first step is the creation of linear paths reaching from the sbde to the end node of the
composite service workflow. For each path pairs of servicesieated. The selection
of the relevant services for pair creation is dependent emythe of dependency which
is analyzed (see section 2.2). Based on the created paien#igsis of dependencies
is done. The creation of time dependencies is directly basdtie different pairs. No
further analysis is necessary, since time dependencyi@neiatbased on the process
structure only, i.e. if a servicg2 follows serviceS1 in the process, this implies that

is executed beforé2. For the creation of resource dependencies the input amibut
parameters of two services are compared. If a match is faunelsource dependency
is created. The different dependencies are then added tefieendency model. The
analysis for QoS and price dependencies is based on [Frisstith a reduction of the
service workflow based on workflow patterns. Formulas focuaking composite QoS
and price values for the respective workflow patterns arectsdl and an aggregation

96

formula is created. Finally, a dependency is created fon eamposite QoS and price
value. Following the discovery of dependencies the credéggndency model can be
refined in a manual modeling step.

2.2 Dependency Discovery

The goal of our work is to provide composite service provédeith information about
service dependencies in a composition. This informatiaukhfacilitate the manage-
ment of SLAs. A SLA contains a list of parameters such as tipniege, location, and
quality of service provisioning. Dependencies occur wibard to these parameters:
e.g. the composite service price depends on the atomiasepvices; provisioning of
the first atomic services in the composition can be startesbas as the provisioning
of the composite service is initiated; provisioning of tworaic services needs to be
started or finished at the same time. These brief examples ttat different types of
dependencies exists and that fine grained dependency iafiomis required.

The discovery of dependencies is specific for each depegdgpe. We will now
describe the discovery of time and resource dependenciasiia detail including the
selection of services for service pair creation as well astype of dependency being
created. Time dependencies are expressed based on tirieneks used in project
management [4] or as defined by Allen [5]. For resource depecids the different re-
sources are listed. An overview of the mappings for createygendencies is presented
in Table 1. The creation of aggregation formulas for comigd@S and price values is
achieved as described by [3]. Due to space limitations wdandee to point the reader
to the respective work for further information.

Horizontal Time Dependencies are created between each pair of services, where one
service is directly connected to another service in a pathekch pair dinish-to-start
time dependency is created between the earlier and thesktace.

Vertical Time Dependencies are created between the composite service and the first
and last atomic service within a path. Between the compssitéce and the first atomic
service astart-to-starttime dependency is created. Between the last atomic seamite
the composite servicefmish-to-finishtime dependency is created.

Horizontal Resource Dependencies are created between atomic services, which are
directly or indirectly connected within a path. To check Wiex two services have a de-
pendency the output of the preceding service is compardettmput of the succeeding
service. If a match is found a resource dependency is crdafedmation on input and
output of services is available from their SLAs.

Vertical Resource Dependencies are created between the composite service and an
atomic service. For each path the composite service inglbatput is compared to the
atomic services input and output. A resource dependencgaed with all atomic ser-
vices along a path, which have a matching input with the caitpservice input and
which do not have a horizontal dependency regarding thehimggeesources. A fur-
ther resource dependency is created with the last atomiisewhich has a matching
output with the composite service.

97

Table 1. Comparison of dependency model approaches.

Composite service _— Dependency model
construct Description construct
Two atomic services directly connected Mane dependency:
AS1 AS2 ..
control flow finish-to-start
CTTTes T 1 |Composite service and first atomic serviceTime dependency:
| |ASL As2 |1 lapath start-to-start
T es T ! |Last atomic service and composite servicelime dependency:
|| Astf—as2]i |apath finish-to-finish
SLA J_) SLA J Resource depen-
Par:outf™] Par:in Output of preceding atomic service matcftEsicy: AS2.paramin
i 7 input of succeeding service resourceDependent
AS1 AS2 AS1.paramOut
SLA I R PSaLr-/?nJ Resource depen-
5 L Input of composite service matches inputdefncy: ~ AS1.paramin
:’"é'"'cé """ } |atomic service resourceDependent
i Ast AS2 ,: CS.paramIn
SLA J__) SLA J Resource depen-
Parewy P |output of composite service matches outglgficy: CS.paramOut
“~"""cs iy |of atomic service resourceDependent
[as1 As2 | ! AS2.paramOut
7

2.3 Dependency Modeling

The dependency discovery algorithm produces a valid deperydmodel. However,

there are several types of dependencies which cannot bevdigad. This includes de-
pendencies regarding the location for executing a servi€ga® dependencies where
no aggregation formula can be created automatically. Euribre, time dependencies

may exist between services which are not connected by thmegsdlow. A concrete
use case may have time constraints, which have to be modgbtiditty, i.e. the cre-
ated dependency model is extended manually.

3 Architecture and I ntegration

In this chapter the architecture of the dependency managtecoeponents as well as
their integration into a service engineering toolchain @escribed. The components
provide functionality for the creation, validation, anarstge of dependency models

(Dependency Model Managemgtthe analysis and modeling of dependendisgen-
dency Analysis and the evaluation of the dependency model with respedifferent

events at runtimeRuntime Dependency Evaluatjon overview of the components

is presented in Fig. 2. Details about their functionality described below.

98

Tradable Service
Runtime Runtime Dependency Dependency Model Management
Evaluation
Cockpit Dependency
Model Store
Service O
Monitoring [N\
Dependency
Dependency Dependency
N - - —()— Model
\()\ Evaluation 9 Model Manager S Validation
Message- X o~ A
() oriented ¢A \df?\
Middleware R
T
I
A S’j'ov(;gf Dependency Dependency
R it Discovery Modeler
SLA Manager < EEliEly
\d”\)
K] ISESLA Analysis Ré Proce5§
Management oS Manager Analysis
Service
Management Dependency Analysis
Platform ISE Development Environment

Fig. 2. Architecture Dependency Handling.

3.1 Dependency Model Management

The approach for managing service dependencies has atéttheodependency model,
which is used to capture information about services and épedencies that occur
between them. The components, which are part of the dependsrdel management,
are responsible for the creation, validation, and stordgkependency models and for
making these models available to other components.

The Dependency Model Managés the central component. It creates new depen-
dency model instances for each new SLA negotiated for a ceitgpgervice. It is also
responsible for adding information to dependency modets making model infor-
mation available to other components suclDapendency Modeleand Dependency
Evaluation TheDependency Model Validatiawomponent is responsible for validating
the dependency model with respect to the defined constiaidtthe respective SLAS.
An example is the validation of negotiated times which ascaVered based on the
workflow structure or modeled manually. Furthermore, \atiiwh regarding more gen-
eral aspects is realized (e.g. each consumed resourcetodrgigrovided by an entity).
The final dependency model instances are stored iDépendency Model Stare

3.2 Service Dependency Analysis

The analysis of dependencies is executed after creatingethce composition and
during the process of negotiating SLAs for the differenvgsss. It requires a process
description and SLAs in the offer state (i.e. containingegfl SLO values) as input.
Our implementation is based on BPMN (Business Process Muag&btation) process
descriptions. BPMN represents a suitable means for maglelisiness processes from a
business perspective at an abstract level. An alterngpipeoach would be the usage of
a BPEL (Business Process Execution Language) processomtBPEL is, however,
targeted at processes that are executed automatically hiath are realized by web

99

services. Processes involving mainly human or machine @asktypically not modeled

using BPEL. The dependency analysis functionality is itisted between components
supporting the automatic dependency discovery as well psrilency modeling. The

analysis process and the involved components are presearfiegl 3.

The Analysis Managehandles the process of dependency discovery. It is initiate
by the composite service creator during the negotiationL@sSwith the consumer of
the composite service as well as the atomic service pravitteretrieves the workflow
description and SLA documents for the analysis and ingi#ite different steps of the
discovery. ThéProcess Analysisomponent is responsible for decomposing the process
into linear paths leading from the start node all the way ®ehd node. These paths
are used for the discovery of dependencies. DBpendency Discovegomponent re-
alizes the different dependency discovery mechanismsy illctude all horizontal and
vertical dependency evaluation tasks as described iroge2i2. The implementation is
based on the generated paths and SLA information. Whencibakss a dependency it
requests th®ependency Model Managér add the respective information to the de-
pendency model. Once the information has been added to thelnitois stored in the
Dependency Model Starerom there it can be accessed for further handling.

% Analysis Process Dependency Sﬁ%‘? Dﬁlﬁgﬁgﬂﬂ Dependency
Composite Manager Analysis Discovery o MEE Model Stor

Service Repositor Manager

Creator I I

IanaIyzeDepeimdlencies(process) I

getPaths(prg:el;s)

I
I

I I

I I
pathList I I
analyzeDepen-lencies(pathLis I I

D

I getSLAInformatjol
| e _ _ Shainfo
storeDependengyll\fo(dep)

I
I
I
e J.____rPquI [J<—————-— ‘I'---EQR-T |
I

Fig. 3. Process and components for analysis of dependencies.

TheDependency Modelgrovides dependency modeling functionality for the com-
posite service creator. It enables the creation of new dsawéhe adaptation of existing
dependency models. It was realized as a graphical modeketite modeling process
is initiated by the composite service creator. As a first shkegDependency Modeler
requests a dependency model from Bependency Model Managednce the model
is available, the composite service creator uses the gditimctionality to add, remove,
or modify dependency and service information in the depeagenodel.

100

3.3 Runtime Dependency Evaluation

The Runtime Dependency Evaluaticomponent is responsible for the evaluation of
dependency information at runtime. The occurrence of Sldlatibn information re-
quires the determination of effects of this violation onestkervices (atomic or com-
posite service). Requests for renegotiating an SLA neeeé ®vhluated with regard to
effects on other services before accepting them.

The runtime evaluation of dependencies is initiated byl8e SLA Management
component calling th®ependency Evaluatioomponent which executes the evalu-
ation process. It requests the relevant dependency maurltireDependency Model
Managerand evaluates it. Since the runtime dependency evaluatioatiin the focus
of this paper we do not present more details about this.

3.4 Integration with Service Engineering Toolchain

The different dependency management components areaigelgnto the ISE devel-
opment environment, a tool created for the modeling of ses:i This enables proper
handling of dependencies for composite service providdrigewnodeling their ser-
vices. Within the ISE development environment the depecylanalysis components
also have access to the necessary information for exedhranalysis (i.e. the BPMN
process description and SLA information). Thependency Modeleool is also in-
tegrated into the ISE development environment. Ruatime Dependency Evaluation
component is integrated with th6E SLA Managemerbmponents, which handle the
integration with theService Monitoringon the Tradable Service Runtim@SR) and
the SLA Manageion theService Management Platfor(8MP) respectively. The TSR
provides the service runtime infrastructure while the SMfiere service marketplace
functionality.

4 Evaluation

In the first part of the evaluation we discuss the performaridée algorithms used
for the automatic discovery of dependencies. In the secamntvge present a set of
test cases to better illustrate the different steps of tipeddency analysis process. The
results of both parts are discussed in a third section.

The performance measurements and test case handling wereted using the
workflow of a composite healthcare service (see Fig. 4). Tdemario is based on a
healthcare workflow presented in [6]. In this scenario agmaituindergoes several ex-
aminations at a healthcare center. The different exanoingtire executed by different
medical service providers. Further services include tradyais of blood samples, cre-
ation of documentation, and transport of the patient.

4.1 Performance Considerations

As a first step we measured the times taken for the differsistaf the dependency
discovery approach for the healthcare service: path o ms), horizontal (7 ms)

101

[Delermlne | Procurement I[Give
of

Medical
Record
Creation

Patient
Examination

Create
Report
Check Follow-up
Patient Expert Patient
[et et F[et [Exag;glﬂgcn F[Dg{;m;q,g b
Patient Data
Collection

Discharge
Patient
Examine
Blood

Fig. 4. Workflow of composite service - Stationary Patient Check-up

O

Patient
Admission

and vertical (2 ms) time dependencies, horizontal (3 msantical (25 ms) resource
dependencies. The results show that all tasks are execitteéd afew milliseconds.
Furthermore, a number of measurements were made to testdlebiity of the
approach. We modeled 5 business process workflows (P1.fRiHjevent complexity
(number of nodes, number of splits and joins). We countedntimaber of artifacts
created during dependency analysis and measured the tim@eséting relevant service
pairs. The results presented in Table 2 show that with irstngavorkflow complexity
the number of paths as well as duplicate time and resourcs jpaireases strongly.
Thus it is necessary to ensure that the further analysis io$ aonly executed for
pairs which have not been handled before. The results atse 8tat the discovery of
dependencies in relatively complex services is executésbsthan a second.

Table 2. Measurement results.

PI[P2 | P3| P4 | P5

Nodes 27 314 36 55 87
Split/join 1/5|13/12 28/9 |17/32|94/44
Created paths 21| 60 | 952 | 1933| 908

Duplicate time pairs 76| 102 | 738714554 5535
Non-duplicate time pairs | 14| 32 | 45 | 74 | 91
Duplicate resource pairs (222 139 3368q65569 20951

Non-duplicate resource pains57 | 103 | 422 | 679 | 916
Time to get time pairs (ms)|1.7| 2.0 | 78.7 | 289.7| 293.8
Time to get resource pairs (mM§)9| 2.1 |188.7|554.0| 153.5

4.2 Test Casebased Evaluation

A number of test cases serve as the base for validating tferetit steps of the de-
pendency analysis process. Each test case is illustratadawirief example. For the
analysis of dependencies the service workflow (see Fig. d)SArA descriptions are
needed. Due to space limitations only excerpts of SLAs ofices relevant for the
presented examples are listed in Table 3.

TC1 - Path Creation: The composite service workflow is decomposed into linear
paths.Results:List of 10 paths reaching from the start to the end of the psc@ne

102

example path is the following?atient Admission - Patient Data Collection - Exam-
ine Blood - Check Examination Results - Follow-up Treatni¥termination - Create
Report

Table 3. Sample SLA information.

Service Input resources Output resources
Patient Admission - patient ID
Examine Blood patient ID, blood samp|é&boratory test result
Create Report medical record examination report
Stationary Patient Check-up - examination report

TC2-Horizontal Time Dependencies: Pairs of directly connected services are created
along the paths. Duplicate pairs (e.g. gatlow-up Treatment Determination - Create
Reportoccurs in 5 paths) are removed. Time dependencies offtgjsh-to-startare
created for each paiResultsList of horizontal time dependencies. One horizontal time
dependency betwedtatient Data CollectiorandExamine Bloods shown in Table 4.

TC3 - Horizontal Resource Dependencies: All pairs of different services along the
paths are created. Duplicate pairs are removed. All pagsanalyzed with regard to
matching input and output resources. Information aboutitirgmd output resources
is taken from the negotiated SLAs (see Table 3). Resourcertfemcies are created
when matching resources are fouResultsList of horizontal resource dependencies.
One resource dependency between the seRatient AdmissioandExamine Bloods
shown in Table 4.

TC4 - Vertical Time Dependencies: Creation of vertical time dependencies between
the composite service and the firstdrt-to-star) and last {inish-to-finish) atomic ser-
vices in the pathResultslist of vertical time dependencies. One vertical time depen
dency betweerstationary Patient Check-ugnd Patient Admissioris shown in Table

4.

TC5 - Vertical Resource Dependencies: All atomic services along the paths are ana-
lyzed with regard to matching input and output resourceh trie composite service.
Dependencies are created for matching resources if nodmakzdependency exists
regarding the matching resourc&esults:List of vertical resource dependencies. One
vertical resource dependency betwé&srate ReporandStationary Patient Check-up
is shown in Table 4.

TC6 - Dependency Model Extension: Manual creation of a location dependency be-
tween thePatient Transporservice and th&xpert Examinatiorservice.Results:One
location dependency betwe®atient TransporandExpert Examinatiotisee Table 4).

4.3 Discussion

In this chapter we demonstrated the general feasibilitheftpproach to create depen-
dency models. We first presented an overview about perfacenareasurements. One
result of the measurements was that with increasing coritplekthe workflows not

103

Table 4. Dependencies of healthcare process.

Antecedent - Dependant Dependency |Description

Patient Data Collection - Examifténe endTimefinish-to-startstartTime
Blood

Patient Admission - Examine Blogresource patient ID

Stationary Patient Check-up - Réme startTimestart-to-startstartTime
tient Admission

Create Report - Stationary Patigesource examination report

Check-up

Patient Transport - Expert ExamiTh}cation endLocatiorequalsstartLocation
tion

only the number of paths and relevant service pairs incthésg that a proportionally

large amount of time would be necessary for handling dutdisarvices. Thus, they
need to be removed. However, we also showed that the timeesdgedanalyze rela-

tively complex processes is still less than a second, wHiotvato use the approach at
design time.

As a second part of the evaluation we applied different tases which demon-
strated the functioning of our approach. We showed a sangilegreated during the
execution of the dependency discovery as well as a numbeffefaht dependencies.
In total this scenario produces 40 time and resource deperete which are discovered
automatically. Two more location dependencies can be nredd@l manual handling of
all these dependencies would be very time consuming andpoe. In more complex
processes the number of dependencies will be much highéhwénders a manual
handling of dependencies even more difficult. Our semi+aat process facilitates
this.

5 Reated Work

The handling of dependencies between services has beeesaddrfor a variety of
purposes including the automatic composition of servi@ésthe optimization of se-
guencing constraints of composite services ([8, 9]), raose and impact analysis ([10,
11]), and SLA management ([3, 12]).

Wu et al. [8] present an approach for modeling and optimizimg synchroniza-
tion dependencies of activities in business processesnéhsgnization model, which
contains dependency information, is used to support &tsdheduling in business
processes. In contrast to our approach automatic disco¥elypendencies is not sup-
ported. In [9] the authors discuss control and data depereeim business processes
and argue that they form the base for sequencing constiiairiigsiness processes.
They present an approach for deriving control dependerfices semantically anno-
tated business activities by evaluating their pre-coodgiand effects. Input and output
parameters of business activities form the base for datardkgmcies. This approach
differs from our approach in several ways: While our reseutependencies are similar
to the data dependencies of their work, we also support degpeies regarding time,
location, QoS, and pricing information. Furthermore, tlag@iproach is limited to depen-

104

dencies between atomic services while our work also supplpendencies between
atomic and composite services.

Ensel and Keller [10] introduce an approach to handle depreids between man-
aged resources (e.g. web application server, databagetiogesystem) in a distributed
system. The goal is to support root cause as well as impabtsaséor service failure
situations. Dependencies are represented in a distribietgehdency model which cap-
tures the dependencies and attributes of these managedaeso-However, no work is
presented with regard to the discovery of service depene&rthe MoDe4SLA [11]
approach supports the handling of response time and prgendencies of composite
services on its atomic services. The goal of the system isgpart root-cause analysis
for problems caused by atomic services. The dependenaymatmn is captured by a
modeling approach. The discovery of dependencies is nqtostgd.

The COSMA approach [3] supports the providers of compogtgices to man-
age their SLAs. Dependencies between composite QoS vaheegtamic ones are
expressed using aggregation formulas. The aggregationutes for the different QoS
values are automatically derived from the process desanipEurther constraints need
to be added manually or from configuration files. In contrasbar work, COSMA
focuses only on the relationship between composite sendod atomic services, but
dependencies between atomic services are not handled n®&pey types such as re-
source, location, and time are not covered. However, ourcagh to QoS and price
dependency discovery is based on COSMA. Karnke et al. desan agent-based ap-
proach to managing SLAs in value chains [12]. The focus is bA Based resource
management in hierarchies of service level agreementsaA®pthe agent-driven ne-
gotiation process, dependencies between services arelemts However, no work
has been presented regarding the discovery of dependencies

6 Conclusions

The approach presented in this paper enables managementicEsdependencies. We
have shown that different types of dependencies can ocquatrilel within complex
service compositions representing business procesdess lieen demonstrated that a
significant subset of these dependency types can be autathagxtracted from in-
formation provided by the process description and the SLégotiated between the
involved service providers and consumers. Based on therdift characteristics of ser-
vice dependencies specific algorithms have been identifiedutomatic dependency
discovery. These algorithms are embedded into the prodedsp@ndency manage-
ment implemented by the presented architecture for depeydwndling, particularly
in the dependency analysis component. In the process theadea of service depen-
dencies at runtime is foreseen. The automatically diseml/dependencies are stored
in a dependency model and are made available for runtimendepey evaluation. The
presented performance measurements prove the appligaibibur algorithms for de-
pendency discovery at runtime, since the processing tinme tise range of few sec-
onds even for complex processes of up to 100 services. Theass based evaluation
demonstrated the feasibility of our approach, illustrgtine complexity of the depen-
dency discovery and showing created artifacts.

105

In the future we will consider additional types of dependeswvith respect to char-

acteristics, detection algorithms and modeling. Furtiseraase studies will be carried
out to prove the applicability and practical relevance af approach. Finally, the run-
time dependency evaluation will be implemented.

Acknowledgements

The project was funded by means of the German Federal MinigtEconomy and
Technology under the promotional reference “01MQO07012ie Ruthors take the re-
sponsibility for the contents.

References

10.

11.

12%

. Winkler, M., Schill, A.: Towards dependency managemeanservice compositions. In

Filipe, J., Marca, D.A., Shishkov, B., van Sinderen, M.,.etSE-B 2009 - Proceedings of
the International Conference on e-Business, Milan, {&§09)

. Sell, C., Winkler, M., Springer, T., Schill, A.: Two depsncy modeling approaches for

business process adaptation. In Karagiannis, D., Jind&.; KEnowledge Science, Engineer-
ing and Management, Springer (11 2009)

. Ludwig, A., Franczyk, B.: Cosma—an approach for managiag in composite services. In

Bouguettaya, A., Krueger, |., Margaria, T., eds.: ICSOC&F2008)

. PMI: A Guide to the Project Management Body of Knowledg®BOK Guide). 4 edn.

Project Management Institute (2008)

. Allen, J.F.: Maintaining knowledge about temporal ingéds. Commun. ACM 26(11) (1983)

832-843

. Reichert, M., Bauer, T., Fries, T., Dadam, P.: Realisigrfiexibler, unternehmensweiter

workflow-anwendungen mit adept. In Horster, P., ed.: PriektEonische Geschftsprozesse—
Grundlagen, Sicherheitsaspekte, Realisierungen, Anwegeh. (2001) 217-228

. Zhou, J., Pakkala, D., Perala, J., Niemela, E.: Deperydanare service oriented architec-

ture and service composition. In: IEEE International Cosfiee on Web Services. (2007)
1146-1149

. Wu, Q., Pu, C., Sahai, A., Barga, R.: Categorization artanipation of synchronization

dependencies in business processes. In: Proceedings BfA&M# International Conference
on Data Engineering (ICDE’07). (2007) 306-315

. Zhou, Z., Bhiri, S., Hauswirth, M.: Control and Data De@encies in Business Processes

Based on Semantic Business Activities. In: Proceedings\é£$2008, ACM (2008)

Ensel, C., Keller, A.: An approach for managing serviepahdencies with xml and the

resource description framework. Journal of Network ande&ys Management 10 (2002)
147-170

Bodenstaff, L., Wombacher, A., Reichert, M., JaegeC M.Monitoring Dependencies for

SLAs: The MoDe4SLA Approach. In: IEEE SCC (1). (2008) 21—-29

Karaenke, P., Micsik, A., Kirn, S.: Adaptive sla manageinalong value chains for ser-
vice individualization. In: Proceedings First Internai@d Symposium on Services Science
(ISSS’2009). (2009)

