
A BUSINESS USE CASE DRIVEN METHODOLOGY
A Step Forward

Gaetanino Paolone, Paolino Di Felice, Gianluca Liguori, Gabriele Cestra and Eliseo Clementini
Department of Electrical and Information Engineering, Università degli Studi dell'Aquila

Via G. Gronchi - Nucleo Industriale di Pile, 20, L'Aquila, Italy

Keywords: Use Case, Business Modeling, System Modeling, MDA, UML.

Abstract: The present contribution reshapes a recently proposed software methodology by giving up the top-down

philosophy being part of it, to follow a strictly model-driven engineering approach. The ultimate goal of our

research is to define a methodological proposal ensuring the continuity between business modeling, system

modeling, design, and implementation. This lays the foundations for the automatic transformation process

of the behavioral business model into a software model capable of meeting user needs.

1 INTRODUCTION

It is generally acknowledged that designing and

developing software systems is becoming

increasingly complex. Fortunately, there are

methodologies and tools to tackle this demanding

and, sometimes critical, challenge. For example, the

methodology recently proposed in (Paolone et al.,

2008a; 2008b; 2009) promotes the iterative and

incremental development of complex software

systems using a methodological framework that

supports model-driven engineering. Such a

methodology is inspired to the Rational Unified

Process (Kruchten, 2003) and it poses use cases at

center of the modeling (UML, 2010).

For an IT project to be successful, it must be as

skin-tight as possible to business reality, in such a

way corporate users can find in the application

(Zhao et al., 2007) the same modus operandi of their

own function: each actor plays within the

organization a set of "use cases" and does so

regardless of automation. Today, use cases are at the

core of modeling and developing software

applications (Zelinka, Vrani´, 2009) (Duan, 2009)

(Sukaviriya et al., 2009). The relevance of use cases

in business and system modeling is also witnessed

by papers focusing on their extraction from business

modeling represented by activity diagrams (e.g.

Štolfa, et al., 2004). More recently, the research

focus is on the automatic extraction of use cases

(e.g. Rodríguez, et al., 2008).

As a matter of fact, enterprise applications are

characterized by quite complex interactions among

different use cases and within the same use case as

well. The methodology appeared in (Paolone et al.,

2009) is an instance of the proposal that empower to

manage such a complexity through a layer of classes

dedicated to use case automation.

As pointed out in (Paolone et al., 2008a), the use

case construct’s strength and usefulness lies in its

existence inside the business system regardless of

automation. The designer's task is therefore to dig

and obtain software application’s use cases from

business system analysis. Similarly, the possible

actions within a use case do exist in the business

model and determine use case scenarios to be

exported to the system model. In a nutshell, the use

case, being a constituent of the business model, is

treated in (Paolone et al., 2008a) as the fundamental

ingredient for software development.

Our methodology examines the system

behavioral aspect through a top-down process (such

an approach is commonplace amidst software

development methodologies), and then proceeds by

means of stepwise refinements of the initial business

model. This strategy, although it reveals itself above

all suitable for representing the system at different

levels of abstraction, does not consent the automatic

transformation of models and, therefore, does not

adhere to a Model Driven Architecture (MDA)

approach (MDA, 2003).

The ultimate goal of our research is to define a

methodological proposal for the automatic

221

Paolone G., Di Felice P., Liguori G., Cestra G. and Clementini E. (2010).
A BUSINESS USE CASE DRIVEN METHODOLOGY - A Step Forward.
In Proceedings of the Fifth International Conference on Evaluation of Novel Approaches to Software Engineering, pages 221-226
Copyright c© SciTePress

transformation process of the behavioral business

model into a software model that is capable of

meeting user needs (i.e., close-fitting to business

processes). To this end, we question the convenience

of using a top-down approach in favor of a full

MDA approach, ensuring thus the continuity

between business modeling, system modeling,

design, and implementation.

The next step (undertaken by this position paper)

modifies our previous approach by making it

possible to comprehend and design a software

application starting from the business system

requirements. In other words, we strive to extract

use cases from business modeling and reproduce

them in system modeling.

The article is organized as follows. Section 2

summarizes the methodology appeared in (Paolone

et al., 2008a ; 2008b; 2009). Section 3 describes

what is still missing with respect to the objective of

automatically building software systems. Section 4

sets the ground for the extension of the

methodological process of Section 2 to pursue our

goal.

2 THE METHODOLOGY

The methodology introduced in (Paolone et al., 2008

a ; 2008b; 2009) allows us to represent in detail two

models: the business and the system model. Use case

modeling and realization are the most important

aspects of the methodology. Our proposal is

centered around four distinct layers (Figure 1) with

an iterative and incremental approach that leads to

the realization of a Business Use Case (BUC) into

the software application through stepwise

refinements.

The first two layers of use case analysis are

placed in the business modeling context: their

objective is to get a complete representation of the

given business reality. The next two layers are

instead placed in the system modeling context with

the objective of representing the software system.

More in detail, we can say that the first layer

concerns BUCs analysis, which are then specialized

by Business Use Case Realizations (BUCRs) in the

second layer. Afterwards, a trace operation is used to

define the system Use Cases (UCs) (third layer),

which are then specialized by Use Case Realizations

(UCRs) (fourth layer). The latter ones can be

implemented by a Java class.

In addition, Figure 1 shows the relationship

between the four layers with the Computation

Independent Model (CIM) and the Platform

Independent Model (PIM) widely mentioned in the

software engineering literature (MDA, 2003).

Figure 1: The methodological layers (sketch).

Figure 2 extends Figure 1 to an example

referring to a real-life document management project

for a bank, where every layer contains a type of

UML diagram.

DocumentFromBank
DocumentFromSupplier

DocumentAquisition
<<realize>> <<realize>>

LinkFile

<<realize>>

<<extend>>

<<extend>>

Building Localization

Document Acquisition

Document Distribution Document Filing

Document Validation

SenderDocumental Management

<<realize>> <<realize>>

<<realize>>

<<realize>>

<<realize>>

<<realize>>

<<realize>>

<<trace>>

<<realize>>

Documental Management

Employee

(f rom Actors)

<<communicate>>
Manager

(f rom Actors)

<<communicate>>

Product Handling

<<communicate>><<communicate>>

Business
Modeling

System
Modeling

Person
Employee

(f rom Actors)

Enterprise

Supplier

Manager

(f rom Actors)

Internal Document Acquisition

Figure 2: The methodological layers (complete).

In the following, we provide more details about

the example. Figure 3 shows a fragment of the BUC

diagram.

ENASE 2010 - International Conference on Evaluation of Novel Approaches to Software Engineering

222

Figure 3: The BUC diagram (1st layer).

This example underlines that the BUC is used to

represent business areas (e.g. Documental

Management) that involve many actors, while it

should be used to express an actor/system

interaction. In this context, the BUC shows its

inadequacy. For each BUC, we define the related

BUCRs. Referring to the BUC Documental

Management, Figure 4 proposes six BUCRs:

acquisition, validation, distribution and store of the

document, in addition to the management of senders

and physical structures (Buildings) that store the

documents.

Figure 4: The BUC realize diagram (2nd layer).

After the business modeling phase, we analyze

the part of the system that will be automated. The

“Trace” operation can introduce many system UCs

for a single BUCR. For example, in documental

management, document loading can be done by the

bank, but also by suppliers. In the same way, in the

system perspective, it is not possible to consider a

generic “Sender”, but we must manage various types

of them. (see Figure 5).

Sender

(from Business Use-Case Model)

Document Acquisition

(from Business Use-Case Model)

Supplier Person

Enterprise

<<Trace>>

<<Trace>>

<<Trace>>

Internal Document Acquisition Document From Supplier

<<Trace>> <<Trace>>

Figure 5: The UC trace diagram.

The output of the trace operation produces the

system UCs of the third layer of Figure 2.

In the last phase of the subsystem behavioural

analysis, we must identify at least one system UCR

for each system UC. In this phase, we also introduce

some technological UCRs, such as “LinkFile”.

For the sake of brevity, we do not present an

example of system use case realization diagram, but

it should be straightforward to understand that this

operation introduces a further refinement of the

subsystem.

The current methodology has a strong industrial

impact because it has been repeatedly applied in real

projects with good results. Its adoption has brought

benefits both in terms of the engineering aspects of

design and development time (Paolone et al.,

2008a). The methodology enables us to build

software systems with the help of a Java-based

framework that speeds up software development.

In conclusion, we can reaffirm that the

methodological process is UC-driven, since the UC

artefact exists both in the business model and system

model, although it is represented by different

stereotypes, and is also exported to code.

A BUSINESS USE CASE DRIVEN METHODOLOGY - A Step Forward

223

3 LIMITS OF THE CURRENT

APPROACH

The current methodology has a limit from the MDA

point of view, which is caused by the application of

the top-down approach. Indeed, the top-down

approach has a degree of subjectivity regarding the

level of abstraction that is chosen at each layer and

the use case definition at business and system level.

Thus, it is perfectly possible that two designers

produce different UML diagrams to represent the

same business reality and the consequent software

system, without having the means to prove the

correctness of a solution with respect to the other.

Nevertheless, a designer could decide not to describe

in detail the representation of a business process

without this being an error.

With regard to the example of Section 2, the

business analyst could produce the diagrams of

Figure 6 and Figure 7 as a correct alternative to

Figure 4 and Figure 5.

Figure 6: An alternative BUC realize diagram (2nd layer).

Unfortunately, the lack of detail is not

compatible with the MDA approach. To pursue an

MDA approach, it must be possible to automatically

transform a given model into another one, by using a

finite set of values and rules that produce a unique

result.

In a methodological approach that works with

stepwise refinements through four distinct layers, it

is unlikely that a set of rules could be identified

allowing a unique model transformation. In fact, the

latter burden is often left to the skills and cleverness

of the business analyst and software designer. This is

the main cause of the already mentioned subjectivity

in the methodology, which consequently loses

formal soundness.

Figure 7: An alternative UC trace diagram.

The limit of the current methodology concerns

the system behavioural aspect (use case model) and

not the structural aspect (class diagrams).

In fact, in the class model defined in the system

modeling phase, we can find all the business object

classes discovered during the business modeling

phase and that during the trace operation (the

passage from business modeling to system

modeling) have been tagged as necessary for system

automation: the same classes are also present in the

coded model.

During an automatic transformation process, it is

possible for the structural aspect of the system to

uniquely identify the object classes that need to be

created starting from the business model. This is not

possible for the behavioural aspect, where the

continuous refinement process does not consent the

identification of rules for a unique mapping.

4 THE APPROACH

WE LOOK AT

The design of a large enterprise application is a

complex process, since it represents the automation

of the enterprise system. The most delicate part of

this process is the identification of the UCs, which

express the interactions between end-users and

system according to usual enterprise workflows and

establishing the communication between all

stakeholders.

ENASE 2010 - International Conference on Evaluation of Novel Approaches to Software Engineering

224

The solution we are developing (Figure 8) starts

as in (Paolone et al., 2008a) with business analysis,

distinguished between BUC modeling and business

analysis modeling: business modeling layers remain

the same with a realization process that connects

them. Instead, during the system analysis phase, we

introduce a trace operation of both business

modeling layers into the two system modeling

layers.

Figure 8: The methodological layers (re-arranged).

In this way, we can reproduce all the BUCs and

BUCRs in the system perspective, becoming UCs

and UCRs. The purpose of the trace operation

remains the same, in the sense that we transfer to

system modeling the only UCs that need to be

automated.

Working this way, the methodological process

would become the bridge between business

requisites and the software solution to be developed.

This would allow a breakthrough in system

engineering: different workgroups (with the same

skills) would produce identical system models for

enterprise automation.

Since BUCs exist in the enterprise system

independently from its level of automation, the

BUCs scenarios would be exported without changes

to the system model. Therefore, we believe that the

proposed methodology could create a solid

foundation for model-driven processes, allowing to

set exact rules for model transformations.

We achieve this result because we substitute the

refinement process with a trace process. Having a

complete correspondence between business and

system models, mapped only by the “trace”

operation and not contaminated by stepwise

refinements, should assure the complete

correspondence between business system and

software system, both in behavioural and structural

aspects.

This approach needs the specification of a high

degree of detail during BUCs discovery phase. This

somehow prevents the designer from taking

advantages of the top-down approach, which

normally helps to reason at a high level of

abstraction during business modeling and this is

sometimes a desirable feature in the first steps of

conceptual modeling. Nevertheless, with the

proposed approach we can have the great advantage

of defining exact transformation rules from BUCs to

software system.

The approach still considers the subdivision of

the enterprise in subsystems that are represented by

an appropriate number of UML diagrams (Paolone

et al., 2008a) (UML, 2010), correctly managing the

system behavioural complexity. In the same way, it

continues to represent the system model with UML

diagrams. The main difference of the proposed

approach lies in the relationship occurring between

business models and system models.

While our methodology is still at a draft stage, it

is oriented to the solution of concrete problems

related to UC management. In fact, the UC is a set of

scenarios and actions (UML, 2010). For every

BUCR it is possible to define business actions in the

context of a scenario. The system UCs instantiation,

their navigation, and the management of their

lifecycle would become the services offered by the

computerized system, along with the representation

of UC inclusion and extension, as they are defined in

the business model.

Obviously, the methodology needs to be

validated first of all in the current methodological

context and, then “on the field” through the

development of real enterprise software projects.

The validation task involves many aspects related to

the application of the UML, in a process aimed to

obtain seamless continuity between business and

software models. For example, there are issues

related to the representation of scenarios and actions,

defined in the business model, that will have to find

a correspondence in the code to correctly model use

cases and satisfy end-user needs.

REFERENCES

Zelinka, L., Vrani´, V., 2009. A Configurable UML Based

Use Case Modeling Metamodel. First IEEE Eastern

European Conference on the Engineering of Computer

Based Systems.

A BUSINESS USE CASE DRIVEN METHODOLOGY - A Step Forward

225

Duan, J., 2009. An approach for modeling business

application using refined use case. ISECS

International Colloquium on Computing,

Communication, Control, and Management (CCCM

2009).

Sukaviriya, N., Mani, S., Vibha Sinha, V., 2009.

Reflection of a Year Long Model-Driven Business and

UI Modelling Development. INTERACT 2009, Part II,

LNCS 5727, pp. 749–762.

Paolone, G., Clementini, E., Liguori, G., 2008a. A

methodology for building enterprise Web 2.0

Applications. The Modern Information Technology in

the Innovation Processes of the Industrial Enterprises

Prague Czech Republic, 12-14 November 2008.

Paolone, G., Clementini, E., Liguori, G., 2008b. Design

and Development of web 2.0 Applications. itAIS 2008

Paris France, 13-14 December 2008.

Paolone, G., Clementini, E., Liguori, G., Cestra, G., 2009.

Web 2.0 Applications: model-driven tools and design.

itAIS 2009 Costa Smeralda (Italy) October 2-3, 2009.

UML, Unified Modeling Language, 2010. Version 2.1.2,

http://www.uml.org/

Zhao, X., Zou, Y., Hawkins, J., Madapusi, B., 2007. A

Business Process Driven Approach for Generating E-

Commerce User Interfaces. Model Conference 2007

Nashville TN September 30 – October 5 2007, pp.

256-270.

P. Kruchten, 2003. Rational Unified Process, An

Introduction. Second Edition”. UK, Addison Wesley.

MDA, Model Driven Architecture, 2003. Object

Management Group: MDA Guide Version 1.0.1,

http://www.omg.org/docs/omg/03-06-01.pdf

Štolfa, S., Vondrák, I., 2004. A Description of Business

Process Modeling as a Tool for Definition of

Requirements Specification. 12th System Integration

2004. pp 463 469.

Rodríguez, A.; Fernández-Medina, E; Piattini, M. 2008.

Towards Obtaining Analysis-Level Class and Use

Case Diagrams from Business Process Models. ER

Workshops 2008.

ENASE 2010 - International Conference on Evaluation of Novel Approaches to Software Engineering

226

