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Abstract: The key to mature and efficient industrial software engineering is standardisation more than an aggressive 
struggle for innovation only for the sake of its own. This is assumption is also held for the area of sensor 
networks development, which is becoming an increasingly important field at the interface between software 
and hardware engineering. This short position paper proposes and outlines a generic design for the nodes of 
such sensor networks, which could be used in the future as the basis of almost any conceivable sensor 
network application. On such a basis of generic standardisation, the development of specific and particular 
sensor network applications will then be mainly a matter of hardware-independent programming with APIs, 
as it is already well known in the classical domain of operating systems in ordinary desktop PCs.  

1 MOTIVATION AND RELATED 
WORK 

Software engineering for common-place devices 
(like personal desktop computers) has become 
comparatively easy during the past decades, mainly 
because of reasonably high levels of standardisation 
in the design of hardware platforms, operating 
systems (OS) and application program interfaces 
(API) in the context of those common devices. 
Software engineering for non-standard devices, such 
as robots (Campbell, 2009) or the physical nodes of 
(wireless) sensor networks, is still comparatively 
harder, which has (amongst other reasons) much to 
do with a shortage of standardisation in this field. 
There is much agreement amongst many software 
engineering experts that only the specialization of 
well-defined sub-areas of software engineering will 
eventually lead to methodological maturity of the 
discipline. For comparison: there is no such thing as 
general ‘hardware engineering’; in the domain of 
hardware we can find automotive engineering, 
electronics, railway engineering, and so on. Positive 
examples in our field, software engineering, are 
compiler construction, or relational data-base 
construction, which are well understood since many 
years and do not confront us with major difficulties 
any longer. In the long run, the same must become 

true also for other sub-areas of software engineering, 
such as the construction of software for sensor 
network applications, embedded systems, and so on. 
Further positive examples pointing into the right 
direction are the standardisation of software systems 
for the automobile industry (Dörr, 2008), as well as 
the already mentioned standardisation attempts for 
robotic platforms (Campbell, 2009). 

The need for standardised frameworks in the 
area of wireless sensor network development was 
most recently also addressed by (Alkazemi, 2010). 
In that paper a general system model was outlined 
on the basis of several layers from the hardware 
level via operating system levels up to the interfaces 
for the user application software. Also in (Alkazemi, 
2010) one can thus find a ‘classical’ well-understood 
technique being transfered into a comparatively new 
application domain, namely the domain of wireless 
sensor nodes. In such a way by separating a node’s 
hardware from the user’s application programs with 
intermediate layers of firmware and system-software 
the re-usability of such a node in different scenarios 
can be considerably increased (Alkazemi, 2010). 
The same principle of layering was also applied in 
the approach of (Dörr, 2008) for non-standard 
hardware in the domain of automobile software 
engineering. In all these layered approaches there is 
of course a trade-off between flexibility and speed: 
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more layers between hardware platform and the user 
application program will lead to more application 
flexibility at the expense of computational speed 
(performance) whereas less intermediate layers will 
lead to greater speed at the expense of flexibility. At 
the moment, the user applications are mostly 
implemented very close to the hardware of a sensor 
node, which is due to the limited storage capacity of 
such devices, such that the programming of the user 
application code is a cumbersome task and the result 
of such efforts will not be characterised by high 
reusability. In some way we could say that wireless 
sensor networks with their small computational 
nodes have taken us back into the early days of 
computing when storage and computational power 
was limited and sophisticated operating systems did 
not exist. However, according to Moore’s law, one 
might reasonably expect that this situation will 
change rather sooner than later, such that a layered 
application approach to the deployment of software 
on tiny sensor nodes will become feasible, too. 
Under this presumption also this short position paper 
is presented. 

This short position paper outlines a generic 
model, at a high level of abstraction, of sensor 
network nodes which is supposed to serve as a basis 
for future standardisation efforts at the interfaces 
which this model defines. The finer details of 
construction and implementation (for example, 
whether communication between a node and its 
partners is synchronous or asynchronous, whether a 
node has a unique identity or is anonymous in a 
network, whether or not a node can change its 
internal state on the basis of a memory, etc.) are left 
deliberately un-specified, such that the model does 
not undermine its own reusability by being overly 
specific. The ‘engine’ part of this model is derived 
from (Ellis, 2008), with additional parts added to 
describe the interactions between a node and its 
environment. For each part identified by this model 
it should then become possible for designers and 
developers to create standardised interfaces and re-
usable software module libraries, such that (in the 
end) the deployment of software-driven sensor 
network applications of any kind will become very 
much a matter of component-based development 
(CBD) (Lau, 2004) (Alkazemi, 2010) of well 
understood devices (Maibaum, 2008) in the fashion 
of the classical engineering disciplines. 

2 SCHEMA OF A SENSOR NODE 

A conceptual assumption is made ab-initio: For a 
network of nodes, being a distributed concurrent 
system (Tanenbaum, 2007), it is here assumed for 
the sake of simplicity that every node, as an atomic 
unit of the network, is not yet another, concurrent 
micro-system in itself; instead it is assumed here that 
every node is based on a mono-processor with 
internally sequential operations. This does not imply 
any loss of generality: Should one technically wish 
to construct a distributed sensor network system of 
which the nodes are concurrent systems (on the 
micro-level) based on poly-processors themselves, 
then we would be dealing with a distributed system 
of higher order, whereby each concurrent poly-
processor node can also be modeled as a distributed 
system in the same terms of the model described in 
this position paper. For better understandability the 
model will be developed and discussed stepwise in 
the following paragraphs. 

Initially we know only that we have a unit, 
which is a sensor node, which somehow interacts 
with its environment. The environment typically 
comprises all sorts of things, including other units, 
but the inner details of the unit and its forms of 
interactions are not yet specified. This situation is 
shown in Figure 1. 

 
Figure 1: Unit interacting with a diverse environment. 

 
Figure 2: Classification of different types of interactions in 
various directions. 

Thus we realize that different modes of 
environment engagement will be needed: one for the 
units (of the same or similar type) with which our 
first unit forms a society, and one for the other 
influential or influencable entities or agents or 
‘things’ which do not have ‘member’ status in the 
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society of units that constitutes a wireless sensor 
network. This can be modeled as shown in Figure 2, 
with communication amongst units and (other) 
interaction between units and things, whereby in for 
communication we can further distinguish talking 
and listening, whereas in interaction we can further 
distinguish doing and feeling. In other words: any 
device which can be described in terms of the 
schema of Figure 2, regardless of the details of its 
technical construction, is a general-purpose node for 
deployment in a sensor network application. 

We have now reached the point at which we can 
no longer regard our model unit as black box any 
longer. Feeling and doing, talking and listening are 
usually implemented technically by sensor(s) and 
actuator(s), sender(s) and receiver(s), the abstract 
model of which is depicted in Figure 3. The control 
relation, by which sender, receiver, sensor and 
actuator are related, is obviously also not an atomic 
concept: there should be some form of memory (‘M’ 
in Figure 3) to capture a unit’s possibly changeable 
internal state, as well as the finer structures and 
algorithms (not shown in Figure 3) by which the 
control relation must be implemented. 

 
Figure 3: Coarse components of the stanndardised general-
purpose sensor network node unit. 

With such a purposefully abstract design 
schema, many technical variations, for different 
network applications, are possible:  

• A unit could communicate with only one 
other unit in a master-servant-relation; 

• A unit could communicate with N other 
peer units, whereby N is a-priori defined 
and fixed; 

• A unit could communicate with n other 
peer units, whereby n is not a-priori defined 
and could even vary in time as n(t); 

• A unit could be ‘mute’ (no talking); 
• A unit could be ‘deaf’ (no listening); 
• A unit could sense only one type of feeling 

(in various degrees of intensity); 
• A unit could sense N different types of 

feelings (in various degrees of intensity); 

• A unit could perform only one type of 
action to the environment; 

• A unit could perform N different types of 
action to the environment; 

• A unit could be ‘blind’ (no sensing); 
• A unit could be environmentally passive 

(without acting). 
Depending on the behavioural variations as outlined 
above, the following technical variations seem to be 
reasonable: 

• Where N is fixed a-priori, the unit could 
possess a multiplicity of N distinguished 
senders, receivers, sensors, actuators as sub 
components, each of which would then be 
individually accessible by the controller. 

• Where n is not a-priori determined, or even 
variable as n(t) during the passage of time, 
each of the unit’s sub components (sender, 
receiver, sensor, actuator) could be 
implemented internally (on the fine scale), for 
example, as queue-buffered multiplexer with 
an internal scheduler, as it is well known from 
the standard operating systems literature 
(Silberschatz, 2008). 

Needless to emphasise that these implementational 
variations will also depend on further physial 
variations, for example: whether the signals to and 
from the environment will come through a cable, or 
wirelessly via radio waves, and so on. 

In the following we still need to look at the finer 
details of the control model (symbolized by the 
orange `diamond’ shapes in Figure 3). Following 
(Ellis, 2008) one can distinguish basically two types 
(modulo finer variations) of cybernetic feedback 
loops for such controlers, namely the simple, basic, 
non-adaptive feedback control process, and the 
considerably smarter adaptive selection process. 
Both of them are suitable schemas also for the units 
of sensor networks in our context, as shown and 
discussed in the following paragraphs. Thereby it 
should be clear from the start that those loops have 
to be immediately supported by the hardware of the 
unit, as they are always the same; but the particular 
activities within such a cycle can vary from case to 
case and from application to application and must 
thus be implemented in software for the sake of 
flexibility and hardware-independent programming 
of such units. 

The basic feedback loop according to (Ellis, 
2008) is depicted in Figure 4. The meaning of this 
picture is that a system tries to stabilize its internal 
state by repeatedly comparing its internal state with 
a set of pre-defined goals. In the case of discrepancy 
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the controller attempts to change the system’s 
internal state such as to better approximate the pre-
defined goals. These goals can either be implicitly 
encoded (‘hardwired’) into the system, or –which 
whould be preferable from a software engineering 
perspective for the sake of flexibility and wider 
applicability– they can also be explicitly provided in 
and by a separate module (in program code). Also 
note that nothing is stipulated about how frequently 
this cycle has to be executed in real time – this is an 
important issue in the ‘real world’ of sensor network 
applications in which nodes with little resources in 
battery capacity have to ‘fall asleep’ from time to 
time in order to save their own energy.   

 
Figure 4: Simple non-adaptive feedback loop (Ellis 2008). 

An example for such a simple feedback loop would 
be a simple thermostat: Let the goal temperature in 
an air-conditioned room be 21oC. If the actual room 
temperature raises above that value, the controller 
would start cooling; if the actual room temperature 
falls below that value, the controller would start 
heating. To avoid hectic (and costly) ‘vibrations’ of 
the system around a ‘point’ goal (such as 21oC) one 
could also define a ‘range’ goal (such as 20–22oC), 
such that cooling would start only above 22oC, and 
heating would start only below 20oC; in this way the 
system needs to trigger actions less frequently and 
could thus save some of its own battery power. On 
the basis of such a simple design schema, a number 
of variations are possible, for example: 

• The number of goals can vary from 1 to N; 
(it is however fixed a-priori in this design). 

• In the case of only 1 goal, the goal could be 
trivial (‘true’, always fulfilled), in which 
case the comparator sub-component would 
become obsolete; (which is basically 
equivalent to having no ‘goal’ at all: take, 
for example, a broadcaster unit which only 
forwards received messages to other units 
in a network). 

• The system could also be ‘stateless’, i.e. 
with only 1 internal state that cannot vary 
over time; such a system would not need 

any freely programmable random access 
memory (RAM) – though this is probably 
not a very realistic variant in our context of 
software-driven sensor networks. 

However, this basic model of (Ellis, 2008) needs to 
be somewhat modified in our context, particularly 
since the primary purpose of a unit in a sensor 
network is not to ‘survive’ by self-stabilisation in its 
environment; the purpose of a unit in our context is 
to communicate and to interact (for which ‘survival’ 
is only an existential precondition). Moreover, the 
modified process cycle (on the basis of Ellis’s) must 
also take our four sub components, which interface 
with the unit’s environment (i.e. sender, receiver, 
sensor, actuator), into consideration. The according 
schema is depicted in Figure 5. Where by the chosen 
interactions with the environment (feel, do, talk, 
listen) will then also depend on the actual internal 
state M as parameter, (thus, strictly speaking: 
feel_M, do_M, talk_M, and listen_M). This we 
could also call the different modes of interactions, 
which can be described as 
IF(boolean_condition(M)) THEN {...} ELSE {...} 

 
Figure 5: Node design on the basis of the simple non-
adaptive feedback loop. 

In this model we have basically four sub routines 
(shaded in orange colour in Figure 5) for the external 
interactions, whereby each of them has an internal 
side effect in the form of a memory update by means 
of which the unit’s external interactions (or the 
consequences thereof) can be ‘logged’ for future 
reference. For the sake of general applicability of the 
unit, these behavioural details of those four sub-
routines should be defined in software, whereas the 
cycle itself should be directly hardware-supported 
for the sake of efficiency. This concept can also be 
found in the design of the ‘Apache’ web-server, 
which also has a basic ‘loop’ with ‘hooks’ at which 
additional, case-specific functionality (modules) can 
be connected (Tanenbaum, 2007). Possible technical 
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variations of this schema include, amongst others, 
the following possibilities: 

• The unit’s designer could re-arrange the 
sequential order in which the internal and 
external events are carried out in one cycle.  

• In case that a unit would be ‘deaf’ or ‘mute’ 
or memory-less, the according external or 
internal events (environmental interaction, 
memory update) could also be skipped. 

There is also a more complex and more flexibile 
cybernetic feedback system which can temporarily 
vary and adapt itself within the limits of some 
higher-order norms which Ellis called a “value 
system” (Ellis 2008). Such an adaptive cybernetic 
system is depiced in Figure 6, (whereby I have made 
some minor simplifications of Ellis’ original picture, 
for the sake of easier understanding). The picture 
basically tells us that (and how) an active unit, 
embedded in an environment, can modify its own 
goals in order to respond flexibly to evolutionary 
pressure (from the environment) for the purpose of 
survival in that (variable) environment. 

 
Figure 6: Cybernetic system with double feedback loop, 
similar to the concept from (Ellis 2008). 

Also the double feedback loop can be nicely 
illustrated by example a thermostat that tries to keep 
the temperature of an air-conditioned room at the 
goal value of around 21oC. Cooling and heating, a 
large toom, however, costs a lot of fuel, and fuel can 
run low at times. The following environmental 
adaptation cycle, including a selection agent, can be 
added to the system: If it is winter (i.e. very cold 
outside) and the fuel supply (for heating) is low, 
then the goal temperature for the thermostat is 
lowered by the selection agent to around 19oC. If it 
is summer (i.e. very warm outside) and the fuel 
supply (for cooling) is low then the goal temperature 
is raised by the selection agent to around 23oC. 
Thereby, the simple thermostat cycle (in the inner 
loop) keeps running as usual. The system has now 
several possible internal states, one of which is 

variably regarded as desirable, depending on further 
external circumstances. 

The question is now how to adapt this more 
complicated cybernetic model into a generic, 
general-purpose network node design in the context 
of this paper; again we have to attach somehow our 
four sub processes of interaction (listen, talk, feel, 
do) to these now two cybernetic feedback loops as 
they are shown in Figure 6. This could obviously be 
done in very many different combinations, though 
not every possible combination will make sense 
from the perspective of purposeful technical system 
design and software engineering. For such types of 
cybernetic units I suggest the following standardized 
schema for an ‘all-purpose’ type of sensor network 
nodes – though, as said above, many other (though 
similar) design schemas would equally be possible 
for more special purposes and applications. Once 
again we must also consider that the genuine 
purpose of our sensor network units is not to survive 
just for the sake of survival (as in Ellis’ original 
scheme), but rather to provide some useful 
computational and behavioural services to the users 
of such a sensor network after its deployment. 

 
Figure 7: Schema of a sensor network node based on the 
double cybernetic feedback loop. 

To justify the suggestion about the following design 
I hint at the following anthropomorphisms and basic 
experiences from human society – remember that a 
sensor network was also characterized as ‘society of 
units’ above. 

Our ability to talk and to listen is largely 
independent from environmental circumstances such 
as the weather, whether its cold or hot etc.; therefore 
the communicative sub processes should be attached 
to the rapid, ‘inner’ feedback cycle (as before). A 
similar argument can be brought forward w.r.t. our 
small-scale actions and acivities. Would we now 
allocate our fourth sub process, namely ‘feeling’, to 
the inner feedback cycle as well, then the 
placeholder for ‘Environmental Forces’ (see Figure 
6 again) would remain un-instantiated, such that the 
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entire ‘outer’ feedback loop (including the selection 
agent, the value system, etc.) would be useless and 
obsolete. Consequently, the sub process for feelings 
must be connected to the second (the outer, the 
environmental) cybernetic cycle. The resulting 
schema for higher-order network units designed 
along those considerations is sketched in Figure 7, 
whereby both cybernetic feedback cycles are 
understood to be executed in the mode of 
interleaving (pseudo-parallelism) by the unit’s 
mono-processor and both cybernetic feedback cycles 
also access the same memory (RAM, ‘M’ in Figure 
7) the contents of which defines the unit’s internal 
states. 

 
Figure 8: Variation of the double loop design, with the 
listening function hooked to the outer feedback loop. 

Another feasible variant of this schema is shown 
below in Figure 8, whereby also the ability to listen 
is there attached to the environmental loop; consider 
the thermostat example of above again, in which the 
device would now receive the information about 
winter or summer via messages through the 
communication lines (rather than through the low-
level sensor lines). 

3 SUMMARY 

The conjecture underlying this short position paper 
is that the design schemas outlined above will be 
suitable to serve as a standardized templates for the 
development of sensor network applications in 
hardware and software. Thereby –in the end– each 
interface identified and shown in those paterns could 
be subject to industrial normalisation, as well as the 
provision of micro operating systems and APIs for 
the benefits of the application programmer (who 
does not want to have to care about the unit’s 
hardware particularities on the physical level). 
Interface software between sensor node platforms 
and the specific, particular user-application software 
for such nodes could then be provided in analogy to 
(Campbell, 2009) (Dörr, 2008). For rather simple 

applications (e.g. soil temperature measurements in 
geology) the simple design schema with only one 
feedback loop may probably be sufficient. For more 
sophisticated applications, e.g. in Robotics and 
Artificial Swarms, a node design on the basis of the 
double feedback loop schema may probably be the 
more intelligent and more flexible ones for the 
modular, component-based construction of such 
units. 

I suggest that, based on those design schemas, 
sensor network applications in the future could be 
easily produced as a matter of hardware-independent 
API-programming, as we already know it today in 
the domain of standard devices such as desktop PCs. 
In summary this paper suggests that ‘typical’ sensor 
network nodes suitable for most kinds of sensor 
network application should become as ‘orinary’ as 
software-driven mobile phones or PCs. However, 
the technical development of such small-scale 
general-purpose devices, with APIs for the 
installation of scenario-specific application software 
on them, requires cooperation between hardware and 
software engineers. 
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