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Abstract. Interactive text generation is aimed at facilitating text generation in
those situations where text typing is somehow constrained. This approach achieves
a significant amount of typing effort reduction in most tasks. Natural language
based interfaces for information retrieval constitute a good scenario to include
this kind of assistance in order to improve the system usability and provide con-
siderable help in constrained input-interfaces. An initial proposal is presented
here along with an experimental framework to assess its appropriateness.

1 Introduction to Interactive Text Generation

Interactive Text Generation is an application focused on developing automatic assis-
tance in generation of text documents. It is motivated by the fact that the time spent in
typing (including, as well, thinking about what is going to be typed) can be quite long
sometimes. A system able to predict, with some degree of accuracy, what someone is
going to type will be utterly helpful and could save a considerable amount of effort.

In addition, in some situations, typing becomes a slow and uncomfortable task. For
example, in some devices, such as mobile phones, no suitable input mechanisms are
available. Moreover, some disabled people are not able to achieve a fast enough typing
speed and, unfortunately, in some cases, this is the only way for them to communicate.

Previous approaches to this topic can be found in the literature. Most of them just
attempt to predict the next single word and/or to complete the characters of each new
word being typed by the user [9]. Other systems just focus on measuring the accuracy
of off-line text predictions [1]. The proposal presented in this paper considers a more
general scenario where a whole natural language query is predicted according to the
text previously typed. The rationale behind this is to reduce the effort needed to obtain
a satisfactory response from a database accepting natural language input queries.

2 Information Retrieval and ITG

In the last decades, Information Retrieval (IR) systems have gained a lot of impor-
tance in daily life. Querying databases is now a usual task and, therefore, appropriate
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interfaces are crucial to guarantee a real benefit from the huge amount of data cur-
rently available. In this sense, interfaces based on natural language have drawn a lot
of attention in the last years since they constitute the most natural way for a user to
communicate with a system. In the case of accessing to a database this is even more
important since the way in which the information is structured can be so complex that
other communication alternatives are often useless. Nevertheless, these interfaces are
far from being perfect and they present some drawbacks. On the one hand, in spite
of allowing the use of natural language, these interfaces are usually constrained to a
specific vocabulary or grammatical structure. When the input is not constructed fol-
lowing these constraints (and usually the typical user is not aware of them) the system
response is useless and the user normally feels frustrated. On the other hand, typing text
can be complicated in some situations (mobile devices, disabled people, etc.) and this
fact can weaken the benefit that a natural language based communication can achieve.
This issue is becoming more and more important since nowadays a lot of information is
worldwide available and portable devices are becoming the main communication tool
for a significant amount of people.

To overcome these two problems, ITG can be really useful. In the first place, regard-
ing the second drawback, ITG can significantly reduce the effort in terms of interactions
(that is key strokes) to generate text in very different tasks. In the second place, con-
cerning the first question, ITG can boost the correct use of a natural language based
interface since it can be seen as an interactive user guide to the IR system. This way,
ITG can be used to lead the input text to the kind of constructions expected by the sys-
tem and therefore to improve the final results obtained. The point here is that the ITG
system could help the user, in the short term, by providing a quick way to obtain an
acceptable result for the query currently carried out and, on the other hand, in the long
term by showing the kind of queries that the system is more likely to accept.

The aim of this paper is to roughly explore the possibilities that this proposal could
offer on a simple system and to discuss an initial experimental framework for this kind
of applications. To this end, a database (AMSABEL) containing information about train
routes will be used in the experiments.

3 ITG Theoretical Background

The task proposed in this work naturally fits into the Interactive Pattern Recognition
(IPR) framework presented in [10]. The basic process consists in, as was commented
before, predicting some portion of text based on the one previously typed. In IPR, we
have an input pattern and the system proposes a possible decoding result. The user,
based on the input and this proposal sends some feedback to the system. The point here
is to take advantage of this feedback to improve the following decoding proposals.

Using the terminology adopted in [10], the feedback is essentially a prefix, com-
posed of the sequence of words typed, or predicted by the system so far and validated
by the user, and the system has to find a suitable continuation, or suffix, for this prefix
(the difference is that here, no input pattern is available and the system suggestion is
based only on the user-validated prefix).
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The usual strategy to predict a multi-word suffix ŝ would be to maximize the prob-
ability of the suffix s given a prefix p [7], that is:

ŝ = argmax
s

Pr(s|p) (1)

which is aimed at obtaining the best possible suffix. This is perfectly reasonable in a
classical pattern recognition task where we are trying to minimize the number of classi-
fication errors and the system is actually a completely automatic system. Nevertheless,
under a general interactive text generation approach, the system works as follows. Given
the text typed so far, the system produces a prediction that the user reads until a mistake
is found. Next, the mistake is corrected and the system provides a new continuation
taking this correction into account (as can be seen in Fig. 1). Here, we are interested
in minimizing the number of user interactions (i.e, to save user effort) and, under this
criterion, the approach showed in Eq. (1), which is usually solved by using a dynamic
programming approach, is not necessarily optimal. In fact, a simple greedy strategy
consisting in suggesting the most probable word given the text typed (prefix) so far
turns out to be the optimal strategy for this scenario (as it is proved in [6]). It is worth
noticing that this can be easily extended to multi-word predictions by considering each
predicted word as part of the current prefix and, repeating this process until reaching
the desired amount of predicted words.

Iteration 1
Prediction: which are the classes of train 1093.
Prefix: which
Amendment: which c

Iteration 2
Prediction: which cities can you go from Madrid.
Prefix: which cities can you go from
Amendment: which cities can you go from V

Iteration 3
Prediction: which cities can you go from Valencia.

RESULT: which cities can you go from Valencia.

KSR =
3

35
= 0.09→ 9%

Fig. 1. Example of an editing session and the corresponding Key Stroke Ratio computation. The
system generates an initial prediction. Then, the user validates a correct prefix (boldfaced) and
introduces an amendment (shown in italics). The system, taking into account this information,
generates a new prediction. The process is iterated until a correct, full sentence is achieved. In the
final result, the user only had to type the two characters shown in italics plus a final confirmation
stroke. The KSR measure is obtained by dividing the number of user amendments between the
overall number of characters.

3.1 Language Modelling using n-grams

In order to predict suffixes, a (language) model for Pr(s|p) is needed. Nowadays, under
the statistical framework, n-grams [3] are the most widely used language models in

64



natural language processing applications. In general, an n-gram model computes the
probability of a whole sentence, or sequence of words, w = wl

1 as:

Pr(w) ≈
l∏

i=1

P (wi | wi−1
i−n+1) (2)

where Pr(·) denotes the real probability distribution and P (·) the estimated-model (ap-
proximate) distribution 3.

In the problem addressed here, this model has to be slightly modified since we are
not dealing with whole sentences but with suffixes that complete a given prefix.

Basically, the idea, when adopting this kind of models, is to take advantage from
the last n − 1 words in the prefix to predict an appropriate continuation. Clearly, these
models fail in taking advantage from the total information available in the whole prefix.
However, no other types of (longer-dependence) language models are commonly ac-
knowledged to overcome the capabilities of n-grams in natural language applications.
Therefore, for the time being, the system is completely based on n-grams.

Let p = wk
1 be the given user prefix and let s = wl

k+1 be a possible suffix hypoth-
esis. The system computes Pr(s | p) as is shown in Eq. (3).

Pr(s | p) = Pr(p, s)/Pr(p)

≈
∏l

i=1 P (wi | wi−1
i−n+1)

∏k
i=1 P (wi | wi−1

i−n+1)

=

l∏

i=k+1

P (wi | wi−1
i−n+1) (3)

Here, the user feedback is reflected in the terms from k + 1 to k + n − 1 of this
factorization, where we have additional information coming from the already known
words wk

k−n+2. Hence, this expression can be further factorized as:

Pr(s | p) ≈
k+n−1∏

i=k+1

P (wi | wi−1
i−n+1) ·

l∏

i=k+n

P (wi | wi−1
i−n+1)

=

n−1∏

j=1

Pr(sj |pk
k−n+1, s

j−1
1 ) ·

l−k∏

j=n

Pr(sj |sj−1j−n+1) (4)

The first term accounts for the probability of the n − 1 words of the suffix, whose
probability is conditioned by words from the validated prefix, and the second one is the
usual n-gram probability for the rest of the words in the suffix.

3.2 Searching for a Suffix

The maximization in Eq. (1) is intended to minimize the number of classification errors
(i.e, the number of whole suffixes correctly predicted). However, the goal here is to

3 As in [11], we assume that for any string z, the substring zji denotes the empty string λ if
j < i. In addition, we assume that Pr(z|λ) ≡ P (z)
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minimize the user effort and, in this case, the optimal strategy to achieve this is based
on a greedy algorithm [6]. On account of this, using n-gram models, at step i and having
the prefix p = wi−1

1 , the next predicted word will be:

v∗ = argmax
v∈V

P (v|wi−1
i−n+1) (5)

where V is the vocabulary considered. This leads to the simple Algorithm 1.

minimize the user effort and, in this case, the optimal strategy to achieve this is based
on a greedy algorithm [6]. On account of this, usingn-gram models, at stepi and having
the prefixp = wi−1

1 , the next predicted word will be:

v∗ = argmax
v∈V

P (v|wi−1
i−n+1) (5)

whereV is the vocabulary considered. This leads to the simple Algorithm 1.

Algorithm 1 : Greedy strategy to complete a user-validated prefix. Note that the greedy
solutions shorter thanmaxLenare just the prefixes of the resultingw. Given a prefix, the
algorithm iterates over all the words in the vocabulary to obtain the one with the highest
probability.

user validated prefix (p), vocabulary (V ), maximum prediction length (maxLen),
n-gram size (n) whole sentence prediction (w) begin

w = p; i = |p|+ 1;
while i < maxLen do

v∗ = λ; g∗ = 0;
forall v ∈ V do

if g∗ < P (v|wi−1
i−n+1) then

g∗ = P (v|wi−1
i−n+1);

v∗ = v;

w = w · v∗;
i = i+ 1;

return w;
end

The previous description assumes that the system works at word-level and the user
has to type a whole word before getting a prediction. Nevertheless, the system can
also work at character-level (and this is, indeed, the normal operation mode) which
means that as soon as the user introduces a new character the sytem will make a new
prediction. To deal with this situation, when the final characters in the prefix do not form
a word but a word-prefix, the system will apply Eq. (5) but considering only the words
“compatible” with this word-prefix (for example, in the second iteration of the example
shown in Fig. 1 only those words beginning with the letter ‘f’are actually considered
in the search).

4 Integrating ITG into a Natural Language based Information
Retrieval System

Different approaches can be taken when including an ITG system into an information
retrieval application. Perhaps, the most simple one is based on a completely decoupled
architecture where the ITG is used basically as a tool to construct a query hypothesis. In
this case, the user interacts with the ITG system as it is shown in Fig. 1, that is, typing
text that is simply auto-completed by the ITG engine. Once the user validates the whole
sentence, it is used to query the database.

The previous description assumes that the system works at word-level and the user
has to type a whole word before getting a prediction. Nevertheless, the system can
also work at character-level (and this is, indeed, the normal operation mode) which
means that as soon as the user introduces a new character the sytem will make a new
prediction. To deal with this situation, when the final characters in the prefix do not form
a word but a word-prefix, the system will apply Eq. (5) but considering only the words
“compatible” with this word-prefix (for example, in the second iteration of the example
shown in Fig. 1 only those words beginning with the letter ‘f’ are actually considered
in the search).

4 Integrating ITG into a Natural Language based Information
Retrieval System

Different approaches can be taken when including an ITG system into an information
retrieval application. Perhaps, the most simple one is based on a completely decoupled
architecture where the ITG is used basically as a tool to construct a query hypothesis. In
this case, the user interacts with the ITG system as it is shown in Fig. 1, that is, typing
text that is simply auto-completed by the ITG engine. Once the user validates the whole
sentence, it is used to query the database.
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A second alternative can be considered based on a loosely-coupled approach. In
this case, an ITG system is used as in the previous case but, instead of waiting for the
user validation of the whole natural language query, the different text predictions will
be used to build a new query in order to retrieve information from the database. As a
consequence, what the user obtains in each interaction is not merely a text completion
but an answer to the query being constructed.

Other (and more complex) alternatives can be also explored. For instance, a strongly
coupled approach, where the ITG system could be fed with some feedback from the
information retrieval process in order to decide which prediction is more convenient in
the current iteration.

4.1 Brief Description of the AMSABEL System

In order to assess this initial proposal, a simple information retrieval system called
AMSABEL [8] will be used. AMSABEL is based on the use of statistical machine
translation (SMT) techniques to translate from a natural language into a structured
query language (SQL). Currently, AMSABEL is able to accept queries both in Spanish
and English. The resulting SQL sentences are used to access a railway database where
information about train routes is stored (specifically, for each route, fields as departure
and arrival cities, starting and ending dates, starting and arrival times, ticket prices, etc.
can be queried).

The translation of the Spanish or English input into SQL is performed by using sta-
tistical phrase-based models [5]. These models perform the translation in three steps.
Firstly, the input sentence is segmented into phrases (which are sequences of consec-
utive words). Then, each segment is translated into the corresponding segments in the
target language and, finally, the target phrases are properly ordered to achieve the final
translation. Formally, in statistical machine translation we are given a source sentence
f , and we try to find the optimal target sentence e as:

argmax
e

Pr(e|f) = argmax
e

Pr(f |e) · Pr(e) (6)

where Pr(e) is the language model probability (usually n-grams, see section 3.1) and
Pr(f |e) is the translation model probability. In the case of phrase models, this proba-
bility is expressed as it is stated in Eq. (7):

Pr(f |e) = Pr(f̄ I1 |ēI1)

=

I∏

i=1

φ(f̄i|ēi)d(ai − bi−1) (7)

where f̄i is the i-th phrase in f , ēi is the i-th phrase in e, φ(f̄i|ēi) is the probability of
being f̄i a translation of ēi and d(ai−bi−1) is the distortion model used for reordering
target phrases. The order of a target phrase f̄i depends on a probability distribution
based on its start position (ai) and the end position of f̄i−1 (bi−1).

Phrase models are obtained from word to word alignments ([2]). The search for the
most likely translation is performed by using the Moses beam-search decoder [4].
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A set of semi-automatically generated input queries was used to assess the system
performance (752 English and 748 Spanish sentences were employed) along with the
information that the user expects to obtain for each query (see Table 1) . We think that
using this synthetic corpus can be justified in this first evaluation stage, considering all
the implications of experiments involving real users. On the other hand, the produced
sentences can be, in our opinion, considered as plausible queries for a user interacting
with a natural language based IR system. In Fig. 2 some examples of these test queries
are shown.

please , I would like to know which destinations are there from Guadalajara.
which are the classes of train 1047 ?
what times can you go from Toledo to Alicante the 2011-06-03 ?
which days of the week can you go to Guadalajara from Ciudad Real ?

Fig. 2. Examples of test sentences.

The evaluation procedure was aimed at directly testing the system usefulness from a
potential user point of view. To this end, the results of the input natural language queries
were classified based on the outcome obtained (the point here is to measure the system
accuracy according to the correctness of the information retrieved). The following query
categories were established:

Q1 Exact Information: The system provides the user with the exact information re-
quired.

Q2 More Fields: The system returns the information required but more fields are also
provided.

Q3 More Rows: The system provides the information required but more rows from the
database tables are also shown.

Q4 Incorrect: The query does not include the expected information.

Categories 1 and 2 are completely useful since they provide the user with the infor-
mation that he or she requested (adding in the case of Q2 type more fields). Q3 type can
be also considered useful since the information requested is provided although some
useless additional information is also included in the result (causing, maybe, some an-
noyance to the user). In the case of the Spanish test corpus, about 81% of system results
were classified as type Q1, less than 0.3% as type 2, about 1.3% as type 3 and, finally,
about 17% as type 4 (that is, quite useless).

4.2 ITG Experiments

Once the information retrieval system used has been described, a framework to estimate
the possible usefulness of the ITG proposal when included into a IRS will be discussed.

Firstly, regarding the metric employed to estimate the effort that the system can save,
the Key Stroke Ratio (KSR) measure was adopted. This measure is simply computed
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by dividing the number of key strokes performed by the user by the overall characters
in the test set (see Fig. 1).

Initially, the KSR of a pure ITG approach on AMSABEL corpus was computed
and it is shown in the first row of Table 2. The idea is to measure the effort required
to generate the exact text queries (without involving database accessing) in the test
set. This can be seen, to some extent, as the effort of using a completely decoupled
approach in which the system waits for a completely validated text construction and,
based on this, a final single access to the database is performed for each query.

As was described in section 4, ITG can be incorporated into an IR system in differ-
ent ways. In this work, we will focus on a loosely-coupled architecture. The idea is that,
each time the ITG system makes a text prediction, this prediction will become into a
query to the database. Once the query has been performed the user will directly validate
the database response in the case it is correct or, otherwise, the part of the text prediction
that he or she considers error-free (as it is shown in Fig. 3). Then, a simple correction
will be made on this text prediction and the process will be repeated until the user con-
siders the information retrieved as satisfactory. In the experiments performed here, the
user was simulated by the test sets shown in Table 1. The effort will be measured in
KSR terms.

Table 1. Test sets used in ITG for information retrieval.

Spanish English
Number of sentences 748 752
Running words 9413 9763
Vocabulary size 447 484
Perplexity (3-grams) 5.2 4.9

In the first row of Table 2 the results of using ITG on the whole AMSABEL system
are shown. These experiments are aimed at measuring the KSR required to obtain one
of the three useful query types described in section 4.1. This way, the KSR needed to
obtain all the queries classified as type Q1 was computed and the same procedure was
used for Q2 and Q3 queries (Q4 queries were not considered since they are useless from
the information retrieved point of view). As can be observed, the Q1 numbers shows
that it is not necessary to generate the exact input natural language query to get a perfect
result and that some effort can be saved with respect to replicate the input sentence with
ITG (as numbers in Table 2 shown) and, what is more important with a small effort in
terms of key strokes, useful Q3 queries can be achieved.

Table 2. ITG and information retrieval results on the AMSABEL corpus.

Spanish English
Query type KSR improvement KSR improvement
Pure ITG 15.6 – 14.7 –
Perfect queries (Q1) 14.2 16 % 13.0 11%
More columns (Q2) 14.2 16 % 12.9 12%
More rows (Q3) 10.7 36 % 9.5 35%
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Iteration 1
Prediction: which days can you go to Madrid from Toledo
SQL: SELECT DISTINCT Dias FROM Tren JOIN Viaje ON

Viaje.Tren=Tren.Id tren WHERE Destino=‘madrid’ AND Origen=‘toledo’
Data: Train 1012→Monday, Tuesday, Friday
Prefix: which
Amendment: which c

Iteration 2
Prediction: which classes can you buy for train number 1040 ?
SQL: SELECT DISTINCT Clase FROM Tren JOIN Billetes ON

Billetes.Tren = Tren.Id tren WHERE N tren = ‘1040’
Data: Train 1040→ Tourist, First class
Prefix: which classes can you buy for train number 10
Amendment: which classes can you buy for train number 102

Iteration 3
Prediction: which classes can you buy for train number 1028
SQL: SELECT DISTINCT Clase FROM Tren JOIN Billetes ON

Billetes.Tren = Tren.Id tren WHERE N tren = ‘1028’
Data: Train 1028→ Tourist
Prefix: which classes can you buy for train number 102
Amendment: which classes can you buy for train number 1029

Iteration 4
Prediction: which classes can you buy for train number 1029 ?
SQL: SELECT DISTINCT Clase FROM Tren JOIN Billetes ON

Billetes.Tren = Tren.Id tren WHERE N tren = ‘1029’
Data: Train 1029→ Business, First class

KSR =
3

49
= 0.061→ 6.1%

Fig. 3. Example of information retrieval using ITG. In this example, the user tries to obtain in-
formation about the different ticket classes for train number 1029. Each time the user makes a
key stroke, the system provides a text completion (Prediction) which is translated into SQL and
the corresponding information retrieved is shown (Data). In the first three iterations, the informa-
tion retrieved is not correct and, therefore, the user interacts with the ITG engine correcting the
text prediction mistakes. Finally, at iteration 4, the information provided is fully correct and the
process ends successfully.

5 Conclusions and Future Work

In this paper a completely new approach based on combining an interactive text gener-
ation system with a natural language based interface for information retrieval has been
presented. Different approaches along with a proposal of an experimental framework
have been also discussed. The results achieved are very promising since they suggest a
significant effort reduction in this scenario.
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Finally, as a future work, experiments involving real users should be considered,
especially to evaluate the capabilities of this kind of systems to provide a more complete
assistance apart from reducing typing effort.
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