WHEELED-ROBOT NAVIGATION WITH VELOCITY UPDATING ON ROUGH TERRAINS

Farid García, Matías Alvarado

2010

Abstract

For navigation on outdoor surfaces, usually having different kind of roughness and soft irregularities, this paper proposal is that a wheeled robot combines the gradient method for path planning, alongside it adjusts velocity based on a multi-layer fuzzy neural network; the network integrates information about the roughness and the soft slopes of the terrain to compute the navigation velocity. The implementation is simple and computationally low-cost. The experimental tests show the advantage in the performance of the robot by varying the velocity depending on the terrain features.

References

  1. Brooks, C.A. and Iagnemma, K. (2009). Visual Detection of Novel Terrain via Two-Class Classification. In: Proceedings of the 2009 ACM Symposium on Applied Computing, 1145-1150.
  2. Dai, X., Zhang, H. and Shi, Y. (2007). Autonomous Navigation for Wheeled Mobile Robots-A Survey. In: Second International Conference on Innovative Computing, Information and Control, September 5-7, Kumamoto, Japan, 2207-2210.
  3. Ishigami, G., Nagatani, K. and Yoshida, K. (2007). Path Planning for Planetary Exploration Rovers and Its Evaluation Based on Wheel Slip Dynamics. In: IEEE International Conference on Robotics and Automation, April 10-14, Roma, Italy, 2361-2366.
  4. Kahraman, F. and Stegmann, M.B. (2006). Towards Illumination-Invariant Localization of Faces Using Active Appearance Models. In: 7th Nordic Signal Processing Symposium, June 7-9, Rejkjavik, Iceland, 4.
  5. Kelly, A. and Stentz, A. (1998). Rough Terrain Autonomous Mobility - Part 2: An Active Vision, Predictive Control Approach. Autonomous Robots, 5(2), 163-198.
  6. Kim, P.G., Park, C.G., Jong, Y.H., Yun, J.H., Mo, E.J., Kim, C.S., Jie, M.S., Hwang, S.C. and Lee, K.W. (2007). Obstacle Avoidance of a Mobile Robot Using Vision System and Ultrasonic Sensor. In: Third International Conference on Intelligent Computing, August 21-24, Qingdao, China, 545-453.
  7. Kim, Y.C., Min, K.D., Yun, K.H., Byun, Y.S. and Mok, J.K. (2008). Steering Control for Lateral Guidance for an All Wheel Steered Vehicle. In: International Conference on Control, Automation and Systems. October 14-17, Seoul, Korea, 24-28.
  8. Konolige, K. (2000). A Gradient Method for Realtime Robot Control. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. October 31 - November 5, Takamatsu, Japan, 639-646.
  9. Lambert, A., Gruyer, D., Pierre, G.S. and Ndjeng, A.N. (2008). Collision Probability Assessment for Speed Control. In: 11th International IEEE Conference on Intelligent Transportation Systems. October 12-15, Beijing, China, 1043-1048.
  10. Larson, A.C., Voyles, R.M. and Demir, G.K. (2005). Terrain Classification Using Weakly-Structured Vehicle/Terrain Interaction. Autonomous Robots, 19(1), 41-52.
  11. Nakamura, S., Faragalli, M., Mizukami, N., Nakatani, I., Kunii, Y. And Kubota, T. (2007). Wheeled Robot with Movable Center of Mass for Traversing over Rough Terrain. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. October 29 - November 2, 1228-1233.
  12. Matthies, L., Gat, E., Harrison, R., Wilcox, B., Volpe, R. and Litwin, T. (1995). Mars Microrover Navigation: Performance Evaluation and Enhancement. Autonomous Robots, 2(4), 291-311.
  13. Pereira, G.A.S., Pimenta, L.C.A., Chaimowicz, L., Fonseca, A.F., de Almeida, D.S.C., Correa, L.Q., Mesquita, R.C. and Campos, F.M. (2009). Robot Navigation in Multi-Terrain Outdoor Environments. International Journal of Robotic Research, 28(6), 685- 700.
  14. ROBOTIS Co., (2010). http://www.robotis.com.
  15. Selekwa, M.F., Dunlap, D.D., Shi, D. and Collins, E.G. (2008). Robot Navigation in Very Cluttered Environments by Preference-Based Fuzzy Behaviors. Robotics and Autonomous Systems, 53(3), 231-246.
  16. Seraji, H. and Howard, A. (2002). Behavior-Based Robot Navigation on Challenging Terrain: A Fuzzy Logic Approach. IEEE Transactions on Robotics and Automation, 18(3), 308-321.
  17. Seraji, H. and Werger, B. (2007). Theory and Experiments in SmartNav Rover Navigation. Autonomous Robots, 22(2), 165-182.
  18. Sun, Z., Bebis, G. and Miller, R. (2006). On-Road Vehicle Detection: A Review. IEEE Transaction on Pattern Analysis and Machine Intelligence, 28(5), 694-711.
  19. Wang, M. and Liu, J.N.K. (2005). Behavior-Blind GoalOriented Robot Navigation by Fuzzy Logic. In: Proceedings of Knowledge-Based Intelligent Information and Engineering Systems, 686-692.
  20. Ward, C.C. and Iagnemma, K. (2008). A Dynamic-ModelBased Wheel Slip Detector for Mobile Robots on Outdoor Terrain. IEEE Transactions on Robotics, 24(4), 821-831.
  21. Ward, K. and Zelinsky, A. (2000). Acquiring Mobile Robot Behaviors by Learning Trajectory Velocities. Autonomous Robots, 9(2), 113-133.
Download


Paper Citation


in Harvard Style

García F. and Alvarado M. (2010). WHEELED-ROBOT NAVIGATION WITH VELOCITY UPDATING ON ROUGH TERRAINS . In Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics - Volume 1: IVC & ITS, (ICINCO 2010) ISBN 978-989-8425-00-3, pages 277-284. DOI: 10.5220/0003023402770284


in Bibtex Style

@conference{ivc & its10,
author={Farid García and Matías Alvarado},
title={WHEELED-ROBOT NAVIGATION WITH VELOCITY UPDATING ON ROUGH TERRAINS},
booktitle={Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics - Volume 1: IVC & ITS, (ICINCO 2010)},
year={2010},
pages={277-284},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003023402770284},
isbn={978-989-8425-00-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics - Volume 1: IVC & ITS, (ICINCO 2010)
TI - WHEELED-ROBOT NAVIGATION WITH VELOCITY UPDATING ON ROUGH TERRAINS
SN - 978-989-8425-00-3
AU - García F.
AU - Alvarado M.
PY - 2010
SP - 277
EP - 284
DO - 10.5220/0003023402770284