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Abstract: In this paper, we present a novel parallel full cube computation approach, named p-MDAG. The p-MDAG 
approach is a parallel version of MDAG sequential approach. The sequential MDAG approach outperforms 
the classic Star approach in dense, skewed and sparse scenarios. In general, the sequential MDAG approach 
is 25-35% faster than Star, consuming, on average, 50% less memory to represent the same data cube. The 
p-MDAG approach improves the runtime while keeping the low memory consumption; it uses an attribute-
based data cube decomposition strategy which combines both task and data parallelism. The p-MDAG 
approach uses the dimensions attribute values to partition the data cube. It also redesigns the MDAG 
sequential algorithms to run in parallel. The p-MDAG approach provides both good load balance and 
similar sequential memory consumption. Its logical design can be implemented in shared-memory, 
distributed-memory and hybrid architectures with minimal adaptation. 

1 INTRODUCTION 

The Data Warehouse (DW) and Online Analytical 
Processing (OLAP) technologies perform data 
generalization by summarizing huge amount of data 
at varying levels of abstraction. They are based on a 
multidimensional model. The multidimensional 
model views the stored data as a data cube. The data 
cube was introduced in (Gray, 1997). It is a 
generalization of the group-by operator over all 
possible combinations of dimensions with various 
granularity aggregates. Each group-by, named 
cuboid or view, corresponds to a set of cells, 
described as tuples over the cuboid dimensions. 

Since the introduction of DW and OLAP, 
efficient computation of cubes has become one of 
the most relevant and pervasive problems in the DW 
area. The problem is of exponential complexity with 
respect to the number of dimensions; therefore, the 
materialization of a cube involves both a huge 
number of cells and a substantial amount of time for 
its generation. 

One alternative for dealing with the data cube 
size is to allow partial cube computation. Instead of 
computing the full cube, a subset of a given set of 
dimensions or a smaller range of possible values for 
some of the dimensions is computed. We have 

iceberg-cubes (Beyer, 1999) (Han, 2001) (Lima, 
2007) (Xin, 2007), closed-cubes (Xin, 2006), 
quotient-cubes (Lakshmanan, 2002) and frag-cubes 
(Li, 2004) which address different solutions to 
compute partial data cubes. 

The second alternative for dealing with the data 
cube size is to introduce parallel processing which 
can increase the computational power through 
multiple processors. Moreover, the parallel 
processing can increase the IO bandwidth through 
multiple parallel disks. There are several parallel 
cube computation and query approaches in the 
literature (Chen, 2004) (Chen, 2008) (Dehne, 2001) 
(Dehne, 2002) (Goil, 1997) (Goil, 1998) (Goil, 
1999) (Lu, 2003) (Muto, 1999). 

In this paper, we present a novel parallel 
approach to compute data cubes named Parallel 
Multidimensional Direct Acyclic Graph Approach 
(p-MDAG). The p-MDAG approach combines both 
data and task parallelism. It is designed to be 
executed in distributed-memory, shared-memory or 
hybrid architectures. Low cost hybrid architecture 
can be represented by a cluster of multiprocessor 
PCs interconnected by a network or switch. 

The p-MDAG approach uses the dimensions 
attribute values to partition the data cube. It also 
redesigns the two phase (base and aggregation 
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phases) MDAG sequential algorithms to run in 
parallel.  

The MDAG approach, proposed in (Lima, 2007), 
outperforms the Star approach, proposed in (Xin, 
2007), in dense, skewed and sparse scenarios, 
computing full or iceberg cubes. The Star approach 
outperforms some classical cube approaches, as 
presented in (Zhao, 1997), (Beyer, 1999) and (Han, 
2001), in the same scenarios. In general, the MDAG 
approach is 25-35% faster than Star, using, on 
average, 50% less memory to represent the same 
data cube. 

 

 

Figure 1: p-MDAG decomposition strategy. 

Figure 1 illustrates the basis of p-MDAG data 
cube decomposition strategy. In Figure 1, we 
illustrate a data cube composed by four dimensions 
A, B, C and D with cardinalities CA, CB, CC and CD, 
respectively. We consider A={a1; a2; . . .}, B={b1; 
b2; . . .}, C={c1; c2; . . .} and D={ d1; d2; . . .}. 

In Figure 1-a, we have a unique lattice of 
cuboids, representing the cuboids A, B, C, D, AB, 
AC, AD, BC, BD, CD, …, ABCD, all(*). We use a 
prefixed data structure to represent such cuboids. A 
path from root to a node represents a cuboid. 

The challenge is to find a set of disjoint cube 
partitions with similar size and a set of parallelizable 
tasks during the cube computation. In Figure 1-b, we 
first divide the lattice into partitions rooted by A 
attribute values. These partitions form the cuboids 
ABCD, ABC, AB and so on. The base cuboid 
ABCD is created from the base relation and the 

remaining aggregated cuboids are created from the 
base cuboid, in a top-down fashion. All the cuboids 
rooted by A attribute values are created by the thread 
group 1.  

In Figure 1, T11, … T1n, T21, … T2n represent 
the threads. The number of threads in a group 
depends on the number of processors in a machine. 
The number of partitions that each thread handles 
depends on the frequency of the attribute values of 
the dimensions. If the data is skewed, we can adopt 
sampling techniques to identify the approximate 
frequencies without full base relation scans.  

After the execution of thread group 1, the thread 
group 2 starts its execution. The number of threads 
on both groups is not necessarily identical. We use 
identical thread group size to facilitate the 
explanation. 

The second thread group creates the remaining 
cuboids, i.e., cuboids not started with dimension A 
(BCD, BC, B and so on). The threads in the second 
group are associated to the remaining dimensions 
attribute values. They read the partitions generated 
by the thread group 1 and update their own cube 
partitions. After the second thread group execution, 
the full cube is complete. 

In summary, the p-MDAG approach minimizes 
regions of the algorithms that must be run 
sequentially. These regions are limited to the thread 
groups configuration, start-up and join. No 
synchronization is required to generate the 
aggregated cuboids. The p-MDAG approach 
achieves a good load balance, since each partition 
have similar size. Finally, p-MDAG and MDAG 
have similar memory consumption. The unique 
redundancy in p-MDAG approach is the internal 
node. Each cube partition has its shared internal 
nodes to avoid synchronizations, but the number of 
internal nodes is insignificant when compared with 
the number of non internal nodes.   

We run the p-MDAG approach using base 
relations with different cardinalities, dimensions 
tuples and skew. In general, the p-MDAG approach 
scales very well in a shared-memory multiprocessor 
machine, where a linear speedup is not reachable to 
a memory-bound application, since the intensive 
memory access increases the bus system contention. 
Most bus-based systems do not scale well because of 
contention on the bus (Dongarra, 2003).   

The remaining of the paper is organized as 
follows: Section 2 the sequential MDAG approach is 
explained. In Section 3, the p-MDAG approach is 
explained in details, the algorithms are described 
and the performance results are presented. 
Discussion on the potential extensions and 
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limitations of the p-MDAG approach is described in 
Section 4. We conclude our work in Section 5. 

2 MDAG APPROACH 

The sequential MDAG approach, proposed in (Lima, 
2007), computes a full cube in two phases: first, it 
scans the base relation to generate the base cuboid; 
second, it scans the base cuboid to generate the 
aggregated cuboids. The aggregated cuboids are 
generated in a top-down fashion.  

The MDAG approach uses internal nodes in a 
data cube representation to reduce the number of 
redundant nodes. The presence of internal nodes also 
reduces both the number of branches and the height 
of the MDAG cube representation, as Figure 2 
illustrates. During the base and aggregated cuboids 
construction, the MDAG guarantees no internal node 
redundancies in the lattice. 

Figure 2 illustrates Star and MDAG full cubes, 
computed from R. R is a base relation with 11 
tuples, one measure and three dimensions (ABC) 
with cardinalities 3, 3 and 2, respectively. 

The MDAG approach uses Direct Acyclic 
Graphs (DAGs) to represent individual cuboids. In 
Figure 2-b, a path from root to a leaf node or a path 
from root to leaf node plus an internal node 
represents a MDAG cube cell. In Figure 2-a, a path 
from root to a leaf node represents a Star cube cell.  

 

 

Figure 2: Star and MDAG full cubes. 

During the aggregated cuboids construction, 
there are several single paths in the lattice. Consider 
a single path a branch of a data structure where no 
forks exist. In Star approach, the first node of the 
single path points to some attribute values and the 
remaining single path nodes are removed, as Figure 
2-a illustrates. In MDAG, a similar idea is proposed. 
In Figure 2-b, path b3c2 is a single path and c2 is 
used as both base and aggregated node. Both Star 
and MDAG approaches avoid the creation of new 
nodes to represent the aggregations derived from 
single paths. 

In general, MDAG is 25-35% faster than Star, 
consuming, on average, 50% less memory to 
represent the same data cube. 

3 p-MDAG APPROACH 

The p-MDAG approach adopts the 
producer/consumer model to minimize 
synchronizations. Figure 3 illustrates the logical 
design of p-MDAG approach. A 4D data cube 
ABCD is used to exemplify our approach. Each 
dimension has equal cardinality n to facilitate the 
explanation.  

The original base relation R can be partitioned 
according to the number of disks and processors. R 
can be partitioned into R1, R2, …, Rn, 
where nRRRR  ...21 . Each R1, R2, …, Rn, base 

relation represents a subset of R without any 
arrangement, i.e., the original R tuples order is 
maintained in R1, R2, …, Rn base relations. These 
independent relations are stored into independent 
disks, being read simultaneously by IO threads. Each 
independent relation has its own IO thread. The IO 
threads implement the producer in the 
producer/consumer model. They share the resources 
where the tuples are inserted. The unique 
synchronization point of the entire solution is the 
resource, i.e., the resource access methods putTuple 
and getTuple. 

The IO threads have the information where each 
tuple must be inserted. The criterion for 
classification is based on the first dimension 
attribute values. In our example, dimension A 
attribute values are selected. In the MDAG 
sequential approach, one dimension (the highest 
cardinality dimension) is used to produce the 
internal nodes. If dimension A is selected to form 
such internal nodes, the dimension B attribute values 
become the criteria for classification. In general, it is 
easy to adequate our logical design to a cube compu- 
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tation algorithm. 
 

 

Figure 3: p-MDAG logical design. 

Figure 3 illustrates the creation of one resource 
per attribute value of dimension A. The same 
criterion occurs to the number of threads in groups 1 
and 2. The 1-1 relationship is used to facilitate the 
explanation. The number of IO threads is 
proportional to both number of disks and processors. 
The number of resources and threads in group 1 and 
2 are proportional to the number of processors. As 
mentioned before, the number of attribute values 
that each thread of each group is associated depends 
on the frequency of each attribute value in the base 
relation. 

We use Figure 3 to simulate a complete example 
execution. We use a tuple t:a1b1c1d1 in our 
execution. First, t must be stored in one file. 
Suppose it is stored in R1. The IO thread associated 
to R1 loads t and decides which resource t must be 
inserted. In our example, t is inserted in resourcea1. 
After t insertion, one thread of group 1 is notified, 
indicating that there is a resource to be consumed. 
The threads of group 1 implement the consumer of 
the producer/consumer model. 

In our example, thread Ta1 is notified. It inserts t 
on its cube partition. After t insertion, Ta1 tries to 
obtain more tuples from its resource. If there is no 
tuple, the thread waits until a notification occurs. 
This step continues until there is no more tuples to 
be loaded from the disks. The IO threads indicate the 
resources when such a condition occurs. 

To complete the explanation, we consider t as the 
last tuple to be inserted. After Ta1 inserts t on its 
partition, it verifies that there is no more tuples to be 
inserted in the resource and starts the generation of 
the aggregations which begins with a1. In our 
example, a1b1d1, a1c1d1 and a1d1 cells are created. 
Note that, the remaining aggregated cells a1b1c1, a1b1 

and a1 have being created during the base cuboid 
construction.  

After the thread group 1 execution, the thread 
group 2 starts its execution. To continue the 
explanation, we consider thread Ta1 the last thread 
that finishes the generation of the aggregations. 
After Ta1 execution, the threads Tb1c1d1all, Tb2c2d2, … 
Tbncndn start. The thread Tb1c1d1all scans the cube 
partitions generated previously by thread group 1, 
identifying sub-structures that begin with b1, c1 and 
d1. These sub-structures are copied to a new cube 
partition, maintained by Tb1c1d1all. The all node are 
updated with the measure values of nodes a1 … an 
during the same scan. The result is another part of a 
data cube, composed by cells b1, c1, d1, b1c1, b1d1, 
c1d1 and all.  

Assuming that thread Tb1c1d1all is the last thread 
that completes the generation of the remaining 
aggregations, after its execution, the full data cube is 
complete, as Figure 3 illustrates. 

3.1 Architectures 

The abstractions, such as IO thread, resource, 
threads of group 1 and 2 can be configured in any 
architecture. Suppose a shared-memory 
multiprocessor architecture with multiple disks. In 
such architecture, we instantiate IO threads 
according to the number of disks and threads of 
group 1 according to the total number of processors 
minus the used to IO (suppose there are sufficient 
processors for IO and group 1). Since the group 2 
threads run after IO and group 1 threads, the number 
of threads of group 2 can be equal the total number 
of processors. Each thread of group 1 and 2 are 
associated with different number of attribute values, 
but there is no restriction to this configuration. If the 
attribute values are combined according to their 
frequencies, the system scales well if we consider 
the hardware limitations described before. 

In distributed-memory architecture each 
processing node can store a part of the base relation, 
one IO thread, one resource, one thread of group 1 
and one of group 2. Each thread of group 1 shares a 
resource with one IO thread and the group 2 threads 
must scan all partitions manipulated by group 1 
threads. Due to these observations, in a distributed 
implementation both resources and cube partitions 
manipulated by group 1 must enable remote access. 
The remaining producer/consumer ideas can be used 
without change.  

If each processing node is a multiprocessor 
machine with multiple disks, a similar shared-
memory solution can be proposed to each processing 
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node. The producer/consumer model modifications 
also occur to enable remote access to some 
abstractions of p-MDAG approach. 

Due to the limited space in this paper, we 
compute only full cubes. We run the p-MDAG 
approach in a shared-memory multiprocessor 
machine with multiple disks. In Section 4, we 
discuss some p-MDAG extensions to both compute 
iceberg cubes and run p-MDAG in distributed-
memory or hybrid architectures. In the next section, 
we describe the main algorithms of p-MDAG 
approach. 

3.2 Algorithms 

In this section, we describe some algorithms of p-
MDAG approach. The IO thread and resource 
algorithms are not detailed due to they simplicity. 
The first algorithm reads a flat file tuple-by-tuple, 
inserting each tuple in a resource. The second 
algorithm maintains a collection of tuples, enabling 
to insert or remove tuples from it. Each insertion 
causes a notification and if the collection of tuples is 
empty the resource waits until a new insertion 
occurs. 

The thread group 1 algorithm is described as 
follows: 

Algorithm 1 Group 1 
Input: A resource Ri 
Output: A cube partition 
Call Group1(); 
procedure Group1(){ 
var: resource Ri; 
1: while(Ri has tuples or Ri is not 
finished) do{ 
2:    tuple t ← one Ri tuple; 
3:    measure m ← t measure; 
4:    traverse the partition creating 
new nodes or updating nodes measure, 
according to t attribute values; 
5:    Node l ← leaf node of the 
traversal; 
6:    insert or update l internal node, 
using t and m;}//end while 
7: Node n ← root node of the partition; 
8: for (Node d : n descendants) 
9:   call mdagAggreg(null, d);} 
 

Lines 2-5 of procedure Group1 generate part of 
the base cuboid from the tuples inserted in Ri. One 
dimension is used to form the internal nodes, so the 
respective t attribute value and m measure are used 
to create such an internal node (line 6). One of the 
main advantages of MDAG approach is to share 
internal nodes among non internal nodes. The 
internal node sharing method is summarized by line 

6. A detailed description of how internal nodes can 
be shared is found in (Lima, 2007). 

After generating part of the base cuboid, the 
aggregation process starts. The aggregations must be 
rooted by the attribute value(s) selected to form the 
partitions. For example, in Figure 3 the aggregations 
generated by thread group 1 must be rooted by a1 in 
the first partition, a2 in the second, and so on. In 
Group1 procedure (lines 7-9), we generate the 
aggregations of one partition. For each descendant 
of the partition root node a mdagAggreg procedure 
call is made. In Figure 3, for each B attribute value a 
mdagAggreg call occurs, resulting in a1BD, a1CD 
and a1D cells of cuboids ABD, ACD and AD, 
respectively. The second partition produces a second 
set of cells of ABD, ACD and AD, and so on. The 
mdagAggreg procedure is described in (Lima, 2007). 

It is important to stress that the direct 
aggregation method, proposed in (Lima, 2007), can 
also be used by Group1 procedure to avoid the 
creation of some aggregated nodes. The direct 
aggregation method is an alternative to the single 
path compression method, proposed in (Xin, 2007). 
The direct aggregation method maintains the single 
path nodes with no new nodes to represent their 
aggregations. The presence of such single path 
nodes guarantees the group 2 partitions integrity, 
since a single descendant node in group 1 partition 
can become a multiple descendant node in group 2 
partition. 

The thread group 2 algorithm is described as 
follows: 

Algorithm 2 Group 2 
Input: Partitions of group 1 
Output: A cube partition 
For (partition f: partitions of group 
1)      
    Call Group2(f root); 
procedure Group2(Node n){ 
var map of attribute values M; 
1: for (Node d: n descendants) 
2:    for (Node d’: d descendants) 
3:      if (M contains d’ attribute 
value) copy d’, including d’ sub-
structure, to the current partition;} 

 

The procedure Group2 scans all partitions 
generated by group 1 and copies them to its 
partition. The copy is filtered by the attribute values 
contained in a map. Only sub-structures rooted by 
attribute values contained in such a map are copied. 
The map is generated by a main application which 
executes a sampling algorithm to identify the 
attribute values approximate frequencies. The 
investigation of the best sampling techniques is out 
of the scope of this work. In p-MDAG, we 
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implement a version of the simple random sampling, 
proposed in (Olken, 1990). 

The main application also starts the IO threads, 
group 1 and 2 threads. It controls the start of thread 
group 2 after the last thread of group 1 has finished. 

In this section, we present the main algorithms 
contained in p-MDAG approach. The algorithms 
guarantee a unique point of synchronization. Only 
the simple getTuple and putTuple methods of the 
resource are synchronized. Moreover, the attribute-
based data cube decomposition strategy gives 
flexibility to specify the number of threads 
according to the hardware. In the next section, we 
present the p-MDAG approach performance 
analysis. 

3.3 Performance Analysis 

A comprehensive performance study is conducted to 
check the efficiency and the scalability of the 
proposed algorithms. All the algorithms are coded in 
Java 64 bits (JRE 6.0 update 7). We run the 
algorithms in a dual Intel Xeon E5405 with 16GB of 
RAM. Each Intel Xeon E5405 is a quad-core 
processor, so we have a total of 8 processors (2 GHz 
each) in the machine. The 16GB of RAM is shared 
among the 8 processors. There are 4 SATAII disks 
(7200rpm). The system runs Windows Server 2003 
R2 64 bits. All base relations can fit in the main 
memory. 

For the remaining of this section, D is the 
number of dimensions, C the cardinality of each 
dimension, T the number of tuples in a base relation, 
and S the skew of the data. When S is equal to 0, the 
data is uniform; as S increases, the data is more 
skewed. 

The first set of experiments test all abstractions, 
illustrated in Figure 3, running together. We fix the 
number of IO threads to two, i.e., each base relation 
is divided and stored into two disks. The number of 
resources varies from one to six. The number of 
threads of group 1 and 2 also varies from one to six. 
The number of threads on both groups is always 
identical. 

The runtimes are compared with respect to the 
cardinality (Figure 4), tuple size (Figure 5), 
dimension (Figure 6) and skew (Figure 7). In all 
scenarios, the runtime decreases almost linear from 
experiment with one thread (one thread of group 1 
and one of group 2) to two threads (two threads of 
group 1 and two of group 2). After two threads, the 
runtime decreases slowly, almost stopping after five 
threads running simultaneously.  

We accomplish an experiment without the IO 
threads, i.e., assuming the resources with all tuples 
of the base relation. The runtime decreases, but the 
curves continue similar, so due to the limited space 
we omit the graphics in this paper. 

This behaviour is justified by the contention on 
the bus system. The cube partitions are shared 
nothing, but the architecture is shared-memory. With 
one thread, the cube partitions manipulated by group 
1 and 2 are created/updated with no concurrence. As 
the number of threads increases, the number of 
simultaneous operations also increases and the bus 
system becomes the bottleneck of the execution.   

To prove our assumption that the bus system 
becomes the bottleneck of the execution, we run 
only one thread per time, collecting the worst time 
of thread group 1 and 2. We consider all tuples in 
their resources. We instantiate all threads to consider 
the main application controls in our results. In 
Figure 8, we present the result when computing a 
base relation with 8 dimensions, cardinality 10 on 
each dimension, skew 0 and 1M tuples. In Figure 9, 
we present the result when computing a base relation 
with 6 dimensions, cardinality 100 on each 
dimension, skew 1.5 and 1M tuples. Due to the 
similarity in the results, we omit the graphics where 
we change the cardinality and number of tuples. 

The speedup, illustrated in Figures 8 and 9, is 
one of the key metrics for the evaluation of parallel 
database systems (DeWitt, 1992). It indicates the 
degree to which adding processors decreases the 
runtime. In our context, the relative speedup for p 
threads is defined as Sp=RT1/RTp, where RT1 is the 
runtime with one thread and RTp is the runtime with 
p threads. An ideal Sp is equal to p. That is, the curve 
of an ideal Sp is a linear diagonal line.  

Figures 8 and 9 illustrate an almost linear curve 
for p-MDAG approach. There are some points in the 
curve where the p-MDAG runtime is bellow the 
linear. The attribute-based data cube decomposition 
strategy associates a set of attribute values to group 
1 and 2. Sometimes, each thread is associated to 
more attribute values than others. In our example, 
when we run three threads one thread of group 1 is 
associated to four attribute values and the other two 
threads are associated to three attribute values of 
dimension A. The same occur to group 2 threads, 
i.e., B, C and D cardinalities have no exact division 
by three. Besides unbalanced attribute values 
association, the skew can be high and the sampling 
method can output incorrect approximate 
frequencies, as illustrated in Figure 9. The skew 
affects the sampling methods results and all other 
data cube decomposition strategies of the literature. 
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In the second set of experiments, we present the 
runtime and memory consumption of each thread of 
groups 1 and 2. We use the same base relation with 
8 dimensions, cardinality 10 on each dimension, 
skew 0 and 1M tuples.  Due to the similarity in the 
load balance results, we omit the graphics where we 
change the skew, cardinality and number of tuples. 
Figures 10 and 11 illustrate the runtime when we 
increase the number of threads from one to six. In 
Figure 12 and 13, we present the memory 
consumption for the same experiment. 

In Figures 10-13, we consider T11, T12, … T16 
threads of group 1 and T21, T22, … T26 threads of 
group 2. In general, the p-MDAG has a good load 
balance, since group 1 and 2 are not executed 
simultaneously. Groups 1 and 2 must be analysed 
separately. 

In Figure 14, we test the IO thread scalability. 
We simulate a base relation with 5 dimensions, skew 
0, cardinality 30 on each dimension and 5M tuples. 
The base relation is divided into 2, 3 and 4 equal 
size files. Each IO thread reads its file and inserts the 
tuples in the resources according to the attribute 
values of one dimension. In general, the IO threads 
scale well, since we have a synchronized point in the 
resources and a contention on the bus system to 
consider. 
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Figure 4: Cardinality D=5, T=1M, S=0. 
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Figure 5: Tuples D=5, C=30, S=0. 
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Figure 6: Dimension C=10, T=1M, S=0. 
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Figure 7: Skew D=6, T=1M, C=100. 
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Figure 8: p-MDAG dimension speedup. 
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Figure 9: p-MDAG skew speedup. 
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Figure 10: Threads runtime from 1-4. 
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Figure 11: Threads runtime from 5-6. 
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Figure 12: Threads memory consumption from 1-4. 
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Figure 13: Threads memory consumption from 5-6. 
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Figure 14: IO threads scalability. 

4 DISCUSSION 

In this section, we discuss a few issues related to p-
MDAG and point out some research directions. 

There is vulnerability in p-MDAG design, 
illustrated in Figure 3. The MDAG sequential 
approach can compute full or iceberg cubes. Iceberg 
cubes cannot be computed efficiently using thread 
group 1 and 2. Unfortunately, the hybrid iceberg 
computation of MDAG (top-down computation with 
bottom-up pruning) cannot prune infrequent nodes 
of group 1 partitions, since these infrequent nodes 
can become frequent when aggregated in group 2 
partitions. An alternative to solve the iceberg cube 
problem is illustrated in Figure 15. 

In the second design, the resources and the 
threads of group are associated to one or more 
attribute values of each dimension of a data cube. 
We use a simple association a1b1c1d1 … anbncndn to 
facilitate the explanation. For each tuple the IO 
thread inserts, in the worst case, D different tuples in 
D different resources, where D is the number of 
dimensions in a data cube. For example, if the 
resources are configured using the attribute values of 
Figure 15, a tuple a1b2c3d4 will demand a1b2c3d4 

insertion on resourcea1b1c1d1all, b2c3d4 insertion on 
resourcea2b2c2d2, c3d4 insertion on resourcea3b3c3d3 and 
d4 insertion on resourcea4b4c4d4. The same example 
using the logical design presented in Figure 3 
demands one insertion of a1b2c3d4 on resourcea1. 

The original thread group 1 generates part of the 
base cuboid during the tuples insertion. Only after 
the complete tuples insertion the threads of group 1 
start the generation of the aggregations. Using the 
logical design illustrated in Figure 14, each thread of 
group 1 generates part of both base cuboid and each 
aggregated cuboid, i.e., it generates, for example, 
a1BCD, b1CD, c1D and d1 cells instead of only 
a1BCD cells.  

In summary, each thread of group 1, illustrated in 
Figure 15, will demand longer time to insert the 
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same number of tuples when compared to each 
thread of group 1, illustrated in Figure 3.  

 

 

Figure 15: p-MDAG logical design II. 

On the other hand, after the base and some 
aggregated cuboids generation by thread group 1, 
the same group can perform the generation of the 
remaining aggregations, pruning infrequent nodes 
efficiently, as (Lima, 2007) (Xin, 2007) do 
sequentially. The all node can be generated by one 
of the resources. After a tuple insertion in the 
resource the IO thread also updates the all node in 
the same resource. After the last tuple insertion in 
the last file, a specific thread is notified to insert the 
all node on its cube partition. 

The logical design illustrated in Figure 15 
increases the number of tuples on each resource and 
the number of initial insertions of thread group 1, so 
it must be studied carefully. 

The advantage of a distributed-memory or 
shared-nothing architecture is that accesses to local 
data can be quite fast. On the other hand, accesses to 
remote memories require much more effort. In 
general, data placement is important to reduce the 
number of data references, since any data reference 
requires communication. (Dongarra, 2003)  

The logical design proposed in Figure 3 requires 
remote access to resources and partitions 
manipulated by thread group 1. Each partition can 
have million of nodes and each thread of group 2 
must scan all partitions of group 1, so there is a 
communication overhead. The logical design, 
illustrated in Figure 15, requires remote access to 
resources only, but additional tuples can increase the 
communication overhead. In summary, we have to 
accomplish some experiments with different 

architectures and both logical designs presented in 
this paper, since distributed-memory architecture 
introduces communication overhead and shared-
memory architecture introduces contentions on the 
bus system. 

The utilization of secondary memory is another 
aspect to be considered. Parallel approaches partition 
the data cubes. Each partition can be stored to disk, 
enabling one partition per time in main memory. 
One may also consider the case that even a specific 
partition may not fit in memory. For this situation, 
occurred specially in distributed-memory 
architectures where each processing node has only 
one cube partition, the projection-based pre-
processing, proposed in (Han, 2001), can be an 
interesting solution. 

Finally, we must consider how queries can be 
designed. We believe that any cube query method, 
including iceberg, top-k, point, inquired and rank 
query methods, can be easily integrated with p-
MDAG approach.  

5 CONCLUSIONS 

In this paper, we present a novel parallel cube 
computation and representation approach, named p-
MDAG. The p-MDAG approach proposes an 
attribute-based data cube decomposition strategy 
which combines both task and data parallelism. The 
p-MDAG approach uses the dimensions attribute 
values to partition the data cube. It also redesigns the 
two phase (base and aggregation phases) MDAG 
sequential algorithms to run in parallel. In general, 
p-MDAG approach has both good load balance and 
similar memory consumption among its threads, as 
our experiments demonstrate. Its logical design can 
be implemented in shared-memory, distributed-
memory and hybrid architectures with minimal 
adaptation. 

The logical design has vulnerability in 
computing iceberg-cubes. We propose an alternative 
design to solve the problem. The iceberg logical 
design, illustrated in Figure 15, must be tested in 
shared-memory architecture. Moreover, both designs 
must be tested in distributed-memory and hybrid 
architectures. Finally, an interesting study is the 
development of some extensions to enable p-MDAG 
to use efficiently secondary memory during the cube 
computation. 
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