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Abstract. We present a multilingual robust morphologic tagger and tokenizer 
for highly inflected languages like Spa-nish, with efficient spell correction and 
‘sound-like’ word inference, obtaining some semantic extraction even on 
parasynthetic and unknown words. This algorithm combines rules, statistical 
best-affix-fit along with a language estimator. A rich flag set controls the 
internal behaviour.  The system has been designed for efficiency and low 
memory footprint, using data structures based on simple available affixing 
rules. Our system, packed with a Spanish dictionary of 83k lemmas and 5k 
rules, recognizes 2.2M exact words, the guessing word-space is many times this 
much. 

1 Introduction 

In any system, to achieve a good quality human-machine communication schema, the 
first processing stage is critical; turning out to be rather complex when dealing with 
free text, including possible mis-spells and Out Of Vocabulary words (OOV).  

To achieve good NLP processing, a robust input stage is needed. Even best 
statistical POS taggers, needs morphologic dictionaries, which itself tur-ned out to be 
‘the real problem’ we address here. 

Another challenge was to design a system to run on limited resources (PC, mobile, 
etc.). Linguistic information is also sparse and difficult to collect to fit into efficient 
datasets. We adopted open-source dictionaries & data [15]. By digging into this data-
sets we found a way to build grammatical and semantic information based on the 
morphologic word derivation processes used in spell correction. 

The main contribution of this work is to build a robust, compact linguistic tagger, 
capable of dealing with the aforementioned ‘real world problems’, running efficiently 
on limited resources; being capable of splitting ‘dirty’ text sentences doing a best-
effort morphologic analysis on each tag with grammatical and semantic extraction, 
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correcting spell errors and providing a statistic quality measure for all correc-tions 
and OOV. words.  

The first hard issue was to address was the huge amount of data to be stored [2], 
along with the ambiguity [3], present at every level of analysis [16]. 

Unlike English, Spanish has quite a large amount of combinable derivations & 
inflections [7]; with circa 1k prefixes [6]; yielding a word space of many millions. 
The database must contain semantic, gram-matical, statistic & some ontological data, 
similar to data found on WordNet [3] [19].  

We created a robust error handling algorithm by properly tweaking known data 
structures (Trie & TST) [13][14] into fast reversible affix algorithms. The final 
system is capable of handling regular and irregular affixation clogged with spell-
errors.  

Many rules and formats used by this algorithm were originally created only for 
spell checking [8]. 

We included a new Spanish phonetic distance measure [19], implementing also 
Metaphone and Soundex. We included a language estimator improving our former 
work [1]. 

2 Split & Classify 

‘Where to split a string’ is by no doubt, a hard issue. To achieve this, we ported & 
enhanced JLex, obtaining a C# attributed lexer capable of  recognize digits, sci-
numbers, romanic, hex, phones, emails, url, uri, math symbols, punctuations, times & 
dates, times, etc; sending any ‘suspected’ words into the next stage: the morphologic 
analyzer. 

The next main challenge was to include a huge inflected-word dictionary. Many 
known squeezing techniques exists [4], the goal is to find a good balance between size 
and retrieval performance.  

We tried out many methods [17] [18], choosing to tore all data in specially 
tweaked TRIE [13] and TST [14]; obtaining a fast & compact system. 

2.1 Morphologic Rules 

The affix-flexion rules were based on a format called AFFIX [8], augmented to allow 
grammar & semantic recall. ISPELL [11] format was used to express the synthesis of 
flexion rules, including the changes of the root word. This new created notation, can 
describe rather complex transformation patterns, combining regular-expression 
pattern syntax [9]. 

The de-flextion algorithm is controlled by many flags allowing us to infer OOV. & 
parasynthetic words, by stripping out the affixes on both ends; obtaining semantics 
tags during the strip; being especially useful to recognize scientific words not present 
in dictionaries like DRAE [10] or others.  
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3 Dictionary Format 

By adopting the well-known ISPELL [11] format we created a clear way to write 
down the rules. Our dictionary consists of a first rule-section in ASPELL [8] format, 
encoding flags to control the affix processing. Each rule is a set of entries describing 
specific affix operations, with some extra info. Following there is a tagged-root-word 
section, where each lemma is annotated with each and every applicable rule name, 
delimited by ‘/’. Example: 
amar/VXYLHp/VMN/3M2R 

The third field ‘VMN’ uses Eagles2 tags. The next field: ‘3M2R’ encodes 
semantics & grammar info.  

Let’s take a look at the “V” rule after the first slash, shown in ISPELL format: 
flag *V:  
#GP present, 1º person, singular 

    A R > -AR,O # amAR > amO 
The condition indicates the root word should end with ‘AR’, then ‘-AR’ states: we 

must remove those two letters, and then finally append ‘O’ to get the inflected word 
transforming: amAR into amO. 

3.1 Additional Functions 

Some format enhancements have been added to simplify complex feature expression, 
allowing us to express individual rule-entries as combinations.  
      #GR common noun | adjective 

Comment-embedded meta-commands like ‘#GR’ allow us to build accumulative 
information. Those functions are used during import-time of ISPELL rule-data, being 
converted into a compact AFFIX-sub-format for the final internal ‘es-ES.dic’ file. 

4 The Morphologic Analyzer  

One logical way to find the inflection root of an unknown word is to un-apply each 
and every known inflection rule combination and see if the remains coincide with a 
root word in our dictionary, and then check if this word admits the used rules. This 
clearly turns out to be a combinatory-NP problem. 

A simpler strip-guess mechanism, used by many popular packages [8] [11] [12] is 
explained: First we start stripping off the suffixes by reversing the applicable rules, 
each success adds to a list of prefix-strip candidates; then for each prefix-strip 
candidate, we see whether if it is a root, if not we try to rip off any prefix, leaving a 
clean root candidate word to be found on our root-dictionary.  The time spent to do 
this is quite a lot, requiring many de-affixation operations and a lot of dictionary 
lookups.  

For example if we have the words on a P factor balanced-tree, it gives a 
complexity in the order of: 
          O(Se*Pe*Nw*LogP(Nw))  
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At least storing all word in an all in-memory hashtable the complexity can be 
lowered only to: 

          O(Se*Pe*1)  
Where (Se~4500: Suffix & Pe~330: Prefix entry counts) for our Spanish system. 

This still results in over 1.1 million de-affixations and seeks operations per word, 
which yields a very slow system. 

Our system changes the number of lookups by using TRIES and TST on the 
prefixes against the unknown word, obtaining a linear performance, based only on 
how-many characters in the word coincide in-order with the last (suffix) or first 
(prefix) patterns. The lookups and de-affixations were 10 to 50, independent on the 
root dictionary size, as we used a fast hash-type like a TST for root lookup. Our 
analyzer was an average of 104 times faster than popular strip-guess system. 

After the tokenization and lemmatization, a final stage detects and merges 
locutions, abbreviations, ‘spelled numbers’; strips enclitic pronouns from verbs and 
detects basic named entities. 

5 Internal Structure 

Our special tree structure called Trie [13] [17], to store the transformed affixes (suffix 
/ prefix) holding multiple elements by node. This allows the rules to be selected 
directly in as many comparisons as letters has the affix; this reduces 4500 
comparisons [12] to an average of 3.2, for that rule (x 1400:1). We use an internal 
Trie for rules to improve speed, testing first the longest found affix. 

When the rule holds nested structures, a unified Trie is used which keeps all the 
combinations optimally, with a mean complexity of: O(log2(k + n). (Mehlhorn) [18] 
and [17], being “k” the number of rules and “n” the affix letter count on each rule, 
ranging from 1-3 letters (in average: 3 comparisons). 

For the storage and search of root words, we also decided to use a variant of a 
custom TST [14], performing similar to a hash table [17], allowing us to find words 
(while seeking) with N character or using even wildcards. This speeds up and 
simplifies the work to find a misspelled word, while testing a possibly misspelled one. 

We implemented variants of both TST and TRIES that allows finding approximate 
roots to address avoiding the diacritics; being able of generating useful alternatives in 
case of missing or wrong letters. They exhibit at the most O(N*P) additional 
comparisons; (where N is the number of letters of the word and P is the number of 
“allowed errors” (nº of diacritics) whose average is between 2 and 4). 

5.1 Data Formats 

We allow a cumulative effect in the affix-rule format used to obtain the labelling of 
words in order to avoid numerous repeated labels and also to group words under a 
same head-label. This is very useful at the time of adding words and publishing the 
list of the similar ones. The extended format is very simple to understand and 
maintains full compatibility with the previous ASPELL dictionary format (being able 
to  read older formats); we only add 2 special start-line-codes: “*” corresponding to  
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the grammar labels and “%” for the rules, with minimal overhead. 
The used/proposed affix compression mechanism is very compact and fast for 

reading and decoding the dictionary files (<0.3seg./500k), being many times better 
than the standard Open-Office (OO) [15] file format. Also due to the file format 
enrichment, it has a more expressive capability.  

Spanish “es-ES.dic” [15] is 712kb with 48k root-words whereas ours is 850k, with 
81k root-words and 526 combinable tag categories; both have the same aprox. ~4500 
morphologic rule-entries. 

5.2 Error Correction 

When a word is not recognized, a spelling algorithm is launched, making changes to 
guess a misspelled word, using a letter permutation/change technique sometimes 
called “the poor man speller” trying to guess a typical misspell. If we got success, the 
word is tagged as “unknown” and the found alternatives are added, each with a 
similarity [19] measure. 

6 Performance & Testing 

The dictionary processed 80k words/second, on a 2660 word-corpus (Ortega&Gasset) 
using ~18Mb memory under .NET. The general score of error detection was 89.64% 
and the successful lexical recognition was 38%. We built a full dictionary including 
definitions of DRAE [10]. 

We benchmarked on a Spanish Blog of 57780 words: 73% were tagged at 2366 
words/second, 7.5k misspells were guessed at 15.4 words/s rate. Final Recall was 
99.6%. 0.4% non-words (dirt) remained untagged. System: 
(XP+SP3+i386/E5300/2Gb) 

7 Conclusions 

The actual system has successfully fulfilled the design goals, being fast, lightweight 
and having the capacity to handle different levels of precision and a wide range from 
exact to approximated word recognition; offering a set of “similar” and “corrected” 
phonetically sorted words, useful for later NLP processing. Our libraries and systems 
are built in C# using .NET to be platform independent.  

Trying to compare our system to others, we could not find any benchmarks, spell-
error handling or phonetic enabled morphologic analyzers out there. To mention a 
few: AGME use a 19Mb data file.  Freeling [5] use ~60Mb RAM for a 600k words. 
No information was found for many other analyzers: [6] [7]. The GATE framework is 
a good NLP tool, but we found no support for Spanish, errors and morphologic 
analysis.  
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7.1 Perspective & Future Work 

One of the today’s most challenging issues are the correct handling of Free Natural 
Language. The presented system adds some power to this crusade being able to 
handle many errors and decently guess words in a ‘dirty’ & ‘misspelled’ environment. 

The actual target is Human Computer Interface (HCI) for Dialog/Chat/Email/Blog 
text processing.  

We developed a dictionary editor to handle rules and semantic tags. With this tool 
was able to add over 300 of Greek, Latin, and German affixes, including a lot of 
‘human-like’ semantic data. 

An interesting field of applications is recognition of parasynthetic words in 
bio/medical records and scientific text. Medical dictionaries Espasa [21], has only 23k 
words, while Snomed-CT [20], has >600k mostly OOV multi word-terms.  

We think that the semantic extraction based on morphology may prove useful for 
further NLP processing like Word Sense Disambiguation (WSD).  

Indeed any human-machine dialog systems may benefit on a fast, robust and 
compact tagger like this. 
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