Role-based Multi-purpose Workflow Engine
Architecture

Sebastian Richly, Sebastian Goetz, Uwe Assmann and Sandro Schmidt

Software Engineering Group, Dresden University of Technology, 01062 Dresden, Germany

Abstract. The workflow management systems domain today is completely frag-
mented. For each purpose various solutions with different specializations exist.
Even for standardized process languages, many different extensions and engines
exist. If new requirements, domains or standards emerge, the engines have to be
adopted. In this paper, we want to show how a workflow engine can be designed
to support different workflow languages and different domains - an extensible
multi-purpose workflow engine. Our approach for this kind of engine is based on
a workflow net engine that allows us to support most of the existing workflow
languages. To support different tasks of different specifications, we integrated
object roles in our engine. This extension of the object-oriented paradigm allows
flexible runtime adaptations and extensions. Thus, we are able to add new domain
specific functions to our engine at runtime, even if the original process language
does not support them.

1 Introduction

A workflow process is the executable representation of a business process in a work-
flow management system. A workflow management system does not only execute these
processes. Most systems support modeling, monitoring, integration of external applica-
tions, organization structures and administration, too. Workflow management systems
operate on workflow specifications. They all define a set of activities (also called tasks)
and their order of execution. Over the years, a completely fragmented workflow lan-
guage ecosystem has been developed. After the introduction of SOAP Web services, the
number increased further and started a new wave of research. BPEL, BPMN, ebXML
BPSS, WS-CDL are prominent representatives of these languages; XPDL, jPDL or
YAWL are examples for classic process languages from the pre-SOA era. The corre-
sponding workflow engines, which all differ in their specific description, deployment
and configuration, are incompatible, although the language is standardized.

Another deficit of today’s workflow engines is their missing runtime flexibility. For
example, if a Web service invocation fails, current engines search for another adequate
service or initiate the predefined exception handling. It is not possible to bypass the
call to an Enterprise Java Bean because this runtime adaptation is not feasible in the
engines architecture. Now, many specialized and inflexible workflow engines exist, but
there is no workflow management system that can be used in a flexible way and for
different workflow languages. Exception handling techniques react only, we intent to

Richly S., Goetz S., Assmann U. and Schmidt S.

Role-based Multi-purposeWorkflow Engine Architecture.

DOI: 10.5220/0003011300450054

In Proceedings of the International Joint Workshop on Technologies for Context-Aware Business Process Management, Advanced Enterprise Architecture and Repositories and Recent
Trends in SOA Based Information Systems (ICEIS 2010), page

ISBN: 978-989-8425-09-6

Copyright (© 2010 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

46

build a proactive solution. Hence, we present a workflow engine design with its focus
on extensibility and runtime adaptation. The approach is based on two main techniques:

Workflow Net [1] / Petri Net: As pointed out in [2], the implementation of a work-
flow engine with workflow nets has several advantages compared to Directed Acyclic
Graphs: (a) the formal semantics despite the graphical nature, (b) the state-based struc-
ture, and (c) the availability of analysis techniques (check deadlock, liveness, fairness).

Role-Oriented Programming (ROP)[3]: This approach of modeling and program-
ming systems is an extension to the classic object-oriented paradigm. The term role (or
object role) is not related and can not be compared to the classic role term in workflow
systems - also called Role-Based Access Control model (RBAC). In a role universe
core types (these are the classical objects) and a set of role types exist. A core object
can play a role instance, this means core type and role type are linked by the can-play-a
relationship. For example, a Person can play a Father and a Customer role. Players are
able to start and stop playing roles at runtime. Notably, roles change the behavior of
core objects (like aspects in aspect oriented programming) and are able to store data,
which is only applicable for the role and not for the core.

By combining these two essential techniques, we build a multi-purpose workflow
engine with five essential characteristics:

1. Support of all petri-net-compatible process languages.

2. Mix of concepts of different process languages.

3. Dynamic extension of new task types. (e.g. invoke geospacial web service)
4. Runtime flexibility of the task configurations and the execution semantics.
5. Customizable description language.

This paper is structured as follows. In the subsequent section, we describe role-
oriented programming. In Section 3, we present our workflow model, and illustrate
the architecture and functionality of the role based workflow engine and explain its
implementation in Section 4. Section 5 takes a look at the current state of multi-purpose
workflow engines and other related work.

2 Role-oriented Programming

Designing such a flexible workflow engine is not easy with object-oriented techniques.
For example, to support new types of tasks, two main possibilities are available. Multi-
ple inheritance is one of them, but is a rather static approach, because instances cannot
change their type dynamically. Delegation is the second possibility, but delegation does
not support type safety. Thus, we had to look for another opportunity and chose role-
oriented programming [3].

Imagine the following scenario: In a workflow engine there is a task which should exe-
cute something. This could be a WebService-Call, GeoWebService-Call and EJB-Call.
In object-oriented programming (OOP), at least four classes are necessary to model the
scenario in Figure 1. The task can only be an instance of one of these three specializa-
tions at runtime. A Task either can be an instance of WebService-Call or, for example,
of EJB-Call. There is no inheritance-based solution for this problem. The only way to

47

<<Executor>>

<<GeoWebService-
Invoker>>
<<WebService-
Invoker>>
<<EJB-
Invoker>>

Fig. 1. Roles Example.

<<Task>>

<<GeoWeb-
ServiceCall>>
<<WebService
Call>>
<<EJB-Call>>

,,,,,,,,,,,,, Role Use

Core

express this scenario is to use delegation, thereby losing type safety and the conceptual
unity of the core and its roles. This is, because only the type of the core object, but not
its role types are known when passing references to the player. A further feature of roles
is that objects are able to play multiple roles as it is shown in Figure 1. By introducing
the specific calls as roles having the Task as core, the Task can play all three roles at the
same time.

Another characteristic of role types is that they are founded. Founded types are
relative types that depend on a collaboration partner. The role WebSerivce-Call does
not only describe which service has to be invoked, but needs some kind of executor. For
example, a role instance of WebService-Call needs a core object of Task and the counter
role WebService-Invoker of Executor to collaborate at runtime. The WebService-Invoker
is responsible to invoke a single web service. It is the counter role of WebService-Call
and vice versa, meaning that they communicate with each other. At runtime, the engine
has to decide, which corresponding counter role to choose.

All these constraints are defined conceptually. No currently available mature lan-
guage supports such constraints on the level of types. Hence, they are realized as ad-
ditional code inside of methods. The more complex the collaborations get, the harder
such implementations are to maintain. Section 3 presents a solution to this problem.

3 Role-based Workflow Engine

To build a general-purpose workflow engine, it is important to know the aspects that
have to be considered. The so-called “aspects” of workflows give a guideline to the
main concepts encountered in workflow languages that should be supported by a multi-
purpose engine. These aspects describe the essential functionality for a workflow en-
gine/language. A good overview of the aspects is collected in [4] and the workflow
meta-model by the Workflow Management Coalition (WFMC).

Based on these aspects, we developed our role model. The role space is partitioned
by contexts, derived from the essential workflow aspects. Figure 2 shows the role and
object space on a high abstraction level. The square forms in the behavioural context
indicate core objects and the rounded forms in the contexts are symbols for roles. The
elements of the behavioural context can play the roles of the contexts which is shown
by the “’plus sign”.

3.1 Workflow Aspect Role Space

The core is represented by the behavioral context. This context contains the essential
object model of our base workflow net, which was introduced in [2].

48

Context

Abstract Net

Element Workflow Net

Transition H Edge H Place H Token ‘

Informational Context Functional Context

Fig. 2. Basic Role Space.

The behavioral context represents the core context and thus contains the individuals
of the workflow system which can play roles. In all other aspects we expect changes,
hence they must be flexible. We focused on the control flow aspect because the roles
should only change the runtime behavior of several tasks, not the structure of the entire
process definition.

The roles need these individuals (see Figure 2): without them, they cannot be in-
stantiated. These are Transition, Edge, Token, Place and the Workflow Net itself. These
five individuals are static, that is, they cannot be removed from the engine at runtime in
contrast to roles that are able to refine these individuals. Considering the workflow ap-
plication domain, a transition expression is often represented by a task execution. Tran-
sitions are atomic operations that, when fired, consume tokens from the input places
and put tokens into the output place, which stores the token until the next transition can
be fired. The tokens can be typed through the roles of the informational context.

The informational context is responsible for the data itself and the dataflow. All
default entities in the context are roles, which are associated with each other. The base
role interface is the datacontainer, which can refer to multiple data roles. The data
construct is designed using the classic composite design pattern. Using the recursion of
Var, structured data types can be constructed, which is necessary for BPEL or other Web
service composition languages. The other basic roles are constant, a variable value and
a data reference.The number of default implementations in these two contexts is much
higher than in the other contexts because they represent the most common part of all
workflow definitions.

The other contexts are not modeled in such detail and need to be refined to sup-
port the different languages. The functional context describes data for the execution of
different functions in the workflow engine. There are only two role interfaces: function
and condition. A function could be an invocation of a Web service. The available Web
services are described in the operational context. It contains only one interface: the op-
eration. The derived service and bundle are only sample implementations to support
BPEL and JPDL.

49

?xml version="1.0" encoding="UTF-8"?>
creditcardCheck
kprocess-definition xmins="" name="CreditCard"> start end
<start-state name="start">
<task name="start" swimlane="initiator">
<controller>
<variable name="creditcard" access="read,write,input'></variable> ' N N
</controller> | N\, \ X
</task> 0
ition to=" . ‘ ~ \
</start-state> 2L
<state name="checkcredtcard"> Instancet ‘ start ‘ Invoke Service end ‘
<event type="node-enter"> " -
<action name="checkcreditcard" class="CreditCardService"></action>| N i \\»
</event> L . i X
<transition to="end"></transition> <<Data- N <<Function>> "*.
Container>> | CheckCredit)
</state> CreditCard_/ Card -/
< <
<end-state name="end"></end-state> g
process-definition> <

<<JavaClass>>
CheckCredit
Card

- === - - Playsarole
Role Use
Association

-
<
<<Value>>
Number

Fig. 3. From JPDL to role space.

The organizational context describes the structure of an organization and a general
resource. This could be a human or a computer resource. Thus, we support user tasks
and automated tasks by assigning the corresponding roles to the core identities.

In addition to the classic contexts, we added two components. The first one is the
manager. This component monitors and controles all the core-role playing and checks
all role model constraints. Because the role space should be extended at runtime, the
manager is designed as an extensible component. Other managers can register them-
selves with the central manager and they will be invoked during validation. This enables
to add new role constraints if new roles are added to the role space.

Figure 3 shows a simple JPDL process definition which had been transformed to
our role space. It shows a process to check a credit card number. The process consists
of a single transition and a token. The transition transports the token to the end. Thus,
it knows the token and can access the data it transports. The transition itself plays the
function CheckCreditCard which is associated to a Java class call. Both have access to
the DataContainter (DC) CreditCard through CheckCreditCard.

The second component is the executor, which interprets the workflow net and serves
as execution environment for the roles. Functions of basic roles can only be executed
in conjunction with the assigned counter roles. For that purpose, the executor provides
the counter roles for the basic roles. For example the executor provides the WebSerivce-
Invoker role for the base role WebSerivce-Call. The “call role” serves the configuration
data which is interpreted by the “invoker role”. This scenario is shown in Figure 1. But
someone has to know, which is the correct counter role. Accordingly the role-counter
role mapping is primarily instantiated at execution time and not at design time. Thus,
the manager helps the executor allocates the referenced roles. The correct role map-
ping is expressed as simple key-value pair role = counterrole. This knowledge base
is integrated in the manager and can be extended at runtime. In Figure 3 the role associ-
ation between function CheckCreditCard and DataContainer CreditCard is created by
the executor using the basic role interfaces. The concrete communication depends on
the implementation of the roles.

50

<<Transition>> <<Token>> R <<DC>> | . <<Value>>
Invoke Service Instance1 CreditCard Number
T o
<<Function>> R
A CheckCredit o
. Card \
/ !
/ \
- ! - === - - Playsarole
b Service>> cdmatisee) e Role Use
Card ardvalldator Association

Fig. 4. Example Role Space for One Transition and One Token.

3.2 Dynamic Extension

The main advantage of using roles in this context is the dynamic extensibility of the
workflow engine. In contrast to classic inheritance-based extensibility - provided by
decorator, composite and other design patterns - roles can be attached or detached at
runtime, with a component type. Using this characteristic, we build up a dynamic ex-
tensible workflow engine.

The basic roles and role interfaces are provided by the engine itself. Every extension
can use or inherit them, except if they violate the role constraints. New roles can be
added by registering a new role bundle to the engine during runtime. The role bundle
has to provide two essential components: The role registry of the bundle, where all
roles are listed and a role manager extension. The registry is used by the role runtime
to instantiate the roles. The manager extension will be automatically registered with the
central manager. This is necessary to provide a safe role space in the entire engine.

A role bundle can be detached at runtime. If so, the roles are no longer available for
all designed and running processes. But this can lead to an invalid state of the complete
engine. Thus, before the roles can be detached, every running process has to finish. This
can be done through canceling or simply by waiting for the regular ending. Canceling
is not an adequate procedure in productive systems. Hence, the solution is to delete
the registration of the role bundle, but to let it stay active and connected until all related
processes have come to an end. The advantage of this approach is that no new processes
can be started if they use the unknow roles. The validator checks the registry at every
request and returns an invalid-message to the executor if a constraint is violated or if a
role is not available any longer. In such a case, the executor will not start the execution.

3.3 Dynamic Flexibility

Figure 4 shows a modified sample configuration of Figure 3. The transition Invoke Ser-
vice itself plays the function CheckCreditCard which is now associated to two opera-
tional roles: WebService and JavaClass. This means that the function can be executed by
both operational roles. Both have access to the DataContainter(DC) CreditCard through
the function CheckCreditCard. The executor and manager can decide at runtime, which
counter role they use for this function. If one call fails the executor can then call the
other one in the exception handling strategy. Our dynamic role-based engine also al-
lows us to adapt the designed processes at runtime. If we look at the example transition
in Figure 4, the transition has one function and two available operations to invoke,
namely a WebService and a JavaClass, which is located on the engines server. Both

51

can be invoked with the variables of the data container from the token. If the engine
supports both roles, it can choose which one of them to invoke. This can happen with a
random function or in accordance to quality-of-service parameters. For example, if the
engine recognizes that the Web service answers very slowly to requests, it can use the
Java class implementation. If the process gets transferred to another engine with only
one of the two possible roles, the executor can only invoke the one activated on the sys-
tem. Thereby, activities in the process can be designed in a more flexible way. Instead
of compensation handling, if the Web service is not available or if the response time is
bad, we can model variants at design time and avoid compensation handling.

This type of "flexibility by configuration” is the basic kind of adaptation. [5] presents
an approach establishing flexibility/adaptation using workflow inheritance. This ap-
proach can be realized through our role based engine but in our approach it is flexible at
runtime. An approach with inheritance is just too static. In our simple example it would
be possible to design a Task which implements both types- WebService and JavaClass
- but if a third invocation method is added we have to redesign the application. The role
approach enables a dynamic type system, which is more flexible in adaptive systems.

3.4 Support of other Workflow Languages

As we stated in the last sections, a role-based workflow engine is very flexible at runtime
and even during the execution of processes. But we can use these features to support
and import different workflow languages, too. To import several workflow languages in
our engine, we designed a two-step procedure. The first step is to map the control flow
structures to the workflow net object structure. The second step is to map resources and
the activity description.

Building on the workflow nets, we designed our generic importer that contains sev-
eral interface methods to be implemented by the concrete importer for each language.
These interface methods represent the two-step import. First, we import the control
flow; second, if we have mapped the control flow to the behavioral context, all the ac-
tivity and resource configurations have to be mapped. The mapping has to be provided
by the importer, too. The configuration data has to be transferred to the roles. To ensure
the smooth import, every importer has to provide a list of required roles for a complete
mapping. If a role is not provided by the engine, it can be installed immediately (see
3.2 and 3.3).

3.5 Mix of Domain Concepts and Domain-specific Workflow Engine

Aside from importing different processes from different domains, another advantage
of a role-based workflow engine appears. The different roles, deployed in the engine,
represent different domains, such as Open Geospatial Web Service roles running side
by side with SOAP or EJB roles. If a common BPEL process has been imported to
the engine, it is no longer restrained by the BPEL corset. The process is now open for
different domains, which are provided by the roles in the engine. For example, we can
add EJB-RMI calls to a former invoke. With this mashup of different domain concepts,
we can design unique process definitions.

52

a) b)

public team class OperationalTeam (
Monitoring RAP public class JavaClassHandler playedBy Transition
base when (OperationalTeam.this.hasRole(base, JavaClassHander.class)

Graphical

Administration Editor

Workflow
Engine

Registry/
Validator

Manager/
Executor

‘ private JavaClass bundleClass;

%"aff“‘:; public void setBundleClass(JavaClass bundleClass) {
this.bundleGlass = bundleClass;

Petri Net
Walker

Role-

- public JavaClass getBundleClass() {
Extension 1

return bundleClass;
}
}

Role-

Plugins Extension N

Importer

0SGi Component and Service Framework]

Fig. 5. a) Architecture and b) JavaClass Role definition.

On the basis of the presented new features of a role-based workflow engine, com-
pletely new application areas can be covered with one single engine design. These ap-
plication areas are divided in two parts: language- and architectural-specific areas. First
of all, the role-based engine can be adopted to many software and hardware architec-
tures. It is possible to create different variants. For example, in embedded systems, only
a basic set of roles is available because of the limited hardware; the same engine can
also be configured for a full-fledged engine for high-end servers.

But if we can easily configure an engine for special hardware architectures only
by configuring the role space for a use case, we can also specify our own domain-
specific workflow language. As described in the previous section, with a role space,
we can mix several domain concepts within one engine. The mix can be fixed and
described in a special domain-specific workflow language. A company can now build a
special adapted language and is no longer restricted to a language that does not fit the
companies requirements.

4 Implementation

We realized our role-based workflow engine in the Open Service Process Platform [6,
7]. This engine is developed at TU Dresden as an OSGi application.

The role-based engine is a step towards a novel kind of workflow engine, which af-
fects all three stated requirements. The base for all implementations is the OSGi frame-
work. In this component framework, we can define so-called bundles, which are often
called plug-ins, too. The OSGi framework is responsible for the runtime and lifecycle
of each bundle. One central concept is the extension point. These points are slots in
a bundle where other bundles can hook in to extend the original implementation. We
used this concept to define extension points for our importer, the manager extensions
and the workflow contexts themselves. One special feature of OSGi is the dynamic
bundle integration at runtime, which allows for the dynamic extension and adaptation
at runtime (see 3.2 and 3.3). Figure 5 a) shows the OSGi container including our bun-
dles. The OSGi runtime contains Object Teams for the role support. The base workflow
engine contains a workflow net walker (execution of the workflow net description), the
manager and executor including all roles. Additionally users can add new role bun-
dles containing the role description, executor role and a validator. But OSGi does not
support roles as first-order programming paradigm. Thus, we had to integrate another
framework that supports roles. We decided to use Object Teams (short OT) [8] for this
purpose. OT is realized as an extension to the Java language that does not need a mod-
ified Java Virtual Machine and introduces two new elements - Teams and Roles which

53

you can see in Figure 5 b). Teams are modeled like classes and they are denoted by the
additional keyword feam. In our implementation, every workflow aspect is described as
a team with all the roles we showed in 3.1. The workflow net engine is implemented
in an extra OSGi bundle and is designed following the work in [2] and represents the
core context. The different contexts are represented by teams, which contain the roles.
In Figure 5 b) you can see the operational team containing one role - the JavaClassHan-
dler. The JavaClassHandler can be played by a transition. This role only contains a
description of the JavaClass (and Java methods) to call, but can not be executed alone.
The executor has a corresponding counter role to execute this description (in this case
just using the Java reflection API). With the described mechanisms, it is possible to
build a role-based workflow engine. First, we implemented a basic importer and roles
for BPEL. Then, we also built an importer for JPDL and implemented the JavaClass
role to show the flexibility of our approach but the approach is not limited to these two
languages.

5 Related Work

The subject of interoperability between workflow languages has been discussed in dif-
ferent ways. The Workflow Management Coalition [9], a standardization organization
for the workflow domain, has defined several interfaces for workflow systems as well
as one for the import and export of workflow definitions. They use a common workflow
model for the exchange, like XMI for UML models. This common model is the well
known XPDL.

The extensible routing language - XRL - also bases on XML with a DTD. In sev-
eral papers [10, 11] the authors present the basic functions (comparable to BPEL) and
several transformations to workflow nets. Processes are executed by a workflow net
engine. New elements can be added through changing the DTD. In contrast to our ap-
proach the changes can only be done at design time and the engine does not support
runtime flexibility through different configurations.

Runtime adaptation is also possible with some aspect oriented approaches like
AO4BPEL[12]. These approaches allow to weave in new tasks or to replace designed
behavior, but these approaches are limited to specific languages and engines and do not
allow to produce customizable workflow definitions.

Other approaches can be found in different areas. In [13], the authors present a portal
supporting the interoperation between different workflow languages in the grid domain.
They use an XSLT converter, which translates between the workflow languages.

6 Conclusions

In this paper, we presented an approach for a new type of workflow engines. Based on
the powerful combination of workflow nets and role-based programming, we showed
an architecture for more flexible and integrative workflow engines. We do not intro-
duce a new workflow language or a new interoperability model, but we present a sim-
ple workflow net model enhanced with a basic role model that can be easily extended

54

at runtime. Through this combination, we are able to support unique features: (1) Dy-
namic extension by new constructs or task definitions, (2) runtime adaptation of the role
configurations and the execution semantic, (3) support for many workflow languages,
and (4) the mix of concepts of different domains.

We implemented our approach in the Open Service Process Platform using OSGi

and Object Teams. In our future work we try not only to adopt the runtime behavior of
the worklfow but also on non-functional aspects such as security which where not in
the focus of the paper. In a future work we will extend our workflow engine to support
workflow nets, which overcome some disadvantages of pure workflow nets.

References

10.

11.

12.

13.

Van Der Aalst, WM.P.: Verification of workflow nets. In: ICATPN ’97: Proceedings of
the 18th International Conference on Application and Theory of Petri Nets, London, UK,
Springer-Verlag (1997) 407426

Pellegrini, S., Giacomini, F.: Design of a petri net-based workflow engine. In: GPC-
WORKSHOPS ’08: Proceedings of the 2008 The 3rd International Conference on Grid and
Pervasive Computing - Workshops, IEEE Computer Society (2008) 81-86

Steimann, F.: On the representation of roles in object-oriented and conceptual modelling.
Data Knowl. Eng. (2000) 83-106

Jablonski, S.: Mobile: A modular workflow model and architecture. In: in Proceedings of
the 4th International Working Conference on Dynamic Modelling and Information Systems.
(1994)

Van der Aalst, W.M.P, Jablonski, S.: Dealing with workflow change: identification of issues
and solutions. International Journal of Computer Systems Science and Engineering (2000)
267-276

Richly, S., Habich, D., Ruempel, A., Buecke, W., Preissler, S.: Open service process platform
2.0. In: Proceedings of the 2008 IEEE International Conference on Services Computing
(SCC 2008, 8-11 Jul, Hawaii, USA). (2008)

Richly, S., Buecke, W., Assmann, U.: A bdi-based reflective infrastructure for dynamic
workflows. Enterprise Distributed Object Computing Workshops, International Conference
on (2008) 112-119

Herrmann, S.: Object teams: Improving modularity for crosscutting collaborations. In:
NetObjectDays. (2002) 248-264

Hollingsworth, D.: Workflow management coalition specification: the workflow reference
model. Technical report, WMC specification (1994)

Van der Aalst, W.M.P., Kumar, A.: Xml - based schema definition for support of interorga-
nizational workflow. Information Systems Research (2003) 23—46

Verbeek, HM.W., Van Der Aalst, W.M.P., Kumar, A.: Xrl/woflan: Verification and extensi-
bility of an xml/petri-net-based language for inter-organizational workflows. Inf. Technol.
and Management (2004) 65-110

Charfi, A., Mezini, M.: Aspect-oriented web service composition with ao4bpel. In Zhang,
L.J., ed.: ECOWS, Springer (2004) 168-182

Huang, L., Akram, A., Allan, R., Walker, D.W., Rana, O.F,, Huang, Y.: A workflow por-
tal supporting multi-language interoperation and optimization: Research articles. Concurr.
Comput. : Pract. Exper. (2007) 1583-1595

