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Abstract. To comprehend the directed networks in a fuzzy view, we introduce 
a new matrix decomposition approach that reveals overlapping community 
structure in weighted and directed networks. This method decomposes a 
directed network into modules by optimally decomposing the asymmetric 
feature matrix of the directed network into two matrices separately representing 
the closeness degree from node to community and the closeness degree from 
community to node. Their combined result uncovers the community structures 
in a fuzzy sense in the directed networks. The illustrations on an artificial 
network and a word association network give reasonable results. 

1 Introduction 

A cogent module representation of a network will retain the important information 
about the network and highlight the underlying structures and the relationships in the 
network. Many researches have been devoted to the development of algorithmic tools 
for discovering communities [1]. Nearly all of these methods, however, are not 
intended for the analysis of directed network. Yet, directedness is an essential feature 
of many real networks. Ignoring direction may reduce considerably the information 
that one can extract from the network structure. In particular, neglecting link 
directedness when looking for communities may lead to partial, or even misleading, 
results. Very few algorithms [2], [3], [4] currently available are able to handle 
directed graphs, since the presence of directed links places a serious obstacle towards 
community detection problems. 

Another subject that attracts much attention in network studies is the detection of 
overlapping communities, or fuzzy clustering. Specifically, many real world networks 
exhibit an overlapping community structure, which is hard to grasp with the classical 
graph clustering methods [5], [6], [7] where every node of the graph belongs to 
exactly one community. Up to now, only a small number of studies [8], [9], [10] have 
addressed the problem of overlapping community. Typically, there is an algorithm 
takes symmetrical non-negative matrix factorization (s-NFM) [10] into optimization 
framework and achieves explicit physical meaning for the clustering results, which 
are helpful for the network analysis after clustering. As for directed networks, 
however, symmetrical factorization could not treat the asymmetry which is resulted 
from the directedness in edges. To solve this problem, we constructed a new 
optimization framework based on the approximation to the directed feature matrix 
with matrices of two types of directed paths. In order to complete the framework, we 
also proposed a directfied and fuzzified variant of the modularity function first 
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introduced by Newman [11]. New function provides a reasonable basis for the 
determination of the optimal number of communities. The clustering results contain 
abundant information and equally possess explicit physical meaning. We tested our 
method on a computer-generated graph and a real-world graph and gained significant 
and informative community divisions in both cases. 

2 The Algorithm 

2.1 Optimization Scheme for Directed Graphs 

Consider a directed and weighted network G(N,E), which can be described by the 
weighted adjacency matrix A=[Aij]n×n where n is the number of nodes, and Aij >0 if 
and only if (i,j)∈E and 0 otherwise. Let the feature matrix of G be Y=[Yij]n×n where 
Yij denotes the similarity from node i to node j. Note that the relationship between a 
pair of nodes is easy to grasp in the sense of connecting path. As the path linking a 
pair of nodes increases, the relationship of the pair is enhanced. Then, in this paper, 
we make the path number as the central metric of various relationships in network. 

Undirected graph is defined as a graph in which edges have no orientation. It is, 
therefore, no need to distinguish between the paths that start from a given node and 
the paths that arrive in it because they are essentially the same in undirected graphs. 
However, in directed graphs, these two types of paths are usually not equivalent since 
not all edges are bidirectional. Suppose that n nodes can be grouped into r overlapping 
communities. Here we introduce the concept of node-community similarity matrix 

rnikUU ×= ][ , which is non-negative, to represents the number of paths (or the 
similarity degree) from nodes to communities, and the concept of community-node 
similarity matrix 

rnikVV ×= ][ , which is non-negative, to represents the number of 
paths (or the similarity degree) from communities to nodes. Generally, U  concerns 
the outgoing edges of node, and V  concerns the incoming edges of node. Fig. 1 
illustrates the difference between the two types of paths in directed network. 

 
Fig. 1. Schematic illustrations of the two types of paths in directed graph (community → node 
and node → community). 

Since U  and V  respectively denote the number of paths from node to 
community and the number of paths from community to node, TVU  could further 
be an approximation of similarity between nodes. That is, we can use U  and V  to 
reconstruct Y: 
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YVU T
→  (1) 

For convenience, we hope to have the following approximation form: 

YVSU T →  (2) 

where U  and V  are non-negative matrix which are separately the column 
Frobenius normalization form of U  and V , and the r×r non-negative diagonal 
matrix S  stores the weights of the columns of  U  and V . Note that Equation (1) 
is essentially equal to Equation (2), then 

TT VUVSU =  (3) 

Equation (2) leads us to the following Frobenius norm (Euclidean distance 
equation), which measures the fitness of the given matrices U , V  and S  of graph 
G(V,E) by quantifying how precisely they approximate the network structural 
information Y: 
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where A B means the Hadamard product (or element-by-element product) of 
matrices A and B. 

Now the community detection problem is reduced to the optimization of FG. In 
other words, we must find the optimal U , V  and S  to minimize FG. To solve this 
optimization problem, we will develope a modified Non-negative Singular Value 
Decomposition. 

2.2 Method of Compressed Non-negative Singular Value Decomposition 

Matrix factorization plays an important role in scientific computation. The commonly 
used one is singular value decomposition (SVD) [12]. It approximates one matrix 
with three lower rank matrices (including one rectangular matrix and two square 
matrices) with orthogonality constraints, in which the left and right singular vectors 
correspond to the column and row spaces of the original matrix. SVD has been 
successfully applied in both science and engineer areas [13]. However the results by 
SVD on real data always lose physical meaning because they usually contain negative 
values, and this can not be interpretable easily from intuitive insight. To make the 
results more interpretable, Liu [14] took the non-negativity constraints into SVD and 
developed a non-negative SVD (NNSVD). 

NNSVD is very help for our theme. We only need to make appropriate 
modification on it. Firstly, both of U  and V  are not square matrices and they do 
not have orthogonality constraints. Secondly, U  and V  must be achieved by the 
normalization after matrix factorization. We take the above conditions in NNSVD and 
propose the iteratively update rules of a compressed Non-negative Singular Value 
Decomposition (c-NNSVD): 
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where kU  and kV  are n×r non-negative matrix and kS  is r×r non-negative 
diagonal matrix. The iteration starts from random matrices which are chosen from a 
normal distribution with mean 0, variance 1. U  and V  are obtained by the column 
normalization of U and V which are the optimal solution of iteration rules in Equation 
(4); and the non-negative diagonal matrix S  stores the weights of the columns of  
U  and V . The i’th diagonal element of S  corresponds to the i’th community, or 
the i’th column of matrix U  and V . 

According to Equation (3), to gain the number of paths from nodes to communities 
(U ) and the number of paths from communities to nodes (V ), the weights in S  
should be properly assigned to U  and V . Intuitively, the weight of the input paths 
of node should be quantitively equated with the weight of the output paths of node. 
Therefore, the weights in S  are equally distributed by: 
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By Equation (6), we gain the number of paths from nodes to communities and the 
number of paths from communities to nodes. Note that their sum can produce an 
integrated closeness degree between nodes and communities, which is necessary for 
the directed network analysis: 

2
1

)( SVUVUW +==  (7) 

If one do not want to separately consider U  and V , the integrated quantity, 
W , would give a consolidated result which combines the two directions. To 
specifically illustrate the difference among U , V  and W , we apply our method 
on a 11-nodes network studied in [3], as follows: 

Let r have a value of 2; the output of Equations (5),(6) and (7) is: 
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(a) 

 
(b) 

 
(c) 

Fig. 2. Community assignments for 11-nodes network from the results of (a) U , (b) V  and 
(c) W . 

Based on the above results, it is not difficult to find that the status of node 6 in U  
and V  are the exact opposite of each other. In the result from U , since there is 
more number of paths from node 6 to community 2 than that to community 1, node 6 
is assigned to community 1, as Fig. 2(a) shows. In the result from V , since there is 
far less number of paths from community 2 to node 6 than that from community 1 to 
node 6, node 6 is assigned to the community 2, as Fig. 2(b) shows. However, in the 
result from W , the closeness degrees of node 6 to both communities are exactly the 
same, as Fig. 2(c) shows. Therefore, W  is the integrated similarity degree which 
combines the degrees on two directions. In general cases, we use W  to provide the 
clustering result in our framework. 

2.3 Feature Matrix 

Choosing a feature matrix to store the topological information of a network is a 
fundamental problem. Here, we select diffusion kernel [15] as the feature matrix. 
Some graph kernels have been developed [16] to decipher the topological 
relationships that are implicit in the graph data and make them explicit. One of these 
is known as diffusion kernel which captures the long-range relationship between 
nodes through enumerating the number of paths connecting them [16]. 

Firstly, we review the diffusion kernel of a common undirected network. The 
Laplacian of undirected network is the following matrix: 
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where di is the degree of node i. Diffusion kernel , the exponential of matrix L, is 
defined as: 
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where β  is a positive constant to control the degree of diffusion. In undirected 
networks, the resulting matrix K is symmetric and positive definite. It is a valid 
kernel. A similarity matrix Y can be obtained by normalizing the kernel matrix K in 
such a way: 

jjii

ij
ij KK

K
Y =  (10) 

Note that, the diffusion kernel of undirected network starts with a symmetric 
adjacency matrix. However, in directed network, the adjacency matrix A is not 
symmetric. Therefore, directed networks should have an alternative form of kernel 
which could be traced back to a different Laplacian. The Laplacian of undirected and 
weighted network is the following matrix: 
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where out
id  is the out degree (weighted) of node i. It is naturally an asymmetric 

matrix. So, its kernel matrix Kd=exp(β Ld) and the resulted feature matrix are also 
asymmetric. Frankly speaking, Kd do reflect the number of directed paths from one 
node to another in an asymmetric manner. In this paper, we choose β = 0.1 in the 
feature matrices in our study. 

2.4 Directfied and Fuzzified Variant of the Modularity Function 

If a priori knowledge of the community number is absent, the optimal number of 
communities should be determined by some computational methods in a self-
consistent way without human intervention. Recently, a concept of modularity 
function Q introduced by Newman and Girvan [11] has been broadly used as a valid 
measure for community structure. It comes from the notion that: only if the number of 
edges within communities is significantly higher than would be expected purely by 
chance can we justifiably claim to have found significant community structure. The 
original modularity of a network is then defined as: 
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dd
A

m
Q δ⋅⎥

⎦

⎤
⎢
⎣

⎡
−= ∑

, 22
1  (12) 

8



where Aij is an element of the adjacency matrix, δ ij is the Kronecker delta symbol, 
and ci is the label of the community to which vertex i is assigned. 

Then one maximizes Q over possible divisions of the network into communities, 
the maximum being taken as the best estimate of the true communities in the network. 
So, the optimal number of fuzzy communities can be determined by the modularity 
function Q which gains its maximum on a certain value of r. 

In the fuzzy clustering method of Nepusz [8], a fuzzified variant of the modularity 
Q is presented as: 
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=

=
r
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 and kiH  is the fuzzy membership degree of node i to the 

community k. The probability of the event that vertex i belongs to the same 
community as vertex j becomes the dot product of their membership vectors, resulting 
in the similarity measure sij, which can be used in place of 

jiCCδ  to obtain a fuzzified 

variant of the modularity. 
As for directed network, Newman [2] presented a new modularity function Qd, 

which is generally applicable for directed networks: 
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where Aij is defined in the conventional manner to be 1 if there is an edge from j to i 
and zero otherwise, and  out

id  is the out-degree of node i and in
jd  is the in-degree of 

node j and M is the total number of directed edges in the network. Indeed edge i-j 
make larger contributions to this expression if in

jd  and/or out
id is small. 

Each of the above two modularity, Qf and Qd, has its advantages which the other 
one does not has. To combine their advantages, we propose another variant of the 
modularity Q as: 
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which can be applied to fuzzy clustering in directed networks. 
The modularity can be either positive or negative, with positive values indicating 

the possible presence of community structure. One can search for community 
structure precisely by looking for the divisions of a network that have positive, and 
preferably large, values of the modularity. In order to determine the optimal number 
of fuzzy communities in directed networks, we iteratively increase r and choose the 
one which results in the highest modularity Qdf. 
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3 Test of the Method 

3.1 Random Graph 

For illustrative purposes, we consider an artificial computer-generated network, 
designed specifically to test the performance of the algorithm. As Fig. 3a shows, this 
network is generated with N = 40 nodes, split into two communities containing 20 
nodes each. We put 120 directed edges in each community at random and 120 
directed edges between the two communities at random. The edges that fall within 
groups are biasedly assigned directions so that they are more likely to point from one 
group to another. As we apply c-NNSVD on this network, the two communities are 
detected almost perfectly: just two nodes out of 40 are misclassified. This is 
confirmed in Fig. 3(a), which shows the results of the application of our method. If 
we ignore the directions, however, using the algorithm presented in [10], there is 
nearly no community structure to be found in this network, as Fig. 3(b) shows. 

 
(a)                (b) 

Fig. 3. Community assignments for the two-community random network described in the text 
from (a) the algorithm of this paper and (b) an undirected clustering algorithm in [10]. The true 
community assignments are denoted by vertex shape or shaded region. The different colors 
represent different communities obtained by the algorithms. 
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(a)                                    (b)                                 

Fig. 4. The communities of the word DAY in the South Florida Free Association coupled with 
the determination of the optimal number of communities. (a) By the method presented in this 
paper, the word DAY is discovered to be the overlapping node which has the largest 
membership degree to the yellow group and the second-largest membership degree to the blue 
group. (b) Histogram of Qdf for different choices on number of communities. 
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3.2 Word Association Graph 

We examined a directed network obtained from the South Florida Free Association 
norms list [17] (containing 10617 nodes and 63788 links), where the weight of a 
directed link from one word to another indicates the frequency that the people in the 
survey associated the end point of the link with its start point. We picked a sub-
network with 20 nodes from the list and chose 4 as the optimal number of clusters, see 
details in Fig. 4(b) which indicates that the peak for Qdf of 0.5745 is achieved at r = 4. 
For illustration in Fig. 4(a), we showed the (colour coded) modules of the word DAY 
obtained by c-NNSVD, with the overlap emphasized in nested color. According to its 
different meanings, this word participates in four, strongly internally connected 
modules. The green community can be associated with work days. The yellow 
community consists of day times, the gray community contains common adjectives of 
day related to weather, and the blue community can be associated with the calendar. 
Separately, the closeness degrees of the word DAY to the four communities is 0.018, 
1.355, 0.019 and 0.059, which indicate that the yellow group is the dominant 
community of node DAY and the blue group follows. 

4 Conclusions 

In this paper we presented a new algorithm for identifying overlapping communities 
in directed networks based on two matrices of similarity between node and 
community. An integrated quantity was proposed to give a consolidated result and it 
was shown, through several examples that this leads to detection of the overlapping 
community structure of the directed network. 
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